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Abstract: Due to the complexity of electromechanical equipment and the difficulties in obtaining
large-scale health monitoring datasets, as well as the long-tailed distribution of data, existing methods
ignore certain characteristics of health monitoring data. In order to solve these problems, this paper
proposes a method for the fault diagnosis of rolling bearings in electromechanical equipment based
on an improved prototypical network—the weight prototypical networks (WPorNet). The main
contributions of this paper are as follows: (1) the prototypical networks, which perform well on
small-sample classification tasks, were improved by calculating the different levels of influence of
support sample distributions in order to achieve the prototypical calculation. The change in sample
influence was calculated using the Kullback–Leibler divergence of the sample distribution. The
influence change in a specific sample can be measured by assessing how much the distribution
changes in the absence of that sample; and (2) The Gramian Angular Field (GAF) algorithm was
used to transform one-dimensional time series into two-dimensional vibration images, which greatly
improved the application effect of the 2D convolutional neural network (CNN). Through experiments
on MAFAULDA and CWRU bearing datasets, it was shown that this network effectively solves the
shortcomings of a small number of valid samples and a long-tail distribution in health monitoring
data, it enhances the dependency between the samples and the global data, it improves the model’s
feature extraction ability, and it enhances the accuracy of model classification. Compared with the
prototypical network, the improved network model increased the performance of the 2-way 10-shot,
2-way 20-shot, and 2-way 50-shot classification tasks by 5.23%, 5.74%, and 4.37%, respectively, and
it increased the performance of the 4-way 10-shot, 4-way 20-shot, and 4-way 50-shot classification
tasks by 12.02%, 10.47%, and 4.66%, respectively. Experimental results show that the improved
prototypical network model has higher sample classification accuracy and stronger anti-interference
ability compared with traditional small-sample classification models.

Keywords: fault diagnosis; meta-learning; Kullback–Leibler divergence; Gramian angular field

1. Introduction

Currently, electromechanical equipment plays a crucial role in various industries, from
manufacturing to healthcare. It is essential to ensure their regular operation and lifespan
to ensure operational continuity and to avoid costly inoperative periods [1]. Prognostics
health management (PHM) [2,3] and Remaining Useful Life (RUL) [4] are processes that
involve collecting and analyzing data from equipment to detect potential faults and take
preventive measures. The PHM process typically involves data collection, processing and
preparation, feature selection, and model construction. Data can be collected from various
sources, including sensors, telemetry systems, and manual inspection. Researchers can
use machine learning algorithms such as regression, decision trees, and neural networks
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to analyze the data and build models for predicting faults. PHM research in industry
is extensive, and this article mainly focuses on the application of PHM in diagnosing
failures of rotating bearings in electromechanical equipment. Accurately locating the cause
of failures in electromechanical equipment is often difficult, as although the forms of
failure may appear simple, the underlying causes are relatively complex. According to the
statistics, up to 45% of motor failures are caused by rolling bearings, thus making rolling
bearing failures one of the main failures of rotating motors [5].

Traditional PHM research methods are based on physical and mathematical models
which require complex modeling, a large number of parameters, and a wealth of expert
experience. These methods are primarily used in systems with simple and clear physical
models. It is challenging to implement these methods given that modern equipment
operates under relatively complex conditions, and thus, they need better portability. For
example, Kirubarajan [6] et al. predicted the RUL of the shaft using Forman’s crack growth
law; Shen et al. [7] proposed a virtual simulation-based prediction method for the typical
failure mode of gear pumps; and Chen [8] et al. established a dynamic system model using
two different depths of tooth crack in a sun gear and internal gear, extracting faults via fast
spectral kurtosis (FSK).

In data-driven PHM applications, traditional signal processing methods use shallow
models, and it is not easy to extract the implicit relationships between different data fea-
tures in the input dataset; therefore, the diagnostic effect could be better. Yin et al. [9]
used SVM for fault diagnosis, Zhao [10] et al. used the Hidden Markov Model (HMM) to
diagnose equipment, and Zhang [11] et al. used the Back Propagation Neural Network
(BPNN) for equipment fault diagnosis. Deep learning [12–14] is a learning method that
establishes multi-level representations, converts data features into more abstract modules,
learns layer by layer by combining simple, but non-linear, modules, and it shows repre-
sentations of each layer [15,16]. High-dimensional non-linear features can be transformed
into low-dimensional features by using enough hidden layers, thus effectively capturing
the hidden information in the data and achieving very complex learning functions [17].
Eren et al. [18] used a convolutional neural network (CNN) classifier for bearing fault
diagnoses; Zhang et al. [19] proposed a fault diagnosis method that combines time–
frequency feature oversampling (TFFO) with CNN; Yan [20] proposed a fault diagnosis
model, MTF-ResNet, based on the Markov transition field and deep residual network;
Liu et al. [21] proposed a way of using RNN as an autoencoder for bearing fault diagnosis;
Gao et al. [22] optimized fault feature extraction by improving the WDCNN network;
and Chen et al. [23] proposed a novel Wide Residual Relation Network (WRRN) for RM
intelligent fault diagnoses.

