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Abstract: Surgical skill assessment can quantify the quality of the surgical operation via the motion
state of the surgical instrument tip (SIT), which is considered one of the effective primary means by
which to improve the accuracy of surgical operation. Traditional methods have displayed promising
results in skill assessment. However, this success is predicated on the SIT sensors, making these
approaches impractical when employing the minimally invasive surgical robot with such a tiny end
size. To address the assessment issue regarding the operation quality of robot-assisted minimally
invasive surgery (RAMIS), this paper proposes a new automatic framework for assessing surgical
skills based on visual motion tracking and deep learning. The new method innovatively combines
vision and kinematics. The kernel correlation filter (KCF) is introduced in order to obtain the key
motion signals of the SIT and classify them by using the residual neural network (ResNet), realizing
automated skill assessment in RAMIS. To verify its effectiveness and accuracy, the proposed method
is applied to the public minimally invasive surgical robot dataset, the JIGSAWS. The results show
that the method based on visual motion tracking technology and a deep neural network model can
effectively and accurately assess the skill of robot-assisted surgery in near real-time. In a fairly short
computational processing time of 3 to 5 s, the average accuracy of the assessment method is 92.04%
and 84.80% in distinguishing two and three skill levels. This study makes an important contribution
to the safe and high-quality development of RAMIS.

Keywords: robot-assisted minimally invasive surgery; surgical skill assessment; visual motion
tracking; kernel correlation filter; residual neural network

1. Introduction

Recent years have witnessed the remarkable progress of RAMIS in general surgery,
gastrointestinal surgery, urology, and gynecology due to the advantages of 3D vision,
motion scaling, and tremor filtering [1,2]. RAMIS is a teleoperation mode based on the
human–computer interaction system. As the most important link in the “doctor–robot–
patient” system, the doctor’s operating skill level directly affects the operating effect of
the entire surgical robot system, and it plays a decisive role in the safety and efficacy of
the surgical procedure [3]. The effectiveness of these operations depends on the surgeon’s
ability, which has a big impact on the patient’s health and safety [4,5]. In addition, a reliable
method for assessing skills in RAMIS is essential in order to improve physicians’ technical
skills [6]. The purpose of skill assessment is to help and guide medical staff to conduct more
efficient and accurate skill training through the most reliable assessment means possible
during the surgical training of medical staff. Therefore, before performing surgery, surgeons
must acquire the necessary surgical operation skills. Accurate skill assessment techniques
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are essential for improving surgical abilities [7]. Therefore, identifying the skill level of
robotic operations effectively in order to provide doctors with fair and objective theoretical
guidance plays a crucial role in the research and improvement of robot system control
methods, thus assisting medical personnel to enhance operational skills, and ensuring the
standardization and safety of operations.

The majority of studies focus on assessing the motion signals of the SIT. Farcas et al. [8]
used a traditional laparoscopic box trainer to install a customized motion tracking system
in order to analyze and study the instrument motion at the stage of a suture task in vivo,
as determined in the simulator. It provided an assessment of velocity and acceleration.
One purpose of these simulators is to reduce the subjective reliance on experts and ob-
servers when evaluating performance or technical skills [9]. The key motion signals of
the SIT have provided objective and precise evaluations of skill in surgical skill train-
ing [10]. Therefore, obtaining the key motion signals of the SIT has important research
relevance. Jiang et al. [11] analyzed the key motion features, such as the SIT’s trajectory,
and distinguished the motion control skills of operators with different skill levels based
on the dynamic time warping (DTW) algorithm. Oquendo et al. [12] designed a magnetic
induction motion tracking system and algorithm. The algorithm could automatically track
the suture trajectory in order to assess the suture skills of trainees in pediatric laparoscopy.
However, introducing these sensors, data gloves, and other extra tools [13] dramatically
reduces training efficiency and increases the burden and cost of surgical skill assessment.
Additionally, the software-based motion tracking system has been used to assess surgical
proficiency. However, these methods have poor tracking accuracy [14,15]. Overall, despite
the motion tracking system’s effectiveness in evaluating surgical competence according to
the aforementioned assessment techniques, it is still challenging to integrate it into RAMIS
training and assessment due to various problems, such as low efficiency and poor accuracy.
Therefore, research on a RAMIS-appropriate assessment technique that is actually effective
and accurate is urgently needed.

