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Abstract: The challenges of point cloud registration in intelligent vehicle driving lie in the large scale,
complex distribution, high noise, and strong sparsity of lidar point cloud data. This paper proposes
an efficient registration algorithm for large-scale outdoor road scenes by selecting the continuous
distribution of key area laser point clouds as the registration point cloud. The algorithm extracts
feature descriptions of the key point cloud and introduces local geometric features of the point cloud
to complete rough and fine registration under constraints of key point clouds and point cloud features.
The algorithm is verified through extensive experiments under multiple scenarios, with an average
registration time of 0.5831 s and an average accuracy of 0.06996 m, showing significant improvement
compared to other algorithms. The algorithm is also validated through real-vehicle experiments,
demonstrating strong versatility, reliability, and efficiency. This research has the potential to improve
environment perception capabilities of autonomous vehicles by solving the point cloud registration
problem in large outdoor scenes.

Keywords: environment perception; cloud registration; feature extraction; rigid body change

1. Introduction

Accurately obtaining information about the environment around the vehicles is critical
to the safety of autonomous vehicles [1]. Environment perception is a mechanism that
provides a natural and dense understanding of the relationship between objects and their
surroundings. It plays a critical role in enabling autonomous vehicles to operate safely
and make informed decisions by classifying the importance of environmental factors and
providing real-time and accurate information about the surroundings. Lidar is commonly
used in self-driving cars to obtain real-time information about the vehicle’s surroundings [2],
and 3D point cloud data is used to perceive the changes in the environment as the car moves.
However, 3D point cloud data usually contain noise, lack obvious spatial topological
relationships, and have the problem of repeatedly scanning an object many times. In view
of the above problems, current researchers solve them through point cloud registration
technology. Point cloud registration is a fundamental problem in computer vision and
plays a vital role in autonomous driving [3].

The Iterative Closest Point (ICP) algorithm [4] is a widely used point cloud registra-
tion technique. It works by establishing a distance threshold between two sets of point
cloud data, identifying corresponding points between them, and iteratively solving for the
optimal transformation matrix between the two sets. However, the accuracy and efficiency
of the algorithm can be significantly affected by the initial position of the point cloud. In
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response to this problem, some scholars have proposed several point cloud registration al-
gorithms that combine ICP and different coarse registration algorithms [5–7]. To achieve the
optimal estimation of the global point cloud, some scholars have proposed several different
versions based on ICP [8–10]. In addition, some scholars proposed to use the neighborhood
feature descriptor of the point cloud to accelerate point cloud registration [11–13]. This
method only uses a small number of point clouds for point cloud registration, which can
shorten the registration time of point clouds, but the registration accuracy of point clouds
cannot be guaranteed. As deep learning continues to evolve, several point cloud registra-
tion algorithms based on deep learning have emerged [14–17]. However, these algorithms
are currently limited to object-level or indoor point clouds and may not be suitable for
large-scale outdoor autonomous-driving point clouds.

To improve the registration accuracy of lidar point clouds and overcome various
challenges, several approaches have been proposed in the recent literature. NRLI-UAV,
proposed in [18], addresses the issue of registration failure when rigid transformations are
used between images and lidar point clouds. In [19], the global registration of subway-
tunnel point clouds is studied by using an enhanced extended Kalman filter and central
axis constraints; [20] proposes a novel solution for point cloud registration in areas with
low overlap. The data acquired by the oblique airborne photogrammetry system AOS-Tx8
are processed using a new processing scheme developed in [21], which aims to create large-
scale regional thermal property maps. A 3D global localization method for identifying
the location of objects in underground mines is proposed in [22]. Using mobile lidar
mapping and point cloud registration, [23] proposes an adaptive feature region extraction
method for simplifying point cloud data and improving registration accuracy. Ref. [24]
proposes a registration algorithm that integrates road information constraints to improve
the registration accuracy of Lidar-Inertial measurement unit (Imu) odometry in urban
environments. Ref. [25] proposes a Lidar-Imu-Global Navigation Satellite System (GNSS)
fusion positioning algorithm based on voxelized precise registration to address the problem
of insufficient registration accuracy and cumulative errors. Ref. [26] proposes a pipeline
internal localization method based on data fusion and point cloud registration to improve
the positioning accuracy of pipeline robots. Ref. [27] proposes a symmetry-based lidar
point registration method, which derives 3-D central axes from multi-source point clouds
using object symmetry.