Due to the long-term operation of mechanical equipment under complex working
conditions, most of the data collected by the monitoring system is repetitive, and there
are few samples consisting of effective and marked fault characteristic information, thus
making it difficult to provide a large amount of sample training data for neural networks
to train; this causes great difficulties during the application of neural network models.
In recent years, the use of small-sample data classification methods when solving the
problem of mechanical and electrical equipment fault diagnosis has attracted the atten-
tion of many researchers. Xiao et al. [24] used Domain Adaptive (DA) technology and
deep transfer learning for fault diagnoses, thus improving performance through knowl-
edge transfer. Chen et al. [25] proposed an adaptive CNN network diagnostic model.
Yue et al. [26] extracted rich features using a multi-scale wavelet convolution module and
then performed fault diagnosis using a meta-learning module. Li et al. [27] improved the
MAML algorithm for a small sample bearing a fault diagnosis. Based on meta-learning,
small-sample classification methods have gradually gained the attention of researchers due
to their efficient and accurate advantages.

Prototypical network [28] is a meta-learning-based method for small-sample learning;
it has performed best when dealing with small-sample classification problems among
various models. It uses a support set, S, to extract prototypical vectors for each category,
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and it classifies query vectors inputted into the query set based on their distance from the
prototypical vectors. However, due to the diverse types of faults in mechanical and electrical
equipment, such as complex operating conditions, strong time-varying characteristics, and
strong long-tail effects in data, the prototypical network structure is prone to ignoring
the capturing of feature data, thus making it difficult to quickly capture signal features.
This seriously affects its application effectiveness in mechanical and electrical equipment
fault diagnosis [29,30].

In this paper, an improved prototypical network model, WPortNet, is proposed and
compared with other machine learning models using the same rolling bearing dataset
in a comparative experiment, yielding satisfactory results. Firstly, the model uses the
Gramian Angular Field (GAF) algorithm to transform one-dimensional time series into
two-dimensional vibration images, thus effectively improving the feature extraction effect
of the 2D CNN network. Then, classification is performed by calculating the differences
between the levels of influence of the supporting sample distribution, and the influence of
specific samples can be calculated using the KL divergence in the absence of the sample. The
network effectively solves the shortcomings of a small number of effective samples and long-
tail distribution in health monitoring data, it enhances the dependence relationship between
samples and global data, improves the model’s feature extraction ability, and enhances the
accuracy of model classification. Through experiments, it has been demonstrated that the
improved prototypical network model has a higher sample classification accuracy and a
high level of robustness. The main contributions of this paper are summarized as follows:

(1) The prototypical network, which performs well on small-sample classification tasks,
was improved by calculating the differences between the influence of the support
sample distributions in order to achieve the prototypical calculation. The change in
sample influence was calculated using the Kullback–Leibler divergence of the sample
distribution. The influence change of a specific sample can be measured by assessing
how much the distribution changes in the absence of that sample.

(2) The Gramian Angular Field algorithm was used to transform a one-dimensional time
series into two-dimensional vibration images, thus greatly improving the application
effect of the 2D convolutional neural network.

The rest of the paper is organized as follows: preliminary knowledge is introduced
in section two; in section three, the structural design of the proposed model is introduced;
some experiments are carried out, and the experimental results are analyzed to evaluate
our method against other methods in section four; section five presents the results of the
experiments; and finally, we draw conclusions in section six.

2. Preliminary Knowledge

Machine learning and prototypical networks have been widely and successfully ap-
plied to image classification tasks; however, due to the complex operating conditions, the
various types of faults in electromechanical equipment, substantial time variability, and
complex frequency components of vibration signals, the prototypical network structure
is prone to ignoring the internal correlation of the spectrum. It is severely affected by a
large amount of noise, which seriously interferes with the fault characteristics of the signal.
In this section, we propose a method using KL divergence to create a new prototypical
network, WPorNet, which utilizes the ability of the prototypical network, in terms of image
classification, for fault diagnoses of electromechanical equipment.

