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Abstract: The condition of a joint in a human being is prone to wear and several pathologies,
particularly in the elderly and athletes. Current means towards assessing the overall condition of a
joint to assess for a pathology involve using tools such as X-ray and magnetic resonance imaging,
to name a couple. These expensive methods are of limited availability in resource-constrained
environments and pose the risk of radiation exposure to the patient. The prospect of acoustic
emissions (AEs) presents a modality that can monitor the joints’ conditions passively by recording the
high-frequency stress waves emitted during their motion. One of the main challenges associated with
this sensing method is decoding and linking acquired AE signals to their source event. In this paper,
we investigate AEs’ use to identify five kinds of joint-wear pathologies using a contrast of expert-
based handcrafted features and unsupervised feature learning via deep wavelet decomposition
(DWS) alongside 12 machine learning models. The results showed an average classification accuracy
of 90± 7.16% and 97± 3.77% for the handcrafted and DWS-based features, implying good prediction
accuracies across the various devised approaches. Subsequent work will involve the potential
application of regressions towards estimating the associated stage and extent of a wear condition
where present, which can form part of an online system for the condition monitoring of joints in
human beings.
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1. Introduction
1.1. Joint Wear and Its Epidemiology

It is estimated that there are around 360 joints in the human body, the majority of which
are subject to wear and degradation as human beings age, depending on their professions
and lifestyle, where problems such as chronic pain and osteoarthritis occur as a result [1].
Further, it has been noted that the world population is ageing and is projected to rise further
by the year 2050. From a joint and structural perspective, the implication is that joint-wear
problems can be even more prevalent due to the ageing population [2]. For example, one
of the noticeable results of joint wear is osteoarthritis, which manifests itself with erosive
behaviour of the joint cartilage due to repeated trauma or considerable injury [3]. During
osteoarthritis, metabolic changes occur within the joint due to the continued wear, which
forms nano/micro-scale fractures that regenerate to form osteophytes, resulting in the
knee producing additional fluid, which causes further pain, discomfort and swelling [1,3].
The accumulation of the factors above eventually manifests biomechanically as structural
instability, misalignments and deformity. A visual comparison of a healthy knee with a
worn knee can be seen in Figure 1, from which it can be noted that there is a substantial
amount of cartilage loss, joint-space narrowing and the production of bone spurs.
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ray imaging, although this method has been critiqued for mostly projecting a cross-section 
of the bones in question [6]. Computed tomography (CT) is an improvement on traditional 
X-ray, as it offers a three-dimensional projection of joints and bones, but still exposes the 
patient to harmful rays during the imaging process and does not give reliable insights into 
soft tissues, ligaments or muscles [7]. The emergence of dynamic measurements such as 
magnetic resonance imaging (MRI) has offered a means towards producing an image-
based diagnosis of both joint and soft-tissue pathologies, but has shortcomings based on 
portability, power consumption and overall costs. Thus, their acquisition and use are spe-
cialised [8]. Although ultrasound imaging offers a cheaper alternative to MRI—whilst of-
fering an image-based perspective for both joints and soft tissues—its use is limited in 
diagnosing joint wear and pathologies due to being prone to noise and unable to detect 
micro- and hairline fractures [9]. 

Seminal work has been done by researchers who have attempted to track the sound 
waves—known as biomechanical acoustic emission (AE) waves—that are produced when 
various joints are flexed, resulting from tissue changes during deformations and move-
ments, and provided signs to suggest that AE can be applied as a means towards assessing 
the level of degeneration in a joint [10–13]. The conceptual physics is based on the expec-
tation that the AE events generated by a healthy joint would be less than that of one with 
a considerable degree of wear within it and can serve as a non-invasive means towards 
condition monitoring of joint wear [10–13]. 