Intelligent-vehicle lidar point clouds have unique characteristics, such as high sparsity,
large spatial extent, and complex and variable distributions [28], which make traditional
point cloud registration algorithms inadequate. Many existing algorithms have the prob-
lems of slow convergence, long processing time, and single-application scenarios, making
them unsuitable for intelligent-vehicle point cloud registration. This paper proposes a
point cloud registration algorithm under the constraints of key point clouds and point
cloud features, which solves the key problems of positioning or mileage calculation meth-
ods in intelligent driving and promotes the development of point cloud object detection
and recognition.

In summary, our main contributions are as follows:

(1) A new point cloud registration algorithm is proposed in this paper, which exhibits
high accuracy, real-time performance, and reliability.

(2) The selection of point clouds in key regions makes only a very small number of point
clouds available for registration.

(3) The local geometric features of the point cloud are introduced in our method to com-
plete the point cloud registration process under the constraints of the key point cloud.

This research paper is structured as follows: Section 2 presents the point cloud registra-
tion algorithm proposed in this paper. In Section 3, the algorithm for the point cloud coarse
registration phase is described. Section 4 elaborates the algorithm for the point cloud fine
registration. Experimental validation is shown in Section 5. The conclusion of this research
paper is given in Section 6.
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2. Research Methods

In this section, the general framework of the algorithm and the method for continuous
point cloud region extraction are introduced.

2.1. Algorithm Framework

The objective of point cloud registration is to determine the rigid body transformation
matrix between two point clouds, such that the spatial distance between the transformed
point cloud and the target point cloud is minimized. The mathematical language is ex-
pressed as follows [29]:

T = argmin∑n
i=1 (Pi − T ⊗ Pi)

T•(Qi − T ⊗Qi) (1)

In Equation (1), T is the rigid body transformation matrix between the two sets of point
clouds, and Pi and Qi(i = 1, 2, 3 . . . n) are the n pairs of matching points in the two sets of
point clouds. The overall framework of the point cloud registration algorithm proposed in
this paper is shown in Figure 1.
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Given source and target point clouds P, Q∈ RN×3, the key point clouds
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2 , QT
3 . . . QT

i
}

are obtained by using the contin-
uous key point cloud selection module of this paper. Coarsely registered point clouds
_
P =

{
_
P1,

_
P2,

_
P3 . . .

_
P a

}
and

_
Q =

{
_
Q1,

_
Q2,

_
Q3 . . .

_
Qa

}
are obtained under the Fast Point

Feature Histogram (FPFH) feature constraint [30], which is used to solve the initial rotation
matrix R0 and initial translation vector t0. After coarse registration, the relative positional
relationship between point clouds is improved. Based on the evaluation of the point cloud

normal vector and curvature, the optimal transformation matrix
_
T =

[
_
R

_
t
]

is solved

iteratively. R̂ represents the rotation matrix, and t̂ represents the translation vector.

2.2. Region of Interest Area

The pre-processed point cloud data in Figure 2 appears to be cleaner and more orga-
nized compared to the raw point cloud data, which may contain more noise and invalid
points. The pre-processing step helps to remove these unwanted points and improve the
quality of the point cloud data, which can lead to more accurate point cloud registration
results.

It should be noted that the distribution of point clouds in intelligent driving scenarios
is complex and changeable, and there is no obvious spatial topological relationship between
point clouds. Figure 3 shows the vertical and horizontal distribution of point clouds in
such scenes. To avoid focusing on a single scene, experiments on the KITTI dataset [31]
(dataset for research in the field of autonomous driving jointly sponsored by Karlsruhe
Institute of Technology and Toyota Technological University Chicago) have shown that
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point clouds are mainly distributed in the regions of (−26.7083, 20.5833) m in the x direction
and (−20.2343, 23.9661) m in the y direction. Therefore, the selected Region of Interest
(ROI) for point cloud registration should be within this range.
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In this study, different ROI regions are delineated by adjusting the vertical and hori-
zontal thresholds of the point cloud. Figure 4 shows the impact of different ROI regions on
the accuracy and efficiency of point cloud registration. Among them, the overall effect of
ROI area 1 is ideal.
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3. Point Cloud Coarse Registration

In this section, point clouds are characterized by FPFH features, and the initial change
matrix T0 between two frames of point clouds is computed.