2.1. Meta Learning and Prototypical Networks

Meta Learning, also known as learning to learn, is a crucial approach in machine
learning. Its goal is to adapt to new, unseen tasks by learning general learning strategies
from a large number of tasks.

Meta learning can be divided into two categories: model-based meta learning and
data-based meta learning. Model-based meta learning refers to the learning algorithm,
which is a learnable model that can be trained to produce different models for different
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learning tasks. Common model-based meta-learning algorithms include Model-Agnostic
Meta-Learning (MAML) [31] and Reptile [32]. Data-based meta-learning refers to model
learning from the training data of multiple tasks so that connections can be found between
them and so that it is possible to quickly adapt to new ones. Representative algorithms
include prototypical networks, matching networks [33], and relation networks [34].

Prototypical networks are a type of data-driven meta-learning method that achieves
data classification tasks by learning prototypical networks from the sample data, and it
has the advantage of being simple and efficient when handling small-sample classification
problems. It assumes that the samples of each category are clustered around a featured
center, and it maps the input onto an embedding vector via a neural network. By calculating
the average embedding vector of all support instances in the support set category, the
obtained vector is used as the prototypical center of the category, which then realizes the
feature extraction of the category; this center is also a parameter of network learning. Then,
classification is achieved by measuring the distance between the sample and the center.

A prototypical network divides the training dataset into two parts: the support set and
the query set. The support set contains a dataset with K categories and a total of N labeled
samples S = {(x1, y1), (x2, y2), · · ·, (xN , yN)}, where xi ∈ RD is a D-dimensional feature
vector and yi ∈ {1, 2, · · ·, K} is a sample label. The query set contains H labeled data. First,
the data in each category in the support set is inputted into the feature extractor of the
prototypical network to learn the nonlinear mapping relationship between the support set
and the metric space, and to obtain the M-dimensional feature embedding of each sample
in the metric space. Sk is a sample set from category k. Then, the feature representation of
each category’s health status in the metric space is obtained using the average value of each
class’s sample feature embedding, as follows:

ck =
1
|Sk| ∑

(xi ,yi)∈Sk

fφ(xi) (1)

where fφ(xi) is the feature embedding function of vector xi, which represents the feature of
vector xi, then, the data of query set Q is inputted to obtain the M-dimensional feature em-
bedding of c ∈ RM. The Euclidean distance dk between c and K prototypicals is calculated
and then transformed into the probability of each class using Softmax, represented as:

pφ(y = k|x̂) =
exp(−d( fφ(x̂), ck))

∑k exp(−d( fφ(x̂), ck))
(2)

2.2. Gramian Angular Field Transformation

Gramian Angular Field (GAF) can be represented by a Gramian matrix. By using
matrix values as pixels in an image, time series can be encoded as images. Gramian Angular
Field Transformation is shown in Figure 1.
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Wang [35] proposed a method for transforming one-dimensional time series into two-
dimensional images using the GAF algorithm. When given a time series, A = {a1, a2, · · ·, an}
with n observations, first, we normalized A so that all values in time series A are within
the range of [−1, 1] or [0, 1]:

ã−1 =
(ai −max(A) + (ai −min(A)))

max(A)−min(A)
(3)

or ã0 =
ai −min(A)

max(A)−min(A)
(4)

Next, the time series was transformed into polar coordinates:

φi = arccos(ãi),−1 ≤ ãi ≤ 1, ãi ∈ Ãri =
ti
N

, ti ∈ N (5)

where ti is the timestamp and N is a constant factor that is used to adjust the range of the
polar coordinate system. The angle value φi in the polar coordinate system is the inverse
cosine of the time series ãi, and the radius in the polar coordinate system is the ratio of
the timestamp to the constant factor. This achieves a transformation from the amplitude
variation of the time series to the angle variation in the polar coordinate image. Then, the
Gramian Field is generated by defining the sum of the trigonometric functions of each
point in the interval:

GAF =

 cos(φ1 + φ1) . . . cos(φ1 + φN)
...

. . .
...

cos(φN + φ1) · · · cos(φN + φN)

 (6)

It is a bijection, and when φ ∈ [0, π], cos(φ) is monotonically increasing. The value of
GAF not only depends on the time stamp interval but also on the absolute position of the
time series.