Based on the above needs, the automatic assessment of surgical skills using deep
learning neural networks has become a hot research topic. The application of deep neural
networks needs to be based on the datasets. Thus, many scholars have studied the RAMIS
surgical skill assessment dataset. Rivas-Blanco et al. [16] explored the dataset that could be
used to automate surgical robotic tasks, surgical skill assessment, and gesture recognition.
In addition, the JIGSAWS [17] is one of the most widely available datasets for technical skill
assessment in surgical robots. These large amounts of data can promote the development
of surgical robot skill assessment towards automation. Kitaguchi et al. [18] proposed a
deep learning method based on a convolutional neural network (CNN). It can achieve the
high-precision automatic recognition of surgical actions with an accuracy rate of 91.9%.
The long short-term memory (LSTM) model [19] and a symmetric dilated convolutional
neural network model, SD-Net [20], have also been used for the automatic assessment
of surgical skills. Nguyen et al. [21] described an automated assessment system using a
CNN-LSTM neural network model and IMU sensors. This model performed classification
and regression tasks for kinematic data in the JIGSAWS, achieving over 95% accuracy.
Wang et al. [22] proposed an analytical deep learning framework for surgical training
skill assessment based on sensor data and a CNN, implementing deep convolutional
neural networks to map multivariate time series kinematics data to individual skill levels.
Although their research achieved promising results, the experiments were based on existing
datasets or sensor data. This was valuable for laboratory research, but it is still a long
way from being practically applied to RAMIS. Our aim is therefore to develop a broadly
applicable, scalable evaluation method that can be easily integrated into surgical robots.

In RAMIS, the endoscope can provide visual field information, which we believe can
play a role in surgical skill assessment. No additional hardware is needed, which satisfies
the demands of practical applications, if vision can be utilized in place of sensors to acquire
signals. The motion signals are used as the input features of neural networks in RAMIS
skill assessment [23]. Traditional kinematic data are no longer absolutely superior to visual
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data in surgical skill assessment [24]. Funke et al. [25] achieved a nearly 100% classification
accuracy using 3D visual features. Evaluation methods based on 3D visual features tend
to outperform 2D methods, but they have limited utility and are not suitable for RAMIS
training. To help integrate automated skill assessment into surgical training practice, our
proposed solution, therefore, relies on 2D visual features. Ming et al. [26] obtained over 70%
accuracy when using 2D videos in surgical skill assessment; these videos represented the
motion dynamics via improved dense trajectory (IDT) features and space temporal interest
points (STIP). Lajkó et al. [27] demonstrated the potential application of optical flow in
skill assessment using 2D vision during RAMIS and achieved an assessment accuracy of
over 80%. The accuracy of 2D vision is not as good as that of 3D vision, but it has lower
training costs and can be more efficiently applied to the automatic skill assessment in
RAMIS. Therefore, this paper studies an intuitive and efficient assessment method using
endoscopic 2D visual motion signals during RAMIS.

Based on the above problems associated with surgical skill assessment in RAMIS, this
study proposed a new automated surgical skill assessment framework based on visual
motion tracking technology; in addition, a deep neural network model that can be applied
to real-time stage identification and online assessment is proposed. The new method
utilizes a KCF algorithm [28] that can realize the motion tracking of the SIT. It establishes
key motion signal features in the video. Meanwhile, the method employs a ResNet [29]
model. It uses the visual motion signals as input in order to improve the classification
efficiency of surgical skills and realize the efficient assessment of surgical skills. In addition,
this method effectively considers the advantages of visual efficiency and the accuracy of
motion signals, improving the assessment accuracy of surgical skills. Finally, the JIGSAWS
is used to corroborate the effectiveness of the proposed method. The result shows that the
classification of this method is better than that of other models. In this paper, a practical
framework is provided for the automatic online assessment of objective skills in RAMIS.