3.1. FPFH Feature Descriptor

Different from the Point Feature Histogram (PFH) [32], the FPFH reduces the computa-
tional complexity from O

(
nk2) to O(nk) by weighting the Simple Point Feature Histogram

(SPFH). n represents the number of calculation points, and k represents the number of
points within the radius of the calculation point field. Figure 5 is a comparison of the
affected areas of the PFH and the FPFH.
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For every pair of points pi and pj(i 6= j) in the k-neighborhood of each point p and
their estimated normal ni and nj, we compute the angular variations of ni and nj as follows:

α =
(

pj − pi
)
× ni•nj (2)

φ =
(
ni•
(

pj − pi
))/∥∥pj − pi

∥∥ (3)

θ = arctan
(
ni ×

(
pj − pi

)
× ni•nj, ni•nj

)
(4)

In Equations (2)–(4), ni and nj are the estimated normal vectors of points pi and
pj, θ ∈ (0, 2π). For each query point p, we compute the relationships (as shown in
Equations (2)–(4)) between itself and its nearest neighbors, which is referred to as the
“SPFH” calculation. For every point, we re-determine its nearest neighbors and utilize
the SPFH values from k neighbors to weight the final calculation of the point’s feature
descriptor, known as the “FPFH” descriptor:

FPFH(p) = SPFH(p) +
1
k

k

∑
i=1

1
ωk

SPFH(pk) (5)

In Equation (5), ωk represents the distance between query point p and a neighbor
point pk in a given metric space.

3.2. Singular Value Decomposition to Solve the Transformation Matrix

Singular Value Decomposition (SVD) [33] is a commonly used method for solving
the rigid transformation between two point clouds by minimizing the least squares error.
By computing the covariance matrix of the two point clouds, SVD can extract the rotation
matrix and translation vector that align the two point clouds in the same coordinate system.

For the matched point sets
_
P =

{
_
P1,

_
P2,

_
P3 . . .

_
P a

}
and

_
Q =

{
_
Q1,

_
Q2,

_
Q3 . . .

_
Qa

}
,

the initial change matrix T0 =
[
R0 t0

]
is solved to minimize the spatial distance of the

registered corresponding points, that is, to find the minimum error function:

E
(

R0 t0
)
=

a

∑
i=1

∥∥∥∥_Qi − R0
_
P i − t0

∥∥∥∥2
(6)

In Equation (6),
_
Qi and

_
P i represent the points in the matched point sets

_
P and

_
Q. To

find the rotation matrix R0, we change Equation (6) as follows:

E(R0) =
a

∑
i=1

((
_
Qi −

_
Q0

)T(_
Qi −

_
Q0

)
+

(
_
P i −

_
P0

)T(_
P i −

_
P0

)
− 2
(
_
Qi −

_
Q0

)T
R0

(
_
P i −

_
P0

))
(7)
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In Equation (7),
_
Q0 and

_
P0 are the centroids of point sets

_
Q and

_
P . To minimize E(R0),

the calculation needs to take the derivative of E(R0) and maximize dE(R0).

dE(R0) = tr

(
R0

(
_
P i −

_
P0

)(
_
Qi −

_
Q0

)T
)

(8)

In Equation (8),
(
_
P i −

_
P0

)(
_
Qi −

_
Q0

)T
is a third-order square matrix. In Equation (9),

we denote
(
_
P i −

_
P0

)(
_
Qi −

_
Q0

)T
by H.

H = U

λ1 0 0
0 λ2 0
0 0 λ3

VT (9)

In Equation (9), U and V are orthogonal matrices. λ1, λ2, λ3 are the eigenvalues of the
matrix H. The rotation matrix R0 can be obtained by the following formula:

R0 = VUT (10)

According to the obtained rotation matrix R0, the translation vector t0 is obtained by
the following formula:

t0 =
_
Q0 − R0

1
a

a

∑
i=1

_
P i (11)

4. Point Cloud Fine Registration

In this section, local features of the point cloud are introduced, and the transformation
matrix between matched point pairs is computed.

4.1. Extracting Point Cloud Features

Different from ICP, Normal Iterative Closest Point (NICP) [34] takes the local features of
the point cloud into consideration when matching two frames of point clouds, and uses the
Levenberg-Marquardt (LM) algorithm to iteratively solve the point cloud transformation
matrix. Figure 6 shows the principle of NICP.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 6. The principle of NICP. The red line represents the source point cloud, and the green line 
represents the target point cloud. 

To solve for the normal vector, we compute the covariance matrix of the Gaussian 
distribution of all points within a sphere of radius R  around the target point ip . If the 
point cloud surfaces in the target point domain are well-defined, they can be approxi-
mated as a plane, and only one of the eigenvalues of the covariance is much smaller than 
the other two. The eigenvector corresponding to the smallest eigenvalue is considered to 
be the normal vector of the point cloud plane of this point domain. 

1

j i

s
i j

p vi

pμ
ν ∈

=   (12) 

( ) ( )1

j i

s s s
i j i j i

p vi

p pμ μ
ν

Τ

∈

= − −   (13) 

In Equation (12), s
iμ  represents the centroid of the point cloud, and iv  represents a 

cluster of point clouds in the field of a sphere of radius R  in the target point cloud ip . 
In Equation (13), s

i  is the Gaussian distribution covariance matrix. 