3. Fault Diagnosis Method Based on WproNet

We calculated the distributional influence of the support-set samples and incorporated
it into the network for reevaluation. The differences between the levels of distributional
influence among samples can be measured by how much the distribution changes when
the sample is removed, unlike in the prototypical network, where all samples are treated
equally. This enhances the dependence between the samples and the global data, thus
effectively addressing the long-tail distribution characteristics of health monitoring data
and significantly improving the accuracy of model classification.

3.1. Improved Model Architecture

The model is mainly composed of a preprocessing layer, encoder layer, and distribution-
prototypical layer. The raw signal is transformed by GAF to obtain the vibration image
in the preprocessing layer. Then, for each category, the vibration image is divided into
support and query sets. In the encoder layer, a four-layer CNN embedding function fφ is
used to extract features and generate a prototypical representation for each category. After
the features extracted from the two channels are passed through a convolutional block, the
distributional weight of each support sample is calculated to obtain the new probability
of the category. Next, the distribution–prototypical layer maps onto the feature space to
calculate the distributional distance between the sample and the prototypical layer, and
the probability of the sample in each category is calculated using Softmax. The model’s
structure is shown in Figure 2.
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3.2. Encoder Layer

WproNet uses a four-layer convolutional neural network (CNN) as its encoder. The
structure of the encoder is shown in Figure 3. Each convolutional block is composed of
four identical encoder modules, each of which contains a convolutional layer (Conv2D), a
batch normalization layer (BatchNorm2D), a linear rectification function layer (ReLU), and
a maximum pooling layer (MaxPool2D). Finally, the Flatten layer is introduced to flatten
the feature vectors of each sample into a one-dimensional vector input for the loss function.
The network automatically learns the features of the signals from the grayscale vibration
images to train the embedding function fφ, and it then prepares for the next operation.
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The convolutional layer extracts features by sliding a convolution kernel over an
input vector with a certain window size. When performing convolution, the width of
the convolution kernel should be the same as the dimension of the embedding vector
output of the embedding layer. Here, a convolution kernel of size m is used for the convo-
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lution operation, and the hidden representation of each feature in the image is obtained
via calculations.

hi = CNN(si−m−1
2

, · · ·, si+ m−1
2
) (7)

where CNN() represents the convolutional operation and the image after undergoing
convolutional operation can be represented as:

x = (h1, h2 · ··, hn) (8)

After the convolution operation, a ReLU activation function is added:

ReLU = max(0, a) (9)

3.3. Distribution–Prototypical Layer
3.3.1. K–L Divergence

The Kullback–Leibler Divergence (KL divergence), also known as relative entropy, is
generally used to measure the similarity or degree of difference between two probability
distribution functions. Given the two distribution functions, P(X) and Q(X), their KL
divergence is defined as follows:

DKL[P(X)||Q(X)] = ∑
x∈X

[
P(x) log

P(x)
Q(x)

]
= Ex∼P(x)

[
log

P(x)
Q(x)

]
(10)

Thus, given the two datasets with distributions A and, respectively, their KL diver-
gence is:

DKL[A||B] = ∑
i

[
A log

A
B

]
(11)

where φ represents the function that maps onto the latent space. When KL divergence is
equal to 0, A = B indicates that the distribution of A and B is highly consistent. Samples
with a high KL divergence represent deviations from the distribution.

3.3.2. Distribution–Prototypical Layer Design

Unlike the prototypical network, after mapping the samples onto the feature space
using the feature extractor, we used the K–L divergence to measure the consistency between
the test samples and their corresponding dataset distribution. The weight of the sample
can be measured by how much the distribution changes when the sample is not present in
the dataset:

DKL(xi) = DKL(φ)[S||S− xi] = ∑
i

[
S log

S
S− xi

]
(12)

We define the sample weight W by normalizing the K–L divergence of the sample,
as follows:

W( fφ(xi)) = DKL(x̃i) (13)

Therefore, the new feature representation of each category is:

ck =
∑
|Sk |
i=1 W( fφ(xi)) fφ(xi)

∑
|Sk |
i=1 W( fφ(xi))

(14)

Finally, we calculated the loss function:

J(x, ck) = − log
1
q

q

∑
i=1

exp(−d( fφ(x̂), ck))

∑k exp(−d( fφ(x̂), ck))
(15)

where q denotes the number of query instances.
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When a loss function is generated, the stochastic gradient descent (SGD) is used to
train the network. Through multiple updates, optimal model parameters φ and prototypical
networks of various health states are obtained. By calculating the sample weights, new
probabilities for each class are obtained, and the model’s prediction result is obtained.