To sum up, the innovations and contributions of this paper are as follows:

• A novel end-to-end analytical framework with visual tracking and deep learning is
created for skill assessment based on the high-level analysis of surgical motion.

• Visual technology is used to replace traditional sensors in order to obtain motion
signals in RAMIS.

• The proposed model is verified using the JIGSAWS dataset and the exploration of vali-
dation schemes applicable to the development of surgical skills assessment in RAMIS.

2. Materials and Methods

The surgical skill assessment framework based on visual tracking and deep learning
in RAMIS is shown in Figure 1. The endoscope at the end of the surgical robot was used to
provide visual information, and the required motion signals of the SIT were recorded by
the KCF, which is a multivariate time series (MTS), including [x, y, t, v, a, MJ] (Section 3.2.2).
The recorded MTS was input into ResNet for classification. This outputs a discriminative
assessment of surgical skills through a deep learning architecture, and the operator is then
given the results. This chapter introduces the principles of the relevant models in detail.

2.1. KCF

The core part of most current trackers is the classifier, whose task is distinguishing
the goals from the surroundings. In this study, the tracking model needed to accurately
identify the SIT and capture their movements from the surroundings. The SIT moves at a
relatively high speed when doctors perform surgical tasks, which is a great challenge for
the tracking models.

The KCF is a high-speed and accurate motion-tracking algorithm, which has proven
to be a very accurate tracking tool [30]. It is a kernel-based ridge regression classifier [31]
that uses the cyclic matrix gained by cyclic displacement to collect positive and negative
samples. The matrix operation is transformed into the point multiplication of the elements
by using the diagonalization property of the cyclic matrix in the Fourier domain. The
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efficiency of calculation is improved. Meanwhile, the multi-channel histogram of oriented
gradient (HOG) replaces the single-channel gray features and extends to multi-channel
linear space to achieve higher robustness and accuracy.
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Figure 1. A framework for RAMIS based on a visual motion tracking and deep learning neural network.

As shown in Figure 2, the KCF mainly includes two stages, training and detection. In
this study, the spatio-temporal context model [32] was used to learn about this framework.
In the training stage, the features of the target region were extracted. Then, the kernel
function was used to calculate the generation vector of the kernel matrix of the current
regional features.
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The KCF uses the multi-channel HOG features, which need to add vectors of different
channel features. Taking the Gaussian kernel function as an example, Equation (1) is
defined as follows:

kxx′ = exp(− 1
σ2 (‖x‖

2 +
∥∥x′
∥∥2 − 2 f−1(∑

c
x̂*

c ⊗ x̂′c))) (1)
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where x is each sample in the circular matrix X, f−1 is the inverse Fourier transform, x* is
the complex conjugate of x, x̂* is the discrete Fourier transform of x*, and kxx is the first-row
element of kernel function k = C(kxx).

Then, the filter template’s size is obtained using the kernel matrix and the ideal
Gaussian output response. In the calculation, the kernel matrix is a cyclic matrix. Because
of the large amount of data in the image, the kernel function can be diagonalized in the
frequency domain to speed up the algorithm’s calculation. The kernelized ridge regression
classifier weights are shown in Equation (2):

α̂ =
ŷ

k̂xx + λ
(2)

where y is the output expectation and λ is the regularization coefficient of the filter template.
In the detection stage, the features of the candidate regions are first extracted, and then

the current regional features are calculated using the kernel function. The rapid detection
is shown in Equation (3):

f̂ (z) = k̂xz ⊗ α̂ (3)

The ideal regression expectation is the Gaussian, and the more like the tracking result
of the previous frame it is, the greater the chance it is the tracking result of this frame.
The center point in the next frame is more likely to be around the yellow point (inside the
yellow box) in the region of interest (ROI), so the ideal regression is more likely to be in
the center than around in Figure 2. The box’s position has changed, showing that the SIT
has moved.