1

2

3

0 0
0 0
0 0

s
i X Y

ω
ω

ω

Τ

 
 =  
  

  (14) 

In Equation (14), X   and Y   denote an orthogonal matrix after decomposing the 
matrix s

i . 1ω , 2ω , 3ω are the eigenvalues of s
i  in ascending order. 

4.2. Searching for Matching Point Pairs 
The points of the two sets of point clouds are projected into the same depth map, and 

those points that fall on the same pixel and have consistent normal vectors and curvatures 
are considered as matching point pairs. If multiple point clouds fall on the same pixel, the 
closest point pair is chosen, and their normal vectors must point to the same point. These 
alternative matching point pairs will be filtered by the following conditions, and if at least 
one of the following conditions is met, the group of point pairs will be removed. 

The distance between two points exceeds a threshold: 

ˆc r
i j dp T p ε− ⊕ >  (15) 

The absolute value of the difference between the logarithms of curvature of two 
points exceeds a threshold: 

log logc r
i j σσ σ ε− >  (16) 

The angle between the normal vectors of two points exceeds a threshold: 

ˆc r
i j nn T n ε⊕ <  (17) 

In Equation (15), dε  represents the distance threshold, T̂  represents the projection 
matrix, and c

ip  and r
jp  represent two matched points. In Equation (16), σε  represents 

Figure 6. The principle of NICP. The red line represents the source point cloud, and the green line
represents the target point cloud.

To solve for the normal vector, we compute the covariance matrix of the Gaussian
distribution of all points within a sphere of radius R around the target point pi. If the point
cloud surfaces in the target point domain are well-defined, they can be approximated as a
plane, and only one of the eigenvalues of the covariance is much smaller than the other two.
The eigenvector corresponding to the smallest eigenvalue is considered to be the normal
vector of the point cloud plane of this point domain.

µs
i =

1
|νi| ∑

pj∈vi

pj (12)

∑ s
i =

1
|νi| ∑

pj∈vi

(
pj − µs

i
)T(pj − µs

i
)

(13)
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In Equation (12), µs
i represents the centroid of the point cloud, and vi represents a

cluster of point clouds in the field of a sphere of radius R in the target point cloud pi. In
Equation (13), ∑ s

i is the Gaussian distribution covariance matrix.

∑ s
i = X

ω1 0 0
0 ω2 0
0 0 ω3

YT (14)

In Equation (14), X and Y denote an orthogonal matrix after decomposing the matrix
∑ s

i . ω1, ω2, ω3 are the eigenvalues of ∑ s
i in ascending order.

4.2. Searching for Matching Point Pairs

The points of the two sets of point clouds are projected into the same depth map, and
those points that fall on the same pixel and have consistent normal vectors and curvatures
are considered as matching point pairs. If multiple point clouds fall on the same pixel, the
closest point pair is chosen, and their normal vectors must point to the same point. These
alternative matching point pairs will be filtered by the following conditions, and if at least
one of the following conditions is met, the group of point pairs will be removed.

The distance between two points exceeds a threshold:∥∥∥pc
i − T̂ ⊕ pr

j

∥∥∥ > εd (15)

The absolute value of the difference between the logarithms of curvature of two points
exceeds a threshold: ∣∣∣log σc

i − log σr
j

∣∣∣ > εσ (16)

The angle between the normal vectors of two points exceeds a threshold:

nc
i •T̂ ⊕ nr

j < εn (17)

In Equation (15), εd represents the distance threshold, T̂ represents the projection
matrix, and pc

i and pr
j represent two matched points. In Equation (16), εσ represents the

curvature threshold, and σc
i and σr

j represent the curvatures of the two matching points. In
Equation (17), εn represents the angle threshold, and nc

i and nr
j represent the normal vectors

of the two matching points.

4.3. Calculating the Transformation Matrix

When given a pair of matching points and the current transformation T̂, the error
function eij

(
T̂
)

is a six-dimensional vector.

eij
(
T̂
)
=
(

p̃c
i − p̃r

j

)
(18)

In Equation (18), p̃c
i and p̃r

j represent two matching points with normal vectors. Thus,
the objective function composed of all point pairs is expressed as follows:

∑ ceij
(
T̂
)TΩ̃ijeij

(
T̂
)
, (19)

In Equation (19), Ω̃ij is a 6 × 6 information matrix. The NICP algorithm uses a
local parameterization of incremental perturbations to minimize the objective function

∑ ceij
(
T̂
)TΩ̃ijeij

(
T̂
)
; the increment is expressed as ∆T =

(
∆tx ∆ty ∆tz ∆qx ∆qy ∆qz

)T,
which contains the translation vector ∆t and the imaginary part ∆q of the rotation unit
quaternion. By using the damped Gauss-Newton algorithm in each iteration of the calculation:

(H + λI)∆T = b (20)
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In Equation (20), H = ∑ Jij
TΩ̃Jij is the approximated Hessian matrix, b = Jij

TΩ̃eij
(
T̂
)
.