3.4. Fault Diagnosis Process

The improved prototypical network is applied during the fault diagnosis process
concerning mechanical and electrical equipment bearings, which is divided into three parts:
data preprocessing, network model training, and model testing.

3.4.1. Dataset

To verify the effectiveness of the proposed method, we conducted experiments using
two real-world open datasets from Case Western Reserve University (CWRU) [36] and
the Machinery Fault Database (MAFAULDA) [37]. The experimental device is shown
in Figure 4.
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The CWRU dataset includes one normal condition type and three fault types: (i) inner
race fault, (ii) outer race fault, and (iii) ball fault. These correspond with the four load
types (0HP, 1HP, 2HP, and 3HP) and three diameter types (0.007′′, 0.014′′, and 0.021′′). The
dataset is divided into four categories: 48k Hz baseline, 48k Hz drive-end fault, 12k Hz
drive-end fault, and 12k Hz fan-end fault. We only selected the dataset from the 12k Hz
drive-end fault (corresponding with a sampling rate of 12 KHz) and from a unidirectional
accelerometer installed at the drive-end bearing position in the CWRU dataset.

The MAFAULDA dataset is composed of a time series with five fault conditions—
(i) horizontal misalignment, (ii) vertical misalignment, (iii) imbalance, (iv) underhang
bearing fault (outer race fault, ball fault, and cage fault), and (v) overhang bearing fault
(outer race fault, ball fault, and cage fault). Only the data from the underhang bearing fault,
which were collected by three accelerometers on the radial, axial, and tangential directions,
were selected here.

3.4.2. Data Preprocessing

The vibration signal of the electromechanical equipment bearing is a one-dimensional
time series, and we needed to generate vibration images before use. More specifically, we
divided each group of data into groups of 400 data points. Then, we used the Gramian
Angular Field (GAF) method to encode the values of the time series as angular cosines
and the timestamps as radii in order to represent the time series in polar coordinates. This
process can preserve time dependencies and then calculate its GAF image in accordance
with the defined GAF formula. This achieves a transformation from time series to image,
thus obtaining the vibration images. The vibration signals of various fault types, and the
vibration images generated from them, are shown in Figure 5.
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3.4.3. Training and Testing of Models

1. The model parameters and various prototypes were trained using support and query
set data. During the training process, the stochastic gradient descent (SGD) method
was used to optimize and adjust parameters φ until a better performance was achieved.
The training process of the WproNet is shown in Algorithm 1.

Algorithm 1 Training process of the WproNet

Input: Training Dataset D = {(x1, y1), (x2, y2), · · ·, (xN , yN)}
Output: The trained network parameter fφ

Begin:
1: For i in [1, N] do:
2: Di ← GAF(Di)
3: End For
4: For epoch to set value, do:
5: For epoch to set value, do:
6: For iin [1, yN ] do:
7: Randomly take Ns samples {(x1, y1), · · ·, (xNs , yNs )} from D as the support set S

8: Randomly take Nq samples
{
(x1, y1), · · ·, (xNq , yNq )

}
from D/S as the query set Q

9: For iin [1, Ns] do:
10: Compute distribution changes of the samples: DKL(xi) = ∑i

[
S log S

S−xi

]
11: Normalization as weight: W( fφ(xi))← DKL(x̃i)

12: Compute prototypical of the samples: ck = ∑
|Sk |
i=1 W( fφ(xi)) fφ(xi)

∑
|Sk |
i=1 W( fφ(xi))

13: End For
14: End For
15: J ← 0
16: For i in[1, Ns]do:
17: For [x, yj] in QNq do:
18: Update loss: J ← J + J(x, ck)
19: Update the parameter φ via the SGD method
20: End For
21: End For
22: End For
23: End For
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2. After the network model was trained and various prototypes were obtained, the vali-
dation set was used to perform fault diagnosis testing. Figure 6 shows the flowchart of
our model. The hyperparameters and parameter settings of the WproNet are shown
in Tables 1 and 2.
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Table 1. Hyperparameter settings of the WproNet.

Name Channels Kernel Size Stride Input Size Output Size Activation
Function

convolutional block1 64 3 × 3 1 × 1 80 × 80 × 64 40 × 40 × 64 Relu
convolutional block2 64 3 × 3 1 × 1 40 × 40 × 64 20 × 20 × 64 Relu
convolutional block3 64 3 × 3 1 × 1 20 × 20 × 64 10 × 10 × 64 Relu
convolutional block4 64 3 × 3 1 × 1 10 × 10 × 64 5 × 5 × 64 Relu

Distribution-Prototypical Layer / / / 1600 1600 Softmax

Table 2. Parameter settings of the WproNet.