2.2. ResNet

The ResNet is mainly used for classification tasks [29]. The so-called skip connection
is used to solve the degradation problem in ResNet. Essentially, it directly connects the
shallow network to the deep one and can create a deeper one without losing performance.
Even in a smaller network, it is also a reliable method. The overall network structure of
the ResNet classification model in this study is shown in Figure 3. The features are fed
into a convolution layer, followed by three residual building blocks. Finally, the results of
classification are output. It should be emphasized that the model is selected after repeated
tests during training and validation.
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The ResNet is composed of a series of residual building blocks. A block model is
shown in Figure 4, and it can be expressed as Equation (4):

xl+1 = xl +F (xl , Wl) (4)

The residual building blocks contain two mappings: (1) the identity mapping, rep-
resented by h(xl), which is the right curve in Figure 4a; and (2) the residual mapping.
Residual mapping refers to the F (xl , Wl) and generally consists of two or three convo-
lutions, which is the left part in Figure 4a. In the convolution network, the number of
feature maps in xl and xl+1 may be different, and then the 1× 1 Conv is needed to in-
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crease or reduce the dimension, which is shown in Figure 4b. The weight corresponds to
3× 3 Conv, 64, as shown in Figure 3. It can be expressed as Equation (5):

xl+1 = h(xl) +F (xl , Wl) (5)

where h(xl) = W ′l x and W ′l x is the 1× 1 conv.
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3. Experimental and Results
3.1. Dataset

We used the video collection in the JIGSAWS to simulate the manipulation motion of
the surgical robot. The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [33]
was produced by Johns Hopkins University and Intuitive Surgery [34]. The JIGSAWS
contains kinematic, video, and gesture data in three basic surgical tasks (suturing, knot-
tying, and needle-passing). In the meantime, the JIGSAWS [35] contains a global rating
score (GRS) that is determined using the upgraded Objective Structured Assessment of
Technical Skills. Eight participants (B, C, D, E, F, G, H, and I), ranging from novices to
experts at three levels, provided the data. As shown in Figure 5, the participants performed
each task five times by controlling the da Vinci surgical robot. These three tasks are standard
parts of the surgical skills training curriculum [17]. Two skill labels are recorded in the
JIGSAWS: (1) The self-proclaimed skill label, which is based on surgical robot practice time.
The experts reported more than 100 h, the intermediates reported between 10 and 100 h,
and the novices reported less than 10 h; and (2) the labels based on the GRS (scores range
from 6 to 30). This was performed manually by experienced surgeons. The higher the score,
the higher the skill level. This study compared the skill levels, based on the GRS, to the
self-proclaimed skill level, which was used as the true label for the trial.
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This study focused on the suturing videos because it has a longer execution time and
more complex actions in the JIGSAWS. Only the twenty-four suturing videos selected to
ensure the same quantity of input from the novices, intermediates, and experts were used
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as the experimental object. These videos were recorded at a 30 Hz sampling frequency.
Table 1 shows more details. It should be noted that the other two tasks used the same
experimental methods in this study, and that we did not repeat them.

Table 1. The needed details of the suturing tasks in this experiment.

Self-Proclaimed
Skill Labels Name Number of

Videos Time (s) The GRS

Novice B, G, H, I 8 172.5 ± 58.3 14.5 ± 2.9
Intermediate C, F 8 90.8 ± 15.1 24.0 ± 3.8

Expert D, E 8 83 ± 13.3 17.3 ± 2.5
Some values shown are the mean ± standard deviation.

3.2. Experimental Setup
3.2.1. Process of Visual Motion Tracking

A tracking program was designed based on the KCF and ran in python. This program
was used to automatically identify and track the ROI of the visible part of the SIT in the
2D continuous video frames and record the key motion signals. The quality of the surgical
operation in RAMIS was presented by assessing the motion mode of the SIT. Such tracking
methods have also been used to study the differences in physician hand movements during
routine surgery [36,37]. The center pixel position of the ROI in each frame (every thirtieth
of a second) in the videos was identified and tracked. Then, the position coordinates (x, y)
and their running time (t) were automatically recorded. The KCF can overcome some
short-time accidents, such as the instrument being blocked and covering the other, and
motion mutation. However, the ROI position sometimes needs to be corrected, so we set
the ROI so that it could be manually selected. As shown in Figure 6, the red box is the
ROI selected manually. The center point in the next frame is more likely to be around the
yellow point (inside the yellow box) in the ROI. The minor differences in the box’s size and
position were ignored as long as the instrument was included.
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Figure 6. The process of suturing is shown from (a–f).