The increment ∆T can be calculated by Equation (20), and T̂ is updated.

T̂ ← ∆T ⊕ T̂ (21)

Jij represents the Jacobian calculation, which is defined as follows:

Jij =
δeij
(
∆T ⊕ T̂

)
δ∆T

(22)

5. Experiments

This section begins with the visual and experimental data analysis of the proposed al-
gorithm under various working conditions and scenarios. The raw data for the experiment
are obtained from two lidars with completely different metrological characteristics. The
point cloud registration experiment is conducted on a computer hardware environment
consisting of an Intel(R) Core™ i5-11400H CPU and 16 GB memory.

5.1. Object-Level Point Cloud Registration Experiment

Outdoor point clouds can be considered as being composed of object-level factor
clouds. Therefore, firstly, we used the rabbit point cloud from the public point cloud
library provided by Stanford University for registration experiments and compared it with
different common point cloud registration algorithms such as Normal Distribution Trans-
formation (NDT), Trimmed Iterative Closest Point (TRICP), and NICP. Table 1 indicates
the experimental effects of distinct registration algorithms under the rabbit point cloud of
Stanford University.

Table 1. Registration results of Stanford University rabbit.

Algorithm Root Mean Square Error/m Time/s

NDT 0.032 29.32
TRICP 0.036 22.71
NICP 0.034 7.46
Ours 0.030 1.53

The number of point clouds of the Stanford University rabbit model is about 40,000,
which can be compressed to about 6000 after speedy sampling of the point cloud. From
the consequences of rabbit registration at Stanford University in Table 1, it can be viewed
that the running time of the algorithm proposed in this paper is 1.53 s. Compared with the
different three registration algorithms, the time is significantly shortened, and the average
registration time is shortened by 12.96 times. At the same time, the registration accuracy is
slightly improved, and the average registration accuracy is increased by 11.56%. Figure 7
indicates the registration impact of different registration algorithms under the rabbit point
cloud of Stanford University.
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5.2. Multi-Condition Registration Experiment

The KITTI dataset is a widely used benchmark dataset for evaluating algorithms
related to autonomous driving, including point cloud registration. It contains data from
a variety of urban, rural, and highway scenes with different levels of complexity, making
it a good dataset for testing the robustness and accuracy of algorithms under different
conditions. The Velodyne HDL-64E lidar used in the KITTI dataset is a high-performance
sensor that can capture detailed and accurate point cloud information with a large coverage
range, making it suitable for real-world autonomous driving applications. Figure 8 shows
the point cloud distribution under different working conditions.
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Figure 8. Different working conditions of point cloud registration. (a) Crossroads, (b) vehicle going
straight, and (c) vehicle turning.

Table 2 shows the time registration results of different registration algorithms under
the KITTI mileage dataset. In Table 2, scenarios 2, 3, and 6 are intersection conditions,
scenarios 1, 4, and 8 are straight-going conditions, and scenarios 5, 7, and 9 are turning
conditions.

Table 2. Time comparison of algorithms.

Time/s
Method Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9

NDT 13.80 12.50 12.75 15.47 18.48 14.83 19.42 16.08 14.32
TRICP 12.24 10.37 14.43 11.98 15.72 11.73 7.18 13.51 12.20
NICP 12.68 12.67 19.17 13.97 11.08 12.21 13.86 15.07 15.31
Ours 0.63 0.38 0.66 0.49 0.74 0.59 0.62 0.89 0.90