Parameter Type Parameter Value

Optimizer SGD
Initial learning rate 0.0005

Learning rate decay period 2000 episodes

4. Results
4.1. Comparative Experiments

In order to verify the outstanding performance of the proposed model, experiments
were conducted using the same bearing dataset from the CWRU and MAFAULDA. The
experiments were compared with representative classification algorithms based on statistics
(SVM), CNNs (WDCNN), meta-learning (matching networks), and the original prototypical
network. The settings for the parameters and hyperparameters are shown in Table 1.
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1. SVM [9]: The Support Vector Machine is a supervised learning algorithm for clas-
sification and regression analysis. It is a binary classification model that finds the
optimal hyperplane to achieve classification. SVM can handle non-linear classification
problems well;

2. WDCNN [22]: Deep Convolutional Neural Networks with Wide First-layer Kernels is
a traditional machine learning model based on deep convolutional neural networks
(DCNNs). Its main feature is that it uses wide convolutional kernels to increase the
number of features and reduce network depth. It requires a large number of samples
for training;

3. Matching Networks [33]: Matching Networks is a meta-learning method that uses an
attention-based approach to compare input samples with samples in the support set,
thus enabling rapid model adaptation.

4. Prototypical network [28];
5. DSN—Conv4 [38]: Discriminative Deep Subspace Networks, the backbone of which

is composed of Conv4;
6. PNMD [39]: Prototypical network based on the Manhattan distance.

The network model is built using the PyTorch 1.10.2 deep learning framework, and it
is accelerated by CUDA 11.3 and CUDNN 8.3.2. The system environment is Windows 10,
and the processor is Intel® Core™ i7-9700K CPU @ 3.60GHz, 16.0GB RAM, and the Nvidia
GeForce RTX 3090 graphics card.

Accuracy is used as the primary evaluation metric.
We set different parameters for the N-way K-shot task in the experiment, selecting

two and four categories and randomly selecting 10/20/50 images from each class to
create a support set and ten images were selected for the query set. Training and fine-
tuning were conducted for 2-way 10-shot/2-way 20-shot/2-way 50-shot and 4-way 10-shot/
4-way 20-shot/4-way 50-shot, respectively, with episodes set to 100. Each epoch contained
100 episodes, and the epochs were set to 1000. We calculated the accuracy using the method
of repeating the same scene 20 times and taking the average value. The results are shown
in Tables 3 and 4.

Table 3. Average accuracies of the results for CWRU (%).

Model
2-Way 4-Way

10-Shot 20-Shot 50-Shot 10-Shot 20-Shot 50-Shot

SVM 74.78 ± 1.59 77.89 ± 1.41 82.85 ± 1.03 50.67 ± 2.62 58.21 ± 2.87 74.06 ± 1.53
WDCNN 42.35 ± 2.32 47.12 ± 2.17 59.64 ± 1.52 33.42 ± 2.89 38.80 ± 2.21 43.71 ± 1.98

Match Networks 72.93 ± 1.39 74.86 ± 1.31 80.31 ± 0.92 48.56 ± 2.28 57.78 ± 2.49 77.21 ± 1.67
Prototypical Networks 85.14 ± 1.13 85.68 ± 0.96 91.87 ± 0.70 59.77 ± 1.71 67.67 ± 1.82 85.02 ± 1.33

DSN- Conv4 88.39 ± 0.66 89.61 ± 0.53 95.52 ± 0.34 71.08 ± 0.70 72.36 ± 0.54 88.67 ± 0.30
PNMD 85.54 ± 1.61 85.80 ± 1.13 92.27 ± 0.69 61.37 ± 1.85 68.19 ± 1.35 87.05 ± 0.92

WProNet(ours) 90.37 ± 0.83 91.42 ± 0.77 96.24 ± 0.75 71.79 ± 0.91 78.14 ± 1.14 89.68 ± 0.96

Table 4. Average accuracies of the results for MAFAULDA (%).