The trajectory of the SIT is shown in Figure 7. The light blue part is the course
projection in the X–Y plane. The length of the trajectory is 10,105 px, 8078.4 px, and
4317.5 px, respectively, which can be calculated by dn+1 in Table 2. The trajectory curve of
the novice is the most complicated, and the expert is the smoothest in the same suturing
task. The novice has more redundant actions, thus taking 80 s more than the experts and
intermediates to complete this suture task. Consequently, the distinction in the suturing
skill of different operators can be seen clearly from the trajectory curve.
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Figure 7. The SIT’s trajectory in a group of suturing. The blue part is the projection in the X–Y plane.
(a) is from novices, (b) is from intermediates, and (c) is from experts.

Table 2. The specific key motion feature parameters.

Symbol Description Formula

tn The time recorded at frame n /
xn Position x coordinate at frame n /
yn Position y coordinate at frame n /

dn+1 Distance moved between consecutive frames
√
(xn+1 − xn)

2 + (yn+1 − yn)
2

v The mean velocity of the ROI in
consecutive frames

√(
dx
dt

)2
+
(

dy
dt

)2

a Mean acceleration of the ROI in
consecutive frames

dv
dt

MJ

A parameter based on the cubic derivative of
displacement with time, which refers to the

change in the motion acceleration of the ROI
used to study motion smoothness

√(
d3x
dt3

)2
+
(

d3y
dt3

)2

3.2.2. Key Motion Futures

The tracking record for the position of the SIT can quantify the instantaneous displace-
ment, velocity, acceleration, velocity curvature, and motion jerk [38]. In this study, the key
motion features in Table 2 were recorded as the input of the ResNet in order to assess the
surgical skills. Motion data were captured and saved into CSV files on the PC according
to the surgical tasks and the expertise level of users via software implemented in Python.
Some features were obtained by calculating the difference by code.

The SIT’s velocity, acceleration, and motion jerk curves are shown in Figure 8 as a
quantitative performance of speed–stationarity–smoothness. These key signals are impor-
tant features used to measure surgical skills [38]. It can be seen that the three levels of
operations show a linear trend. In addition, the swings of the curves are different, reflecting
the distinctions among the actions of the three levels of operators. Compared to another
two groups of operators, the curve of the experts has less swing and fewer abnormal data,
which shows the smoother suturing and the higher quality of the expert.
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3.2.3. Implementation Details of Classification

This study’s assessment of surgical skills is formalized as a supervised classification
problem. The input of the ResNet is the whole MTS of the kinematics of the end effector in
the surgical robot, which is recorded by the KCF tracking model, including [x, y, t, v, a, MJ].
Each feature represents a dimension of the ResNet input vector. The length of each input
vector data depends on the time of motion. This is accomplished by using the benchmark’s
sliding window preprocessing method, which was implemented by Anh et al. [19]. The
same padding is used in most places, to maintain the dimensions of the output.

output_width =
W − Fw + 2P

Sw
+ 1 (6)

output_height =
H − Fh + 2P

Sh
+ 1 (7)

where W and H are the width and height of the input, respectively, S is the stride length, F
is the filter dimensions and P is the padding size (i.e., the number of rows or columns to be
padded). In the case of the same padding, the following stands:

output_width = ceil
(

H
Sh

)
(8)

output_width = ceil
(

W
Sw

)
(9)

The output is a predicted label representing the corresponding professional level of
the trainees, which can be encoded as 0: novice, 1: intermediate, and 2: expert. The hyper-
parameters are selected empirically with a learning rate of 0.001 and a batch size of 24, and
are trained in a maximum of 100 epochs. To implement this network topology, the ResNet
is trained from scratch without any pre-training model. It runs based on Python, using the
Keras library and TensorFlow on a computer with an Intel Core i5-10400F processor with
2.90 GHz and 16 GB RAM. To ensure that the results are more objective and accurate, as
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chosen by Anh et al. [19], each method is run five times for each generated input file. Within
each run, five trials use the leave-one-super-trial-out (LOSO) cross-validation method, and
the mean accuracy is calculated.