It is clear from Table 2 that the proposed algorithm has a significantly faster registration
time compared to the other three algorithms, with an average registration time of 0.66 s.
The NDT algorithm has the slowest registration time, with an average of 15.29 s, while
the TRICP and NICP algorithms have registration times of 12.15 s and 14.00 s on average,
respectively. In terms of registration accuracy, Figure 9 shows that the proposed algorithm
also outperforms the other three algorithms, with an average root mean square error of
0.0787 m. On average, the proposed algorithm achieves an improvement of 17.75% in
accuracy compared to the other three algorithms.
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Figure 10 is a comparison of the effects of different point cloud registration algorithms
under the KITTI mileage data. Among them, the registration effect of the NDT and NICP
algorithms is not ideal, and the coincidence degree between the two frame point clouds
after registration is not high. The TRICP registration effect is better, but the registration
time is too long to meet the actual needs. It can be seen from Figure 10 that after the
two frames of point clouds are registered by the algorithm of this paper, the ground,
buildings, vehicles, and other objects have achieved a high degree of fusion. Moreover, the
corresponding relationship between point clouds is very stable and will not change due to
external interference. At the same time, the correspondence between point clouds is very
complete, and there are no missing or repeated point clouds. The algorithm proposed in
this paper has strong adaptability and can meet the needs of point cloud registration in
different working conditions.
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5.3. Multi-Scene Registration Experiment

The distribution of point clouds in different scenarios is very different, which brings
great challenges to point cloud registration. In order to verify the versatility of the algorithm
proposed in this paper in different scenarios, several frames of data in urban, rural, and road
scenes were selected from the KITTI dataset to conduct extensive verification experiments.
Figure 11 is the distribution of point clouds in different scenarios.
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For the verification experiments, a total of 1059 frames of road point cloud data were
selected. Figure 12 shows the temporal analysis of point cloud registration for four different
algorithms in road scenes. The average point cloud registration time for the proposed
algorithm in this paper is 0.5084 s, compared to 8.7548 s for the TRICP algorithm, 22.3652 s
for the NICP algorithm, and 31.0748 s for the NDT algorithm.
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A total of 1264 frames of rural point cloud data were selected for verification exper-
iments. Figure 13 shows the time analysis of four different algorithms for point cloud
registration in rural scenes. The proposed algorithm in this paper has an average point
cloud registration time of 0.6555 s, which is significantly shorter compared to the TRICP
algorithm with an average point cloud registration time of 11.8145 s, the NICP algorithm
with an average point cloud registration time of 16.5529 s, and the NDT algorithm with an
average point cloud registration time of 19.4471 s.
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A total of 1469 frames of urban point cloud data were selected for verification ex-
periments. Figure 14 shows the time analysis of four different algorithms for point cloud
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registration in urban scenes. For the verification experiments, 1469 frames of urban point
cloud data were selected. The average point cloud registration time of the proposed al-
gorithm was 0.5855 s, while the average registration times of the TRICP, NICP, and NDT
algorithms were 10.7177, 14.0146, and 21.5313 s, respectively.
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Among the four point cloud registration algorithms, NDT takes the longest time, and
the registration efficiency varies greatly in different scenarios; the registration efficiency of
NICP and TRICP algorithms is relatively stable, but the registration time in some scenarios
is too long and the overall registration time cannot meet the real-time requirements. In the
road, rural, and urban scenarios, the algorithm proposed in this paper maintains a stable
calculation time, and the average registration time is 0.5831 s. Thanks to the selection of the
ROI area of the point cloud in front of the vehicle, it avoids large-scale searching for the
corresponding relationship between point clouds, which can greatly shorten the time for
point cloud registration.

Table 3 shows the accuracy comparison of various algorithms in different scenarios.
The average registration value of the NDT algorithm is 0.1268 m, the average registration
value of the NICP algorithm is 0.08910 m, and the average registration value of the TRICP
algorithm is 0.1011 m. Among them, the registration accuracy of the NDT algorithm is
stable, but the error is large and does not meet the actual needs; the TRICP and NICP
algorithms maintain excellent performance in some scenarios, but the algorithms are not
universal and cannot adapt to different scenarios. The average value of the algorithm
proposed in this paper is 0.06996 m. In road, rural, and urban scenarios, the algorithm in
this paper maintains high accuracy and stability. Figure 15 is a comparison of multiple
algorithms in different scenarios.

Table 3. Comparison of accuracy of algorithms.

Method Road/m Countryside/m City/m

NDT 0.1427 0.1136 0.1241
TRICP 0.1346 0.08100 0.08766
NICP 0.1108 0.07548 0.08101
OURS 0.07231 0.06991 0.06766
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5.4. Real-Vehicle Registration Experiment 
To evaluate the effectiveness of the proposed point cloud registration algorithm, ex-

periments were conducted using an electric vehicle with a Hesai 40-line lidar, a 
Changjiang No. 3 camera, and an inertial measurement unit, driven by the researchers at 
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5.4. Real-Vehicle Registration Experiment

To evaluate the effectiveness of the proposed point cloud registration algorithm, ex-
periments were conducted using an electric vehicle with a Hesai 40-line lidar, a Changjiang
No. 3 camera, and an inertial measurement unit, driven by the researchers at the State Key
Laboratory. The sensors were rigidly connected to establish a stable coordinate system con-
version relationship, and after data processing and coordinate system conversion, accurate
three-dimensional space coordinates of each scanned object were obtained. Table 4 shows
the lidar sensor parameters.