Model
2-Way 4-Way

10-Shot 20-Shot 50-Shot 10-Shot 20-Shot 50-Shot

SVM 76.49 ± 1.64 80.16 ± 1.32 83.37 ± 0.88 51.67 ± 2.47 59.04 ± 2.20 77.43 ± 1.43
WDCNN 44.61 ± 2.09 46.12 ± 2.19 61.36 ± 1.87 34.12 ± 3.05 41.06 ± 2.51 47.26 ± 2.14

Match Networks 75.80 ± 1.40 78.20 ± 1.41 83.32 ± 0.85 50.61 ± 2.09 61.88 ± 1.89 82.64 ± 1.55
Prototypical Networks 86.02 ± 1.09 88.64 ± 1.05 93.50 ± 0.65 62.28 ± 1.38 70.07 ± 2.06 88.16 ± 0.83

DSN- Conv4 89.03 ± 0.51 91.15 ± 0.60 94.76 ± 0.38 70.84 ± 0.40 77.76 ± 0.45 90.33 ± 0.41
PNMD 85.79 ± 0.86 88.31 ± 0.96 93.97 ± 0.59 62.16 ± 1.66 70.19 ± 1.39 89.25 ± 0.86

WProNet(ours) 91.70 ± 0.85 93.71 ± 0.70 96.45 ± 0.69 75.35 ± 1.32 80.73 ± 1.16 91.93 ± 0.94
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The experimental results show that for small-sample classification tasks, the perfor-
mance of WProNet is better than traditional machine learning models and meta-learning
methods. When different numbers of categories and sample sizes were used, the method
proposed in this paper, WProNet, achieved the highest accuracy rate among the five fault
diagnosis methods. This is because traditional machine learning models and CNN models
have serious overfitting problems in small-sample classification tasks which require a large
number of samples for training to achieve satisfactory results. In particular, the WDCNN
network has poor accuracy when there are only ten samples. The accuracy rates for the
two classification scenarios were only 42.35% and 33.42% with regard to the experiment
concerning the CWRU dataset, respectively. With the increase in the number of samples,
the overfitting of each network is alleviated, and the accuracy rate is improved. The SVM
model shows unexpectedly high accuracy rates, achieving performance comparable to the
matching network in various classification experiments. In the comparison experiment
with the prototypical network, the improvement in accuracy of the four-way classification
task is significantly better than that of the two-way classification task, and the improvement
effect is most obvious in the 4-way 10-shot scenario, with an improvement of 12.02%. As
the number of categories decreased and the number of samples increased, the gap between
the two models gradually narrowed.

4.1.1. Ablation Experiment

We conducted ablation experiments on two datasets to demonstrate the effectiveness
of the improved algorithm, as shown in Tables 5 and 6. These experimental results indicate
that the prototypical network was calculated with the added distribution difference weight,
which significantly outperformed the original prototypical network. The model with
added weights enhanced the dependent relationship between the samples and global
data, improved the model’s feature extraction ability, and increased the accuracy of the
model classification. All experimental metrics were improved, thus demonstrating the
effectiveness of the model.

Table 5. Comparison of ablated model structures for CWRU (%).

Model
2-Way 4-Way

10-Shot 20-Shot 50-Shot 10-Shot 20-Shot 50-Shot

ProNet 85.14 ± 1.13 85.68 ± 0.96 91.87 ± 0.70 59.77 ± 1.71 67.67 ± 1.82 85.02 ± 1.33
W+ProNet 90.37 ± 0.83 91.42 ± 0.77 96.24 ± 0.75 71.79 ± 0.91 78.14 ± 1.14 89.68 ± 0.96

Table 6. Comparison of ablated model structures for MAFAULDA (%).

Model
2-Way 4-Way

10-Shot 20-Shot 50-Shot 10-Shot 20-Shot 50-Shot

ProNet 86.02 ± 1.09 88.64 ± 1.05 93.50 ± 0.65 62.28 ± 1.38 70.07 ± 2.06 88.16 ± 0.83
W+ProNet 91.70 ± 0.85 93.71 ± 0.70 96.45 ± 0.69 75.35 ± 1.32 80.73 ± 1.16 91.93 ± 0.94

4.1.2. Training Time Analysis

The training runtime of experimental models and our model, with regard to both
datasets, CWRU and MAFAULDA, are shown in Table 7. To ensure a fair comparison, the
hyperparameters of all the methods follow their original settings. Our training runtime is
nearly the same as that of the match networks’ runtime, and slightly greater than that of
ProtoNet and PNMD. It is evident that even among the various models based on the same
Conv-4 backbone networks, our model is highly efficient. Our approach achieves the best
performance with only a modest increase in total training time.
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Table 7. Training runtime comparison of models on CWRU and MAFAULDA datasets, under 2-way
n-shot and 4-way n-shot classification scenarios.