3.2.4. Modeling Performance Measures

In this study, four common indexes [39,40] were applied to evaluate the performance
of the classification model:

• accuracy, the ratio between the number of samples correctly classified and the total
number of samples;

accuracy =
Tp + Tn

Tp + Fp + Fn + Tn
(10)

• precision, the ratio between the correct positive predictions and the total positive
results predicted by the classifier;

precision =
Tp

Tp + Fp
(11)

• recall, the ratio between the positive predictions and the total positive results in the
ground truth;

recall =
Tp

Tp + Fn
(12)

• F1-score, a weighted harmonic average between precision and recall.

F1− score =
2× (recall× precision)

recsll + precision
(13)

where Tp and Fp are the numbers of true positives and false positives, respectively, and Tn
and Fn are the numbers of true negatives and false negatives for a specific class, respectively.

3.3. Results

In this study, the proposed endoscopic visual motion tracking technology and deep
learning neural network-based framework for automatically assessing surgical skills in
RAMIS were validated using the JIGSAWS. Figure 9 shows the confusion matrix of the
classification results. Figure 9a shows the complete three classifications, and Figure 9b uses
the results of two classifications without the intermediates. Specifically, when the suturing
task is classified into two and three classifications, respectively, the model’s accuracy is
92.04% and 84.80%. The performance of fewer class classifications is naturally better than
more class classifications, but the reason why the gap is so significant is worth analyzing
and discussing (Section 4). Among these three performance indicators, the three-class
accuracy is fairly poor. However, the assessment of the novice group is more accurate,
reaching 96%. For the experts group, the worst assessment classification accuracy is only
39%. The results are 3% and 53% higher than those of the three classifications when only
labeled as novice and expert.

The results of this study can be compared to the most advanced classifications in Table 3.
These studies used the JIGSAWS as a visual input source and performed experiments
under the LOSO scheme. As can be observed, the new model generated results that were
reasonably accurate, thus demonstrating the feasibility of the skill assessment method for
RAMIS proposed in this study.
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Table 3. The results of this study are compared to research reporting on the latest technology.

Author (Year) Method Suture

Ming et al. (2021) [26] STIP 79.29%
Ming et al. (2021) [26] IDT 76.79%

Lajkó G et al. (2021) [27] CNN 80.72%
Lajkó G et al. (2021) [27] CNN + LSTM 81.58%
Lajkó G et al. (2021) [27] ResNet 81.89%

Current Study KCF + ResNet 84.80%

We performed a different set of experiments on LSTM, CNN, and CNN + LSTM in
accordance with the same experimental settings and parameter configuration; this was
in order to better support the ResNet. In Figure 10, the abscissa is the input features in
the neural network, and the specific parameters are shown in Table 4. Firstly, the ResNet
performs the best in the four neural networks when there are 5 input features. The accuracy
of the ResNet in the case of three classes is 1.44%, 4.92%, and 6.76% higher than that of other
networks. The accuracy of the ResNet in the case of two classes is 4.16%, 10.86%, and 11.8%
higher than that of other networks. Secondly, the influence of the input features on the
results is based on trajectory data. With the increase in input data, the classification accuracy
is higher. However, in Figure 10b, the classification accuracy of the four input features
decreased significantly, with a maximum reduction of 13.16% (ResNet). It can be seen that
the trajectory data have a significant impact on the results of the two classifications. The
problem of accuracy is discussed in Section 4. Only these four important motion features
can be recorded due to the limitations of the present technology. If more features can be
collected, the classification accuracy can be higher and the feedback on the results of the
skill assessment might likewise be more precise.

Table 4. The meaning of types of input features.