Table 4. Lidar parameters.

Technical Parameter

Principle of distance
measurement

time-of-flight
measurement Scanning frequency 10 Hz, 20 Hz

Scanning principle mechanical rotation Vertical field of view 40◦ (−25~+15◦)

Number of threads 40 Vertical angular
resolution minimum 0.33◦

Detection distance 0.3~200 m Horizontal field of view 360◦

Measurement
accuracy

±5 cm (0.3~0.5 m)
±2 cm (0.5~200 m)

Horizontal angular
resolution

0.2◦ (10 Hz)
0.4◦ (20 Hz)

The test area for the study was mainly located in the Shijiazhuang Railway University
headquarters campus, which is composed of campus roads. The road conditions in this
area are relatively flat, without any significant bumpy road sections. The data collection
process involved collecting point clouds of various objects, including pedestrians, roads,
trees, buildings, and speed bumps around the vehicle body. The collected data was very
accurate, complete, and without any missing or repeated point clouds. This allowed for
a complete reflection of the scene’s characteristics and details, facilitating comprehensive
analysis and processing. The data coverage was extensive, covering every corner and detail
of the entire scene. Figure 16 shows the equipment installation location and real-vehicle
data collection environment.
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A total of 1761 frames were selected from the collected point cloud data for verification
experiments. Figure 17 shows the point cloud registration time analysis of the real vehicle.
The average point cloud registration time of the algorithm proposed in this paper is 0.5734 s,
the average point cloud registration time of the TRICP algorithm is 17.8066 s, the average
point cloud registration time of the NICP algorithm is 21.1194 s, and the average point cloud
registration time of the NDT algorithm is 27.8159 s. The time efficiency of the algorithm
proposed in this paper still maintains a high real-time performance under the real-vehicle
test. It can be seen from Figure 17 that the longest registration time of NDT is 47.3280 s, the
longest registration time of NICP is 114.8751 s, and the longest registration time of TRICP is
82.8434 s. The algorithm in this paper maintains high stability, and there is no phenomenon
where the registration time of a certain point cloud is too long.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 17. Analysis of registration time of real-vehicle point cloud. 

Table 5 shows the accuracy analysis of various algorithms under real-vehicle experi-
ments. Among them, the maximum error range of the registration accuracy of the TRICP 
algorithm is 0.06505 m, followed by NICP and NDT. The minimum error range of the 
algorithm proposed in this paper is 0.01751 m. At the same time, compared with the other 
three algorithms, the algorithm proposed in this paper has the highest registration accu-
racy. Experimental results demonstrate the versatility and high accuracy of the registra-
tion algorithm proposed in this paper under real-vehicle conditions. Figure 18 is the anal-
ysis of the registration accuracy of the real-vehicle point cloud. 

Table 5. Comparison of algorithm accuracy in real vehicle. 

Algorithm Root Mean Square Error/m 
NDT 0.1229 ± 0.03925 
NICP 0.1182 ± 0.04029 
TRICP 0.1244 ± 0.06505 
OURS 0.05996 ± 0.01751 

 
Figure 18. Accuracy analysis of point cloud registration in real vehicle. 

Figure 19 presents a visual analysis of four registration algorithms using data from 
real-vehicle experiments. The NDT, TRICP, and NICP registration algorithms show a low 
degree of coincidence, with significant differences in objects such as buildings and vehi-
cles. On the other hand, after registration by the algorithm proposed in this paper, the 
degree of coincidence between point clouds is high, and the corresponding relationship is 
strong. Additionally, the proposed algorithm does not ignore any part of the point cloud, 
and the relationship between each point is preserved. 

Figure 17. Analysis of registration time of real-vehicle point cloud.

Table 5 shows the accuracy analysis of various algorithms under real-vehicle experi-
ments. Among them, the maximum error range of the registration accuracy of the TRICP
algorithm is 0.06505 m, followed by NICP and NDT. The minimum error range of the
algorithm proposed in this paper is 0.01751 m. At the same time, compared with the other
three algorithms, the algorithm proposed in this paper has the highest registration accuracy.
Experimental results demonstrate the versatility and high accuracy of the registration
algorithm proposed in this paper under real-vehicle conditions. Figure 18 is the analysis of
the registration accuracy of the real-vehicle point cloud.