Model
Training

Tasks
2-Way 4-Way

10-Shot 20-Shot 50-Shot 10-Shot 20-Shot 50-Shot

SVM 100,000 0.5 h 0.8 h 1.2 h 1.3 h 1.8 h 2.3 h
WDCNN 100,000 1 h 1.3 h 2 h 2.6 h 3 h 4.3 h

Match Networks 100,000 1.7 h 2 h 2.2 h 2.5 h 4 h 6 h
Prototypical Networks 100,000 1.5 h 1.8 h 2.4 h 2.5 h 3.8 h 5 h

DSN-Conv4 100,000 8 h 13 h 19 h 15 h 21 h 35 h
PNMD 100,000 1 h 1.2 h 2 h 1.5 h 1.7 h 2.5 h

WProNet(ours) 100,000 2 h 2.3 h 3.5 h 2.4 h 3.3 h 4.4 h

4.1.3. Visualization Analysis

We used t-Distributed Stochastic Neighbor Embedding (t-SNE) [40] to visualize the
performance of WProNet and prototypical networks on the test set, regarding 4-way
50-shot. The results are shown in Figure 7. It is evident that both WProNet and prototypical
networks achieve a very good performance, but the prototypical networks’ ability to
generalize is much weaker than that of the WProNet.
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4.1.4. Comparison of WProNet with Several Other Models

To observe the performance of the WProNet in various categories, we plotted the
confusion matrix of a random test result on the validation set with 50 samples, as shown in
Figure 8. The vertical axis represents the true label of the validation set, the horizontal axis
represents the predicted label of the validation set, and the main diagonal axis represents
the number of correctly predicted samples as per the network model.

The WProNet model incorporates the influence of the sample distribution into the
network and reevaluates it, instead of treating all samples equally as in traditional proto-
typical networks. This effectively solves the characteristics of the long-tail distribution of
health monitoring data, and it enhances the dependence relationship between samples and
global data, thus effectively improving the accuracy of model classification.
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5. Discussion

When setting the initial learning rate, we tested the prototypical network and our
model from 0.0001 to 0.001 in increments of 0.0001. As shown in Figure 9, we found that
the best effect was achieved when the initial learning rate was set to 0.0005, and if it was
set to other values, the effect would be reduced. Learning rates that are either too small or
too large can lead to a decrease in model accuracy.
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When selecting the number of CNN layers, we tested 3, 4, 5, and 6 layers separately.
The results of the experiment show that only when there are four layers does the model have
the highest accuracy, and other situations will lead to a certain degree of underfitting and
overfitting, which affects the accuracy of the model. It also shows that simply increasing
the number of CNN layers will not increase the performance of the model.

Improving the feature optimization learning ability of machine learning methods is an
important means to solve complex mechanical vibration signal problems. The WProNet
model, which is based on the prototypical network proposed in this paper, is used to detect
mechanical and electrical equipment bearing faults, incorporate the influence of sample
distribution into the network, and allocate weights based on the proportion of sample
distribution in the dataset, thus effectively solving the defects of health monitoring data
regarding long-tail distributions, and enhancing the dependence relationship between
samples and global data. By establishing feature prototypical networks of various health
states in the measurement space, and then classifying and querying the health status of
samples through distance metrics, the overfitting problem can be effectively alleviated, and
the accuracy of fault diagnoses in small samples can be improved.

6. Conclusions

This article proposes a prototypical network based on the differences between com-
puted sample distributions in order to identify the healthy state of rotating machinery with
few samples. To test the performance of the proposed model, we conducted comparative
experiments on the bearing dataset at CWRU and MAFAULDA, with other machine learn-
ing models such as SVM, WDCNN, and a prototypical network. The improved network
model that was used on the CWRU dataset, increased the performance quality by 5.23%,
5.74%, and 4.37% in the 2-way 10-shot, 2-way 20-shot, and 2-way 50-shot classification tasks,
respectively. It also increased the performance quality by 12.02%, 10.47%, and 4.66% in the
4-way 10-shot, 4-way 20-shot, and 4-way 50-shot classification tasks, compared with the
prototypical network. The results from the MAFAULDA dataset also showed significant
improvement.

The experimental results have shown that this method demonstrates great potential
for complex signal classification and recognition tasks. It can learn data features from the
minimum number of samples, thus indicating that the model is feasible and effective for
classifying and recognizing complex signals and time-series data. Future studies will focus
on applying this model to other industrial applications to develop real-time fault detection
for different types of machines. Additionally, recognizing and denoising complex signals
will also be topics of interest for future research.
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