Number Input Features

1 [x, y, t]
2 [x, y, t, v]
3 [x, y, t, v, a]
4 [v, a, MJ]
5 [x, y, t, v, a, MJ]
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Due to the network topology of the jump connection, the ResNet not only has higher
classification accuracy, but is also competitive in terms of its computational efficiency, with
the feedback of classification provided within 3 to 5 s, as shown in Table 5. Therefore,
compared to other networks in this study, the ResNet is more appropriate for the framework
of surgical skill assessment.

Table 5. The computational processing time of different neural networks.

Input Features Method Time

[x, y, t, v, a, MJ]

CNN 1~3 s
ResNet 3~5 s

CNN + LSTM 24~48 s
LSTM 16~68 s

4. Discussion
4.1. Performance of the Framework

The proposed surgical skill assessment framework has been effectively validated
using the JIGSAWS. The new model’s accuracy is 92.04% and 84.80% in the case of two
and three classifications. It is proven that the new method can effectively and accurately
assess the quality of surgical operation and skill level in RAMIS. However, it is worth
mentioning that the intermediates and experts are prone to misclassification in the case
of three classifications, and only 78% and 39% accuracy is achieved. These problems also
appeared in the studies of Funk et al. [25], Anh et al. [19], and Lefor et al. [33]. To figure
this out, we discussed the motion data gained via the KCF and the dataset.

4.2. Motion Features Assessment

In this paper, the motion features of the SIT are analyzed using the results recorded
by the KCF algorithm. Figure 11 shows the mean value of the three motion features
distributed within a 99% confidence interval (CI). In Figure 11a, the operating speed of
experts and intermediates is close and only differs by 0.004 px/s. As shown in Figure 11b,
the intermediates achieved the maximum acceleration. Despite this, they did not take the
least amount of time, which means that many motion mutations of the SIT occur during
movement. Figure 11c also shows that similar motion jerks occurred in both intermediates
and experts, and only differed by 0.002 px/s3; however, the novices performed best. The
presence of deviating points in the graph may be due to the misclassification of the dataset
itself. The mean square error of trajectory (S) is an aggregate index that reflects how far
a sample x and y deviate from the mean of all the samples. S shows a strong correlation
with the ability to the instruments to perform an operation in the suturing task. Figure 11d
shows the deviation degree of the trajectory points relative to the trajectory center. The
larger S means exploratory or ineffective movement. Interestingly, what is reflected in
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Figure 11c,d is that novices have the best results. Because novices are often cautious when
performing due to inexperience, the same action will take more time and lead to more
detailed actions. In Equation (10), owing to the more significant number of sampling points
n at the same length (compared with the other two levels), the minor difference between
the continuous x and y results in a smaller S. With the mean square deviation and motion
jerk, it is hard to distinguish the detail in the skills accurately. Therefore, the insignificant
difference in the motions between the experts and intermediates means that the neural
network cannot distinguish these two levels well.

S =

√
1
n

n

∑
i=1

[(xi −
−
x)

2
+ (yi −

−
y)

2
] (14)

where xi and yi are the two-dimensional coordinate values of the trajectory;
−
x and

−
y are

the mean values of xi and yi; and n is the number of sampling points.
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4.3. Dataset Assessment

The GRS in the JIGSAWS contains six scales scored from 1 to 5, including (1) respect
for tissue, (2) suture handling, (3) time and motion, (4) flow of operation, (5) overall
performance, and (6) quality of final product. Figure 12 shows the distribution of the GRS,
thus reflecting the performance of the operation. The interquartile range (IQR) measures
the degree of dispersion in the box plot. As can be seen, intermediates perform best overall,
obtaining the highest composite score with a median of 3.813, followed by experts and
novices. This means that there mismatch is between the GRS and the self-proclaimed skill
labels. Therefore, the GRS in the JIGSAWS does not accurately distinguish the three levels
of surgical operation skill.