Figure 19 presents a visual analysis of four registration algorithms using data from
real-vehicle experiments. The NDT, TRICP, and NICP registration algorithms show a low
degree of coincidence, with significant differences in objects such as buildings and vehicles.
On the other hand, after registration by the algorithm proposed in this paper, the degree
of coincidence between point clouds is high, and the corresponding relationship is strong.
Additionally, the proposed algorithm does not ignore any part of the point cloud, and the
relationship between each point is preserved.

Table 5. Comparison of algorithm accuracy in real vehicle.

Algorithm Root Mean Square Error/m

NDT 0.1229 ± 0.03925
NICP 0.1182 ± 0.04029
TRICP 0.1244 ± 0.06505
OURS 0.05996 ± 0.01751
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5.5. Metrological Characteristics Analysis of Lidar

The metrological characteristics of lidar include not only the measurement accuracy
and angular resolution, but also other important factors, such as measurement range, point
density, and reflectivity detection threshold. All of these characteristics can collectively
affect the quality and accuracy of point cloud data collected by lidar, which can impact
the result of point cloud registration. For example, the measurement accuracy of lidar
determines its ability to accurately capture the 3D location of a target object. If the accuracy
is low, the point cloud data collected by lidar will contain significant errors, which can
negatively affect point cloud registration results. The point cloud data sources of the
experiment are two different lidars, Pandar40P and Velodyne HDL-64E. Their metrological
parameters are shown in Table 6.

Table 6. Metrological parameters of Pandar40P and Velodyne HDL-64E.

Device Model Measuring
Distance

Ranging
Accuracy

Horizontal
Field of View

Horizontal
Angular

Resolution

Vertical Field
of View

Vertical
Angular

Resolution

Pandar40P 200 m ±2~±5 cm 360◦ 0.2~0.4◦ 40◦ 0.33~6◦

Velodyne
HDL_64E 120 m ±2 cm 360◦ 0.08~0.35◦ 26.9◦ 0.4◦

It can be seen from Table 6 that Pandar40P has a longer measurement distance and
a larger vertical field of view than Velodyne HDL-64E, but Velodyne HDL-64E has high
measurement accuracy and high angular resolution. Table 7 shows the accuracy and time
analysis of four different registration algorithms.
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Table 7. Accuracy and time analysis of four different registration algorithms.

Algorithm
Pandar40P Velodyne HDL-64E

Root Square Mean Error/m Time/s Root Square Mean Error/m Time/s

NDT 0.1229 ± 0.03925 27.8158 ± 6.2704 0.1169 ± 0.03418 23.5018 ± 6.4974
NICP 0.1182 ± 0.04029 21.1194 ± 9.9502 0.09416 ± 0.04526 17.4721 ± 9.9084
TRICP 0.1244 ± 0.06505 17.8066 ± 10.8586 0.1008 ± 0.05135 10.5351 ± 6.7416
OURS 0.05996 ± 0.01751 0.5739 ± 0.1227 0.06971 ± 0.01597 0.5873 ± 0.1470

It can be seen from Table 7 that the algorithm proposed in this paper has a wide range
of applicability and robustness, and can perform well on different types and specifications
of lidar equipment. It can handle various noises and errors, and has high registration
accuracy and reliability. At the same time, the algorithm can effectively overcome the
differences between different lidars, and can also make an accurate registration of poor-
quality or incomplete data.

6. Conclusions

The algorithm proposed in this paper is designed to address the challenges posed
by the large scale, complex distribution, high noise, and strong sparsity of point cloud
data collected by lidar during intelligent driving. The algorithm leverages regional feature
extraction, mapping from local to global point clouds, and point cloud feature descriptors
and local geometric features to achieve robust registration of point clouds for outdoor road
scenes. The proposed algorithm has been verified through visualization effect analysis
and experimental data analysis, demonstrating its high efficiency and accuracy in different
working conditions and scenarios. The algorithm was also compared with three other point
cloud registration algorithms under lidar with different metrological characteristics, and
found to be robust and general. Finally, the algorithm has been validated on a real vehicle
through point cloud registration experiments, showing its effectiveness and suitability
for real-time applications. Overall, the algorithm proposed in this paper represents an
important advancement in the field of point cloud registration and has significant potential
for improving the efficiency and accuracy of intelligent driving systems.

Although the proposed algorithm has a more accurate registration performance, it
still has some limitations. For example, the algorithm proposed in this paper only uses
a single sensor to achieve point cloud registration. In our future work, it is intended to
introduce a lightweight neural network that can fuse camera and lidar data to achieve
precise estimation of lidar position and attitude. This will ensure the accuracy of point
cloud registration even under extreme working conditions.
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