The true labels of this article are the self-assessed skill ratings, which are based on the
subjects’ practice duration. Naturally, one’s skill level tends to improve as one accumulates
more practice time. However, each case is different. The dataset only labels subjects based
on a training period of 10 h or 100 h, which is obviously insufficient to reflect the true
situation. Therefore, as shown in Figure 12, the performance of intermediaries in the GRS
skill assessment is generally better than that of the experts. There is an obvious conflict
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between the GRS and the self-assessed skill levels. As a result, the proposed classifier also
made errors when distinguishing between intermediaries and experts. However, after
removing intermediaries, the classification accuracy significantly improved. This indicates
that the proposed classifier is still useful for training, and that the misclassification is caused
by the incorrect labeling of the dataset itself. Therefore, the more accurate the labels, the
better the performance of the assessment framework is.
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4.4. Limitations and Future Research

The development of the RAMIS has promoted great research in objective skill assess-
ment methods [41]. The current work has made some progress, but there are still some
limitations to practicing online skill assessment when using this new model. First, this
study has shown the potential use of the KCF in RAMIS skill assessment, proving that
visual solutions may replace kinematics [42]. However, the accuracy of motion tracking
cannot reach 100% accuracy during surgery due to the complex working environment and
occlusion problems. Second, supervised deep learning classification accuracy depends
mainly on labeled samples. This study focuses on the videos of the JIGSAWS, which lacks
strict essential fact labels for skill levels. The self-proclaimed skill is labeled according to
the operation time. It is not easy to judge whether it is true or accurate. In addition, skill
labels are annotated according to predefined GRS score thresholds in GRS-based labels,
but there is no universally accepted threshold. Thus, a more precise labeling method and
more professional and in-depth surgeon knowledge may improve the skill assessment
accuracy [43,44]. This paper uses the JIGSAWS dataset to conduct experiments to verify the
proposed method. Although the experimental results are feasible, we must point out that
the dataset we used is still too small. The final conclusion is only based on the suturing
task in the JIGSAWS dataset, and more general conclusions need more datasets to support
them. In addition, there is a lack of a clear definition of the intermediate between experts
and novices, so the progressive assessment of more precise grades is currently not possible.
Finally, the black box feature of the deep learning model further limits the interpretability
of autonomous learning representations.

This work proposes a new and feasible method, rather than finding the best one. More
advanced neural networks will be used in this framework in further studies. Endoscopic
vision technology will be deeply studied in order to solve occlusion problems and obtain
depth information effectively. The motion tracking technology in the three-dimensional
space will be explored to further improve the accuracy of skill assessment based on en-
doscopic visual motion tracking technology. In addition, the deep topology, parameter
settings, and improvement strategy of the deep learning neural network will be optimized
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in detail in order to better process the data of the motion time series and further improve
the performance of online assessment.

5. Conclusions

Efficient and accurate skill assessment in RAMIS is essential in order to ensure patient
safety. This study proposes a novel evaluation framework based on endoscopic visual
motion tracking technology and deep learning. The new approach replaces traditional
sensors with vision technology, innovatively combining vision and kinematics. The method
uses the KCF to track and obtain two-dimensional motion signals based on endoscopic
vision, such as the trajectory, velocity, and acceleration of the SIT. ResNet is then used for
the automatic and accurate classification and analysis of surgical skills, and the results
are compared with state-of-the-art research in the field. Finally, the reasons for some
classification errors are discussed, and the limitations of this study are pointed out.

The contributions of this study are as follows: (1) The provision of an efficient and
accurate framework for skill assessment in RAMIS, with classification accuracies of 84.80%
and 92.04%, which can accurately provide feedback on online assessment results. (2) The
simplification of the access process using the classification technology framework based
on endoscopic vision and a neural network, and the realization of the feedback results
within 3 to 5 s, thereby improving the efficiency of the assessment of surgical skills. (3) The
automatic completion of the whole process of surgical skill assessment using the proposed
method without employing additional tools other than the endoscope, so that it is more
valuable for application.

In conclusion, the aim of this study was to propose a method for assessing surgical
skills that combines vision and kinematics. The new method effectively considers the
advantages of vision and kinematics in the assessment of surgical skills, achieving a higher
level of two-dimensional visual assessment. It can be easily integrated and applied to the
system in RAMIS. Real-time and accurate feedback can be obtained during personalized
surgery, improving surgeon training efficiency and ensuring surgical quality and safety.
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