Contrasting the AE sensing approach to clinical joint diagnosis techniques, it is a pas-
sive technique that poses minimal risk of infection and radiation and is affordable, as well 
as being a non-invasive means towards the acquisition of rich signal information that can 
be utilised towards the diagnosis and assessment of joint health [14]. AE has predomi-
nantly seen traditional use in condition monitoring and maintenance of machinery com-
ponents, in addition to process monitoring, but recent scientific advancements have seen 
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In addition to ageing individuals, athletes involved in high-impact sports, such as
basketball and dancers, have been seen to carry a degree of risk of developing joint-based
diseases related to overall wear and osteoarthritis later in life [5]. The early detection of
these joint-wear pathologies can allow for proactive care strategies to be offered to patients,
thus negating the need for orthopaedic-based surgeries on the joints [5].

1.2. Means of Diagnosing Joint Pathologies, Their Shortcomings and AE

Traditionally, the means for diagnosing and identifying joint pathologies is using X-ray
imaging, although this method has been critiqued for mostly projecting a cross-section of
the bones in question [6]. Computed tomography (CT) is an improvement on traditional
X-ray, as it offers a three-dimensional projection of joints and bones, but still exposes the
patient to harmful rays during the imaging process and does not give reliable insights
into soft tissues, ligaments or muscles [7]. The emergence of dynamic measurements
such as magnetic resonance imaging (MRI) has offered a means towards producing an
image-based diagnosis of both joint and soft-tissue pathologies, but has shortcomings based
on portability, power consumption and overall costs. Thus, their acquisition and use are
specialised [8]. Although ultrasound imaging offers a cheaper alternative to MRI—whilst
offering an image-based perspective for both joints and soft tissues—its use is limited in
diagnosing joint wear and pathologies due to being prone to noise and unable to detect
micro- and hairline fractures [9].

Seminal work has been done by researchers who have attempted to track the sound
waves—known as biomechanical acoustic emission (AE) waves—that are produced when
various joints are flexed, resulting from tissue changes during deformations and move-
ments, and provided signs to suggest that AE can be applied as a means towards assessing
the level of degeneration in a joint [10–13]. The conceptual physics is based on the expecta-
tion that the AE events generated by a healthy joint would be less than that of one with
a considerable degree of wear within it and can serve as a non-invasive means towards
condition monitoring of joint wear [10–13].

Contrasting the AE sensing approach to clinical joint diagnosis techniques, it is a
passive technique that poses minimal risk of infection and radiation and is affordable,
as well as being a non-invasive means towards the acquisition of rich signal information
that can be utilised towards the diagnosis and assessment of joint health [14]. AE has
predominantly seen traditional use in condition monitoring and maintenance of machinery
components, in addition to process monitoring, but recent scientific advancements have
seen applications of the technique in areas such as biomechanics and orthopaedics, as
mentioned [10–14].
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Tribological research work by Olorunlambe et al. [10,11,15] identified the notion that
there mainly exists a constrained array of signal processing techniques applied towards
ortho-tribological case studies, which they built upon by developing machine learning
models that could differentiate between adhesive and abrasive wear conditions. The work
by Olorunlambe et al. [10,11,15] showcased how machine learning-based methods could
distinguish between these two wear conditions from benchtop-based wear conditions in
their running in early and steady-state (continuous) stages of wear. The research presented
in this paper aims to build on this by designing pattern recognition-based predictive
models that can identify and differentiate between the latent and early stages of joint-wear
pathologies, a broad class of common joint-wear conditions that includes abrasive, adhesive,
burnishing, burnishing-to-scoring transition, and scoring. These results are the first time
AE has been applied to investigate and recognise such a broad class of wear conditions.
We aim to investigate this problem by applying and comparing two signal processing
methods, including a concatenation of a broad list of manually extracted (handcrafted)
and an unsupervised feature extraction method from deep wavelet scattering (DWS).
DWS represents a fusion between wavelet transform and deep learning, which can extract
multiscale features in an unsupervised manner without requiring expert knowledge for the
feature extraction stage [16]. As per published literature, this combination also presents
the first time that an advanced feature extraction method is contrasted with a multiscale
unsupervised feature extraction approach for modelling and characterising a broad range
of joint pathologies.

Thus, the explicit novelty and contributions offered as part of this manuscript
are as follows:

- the seminal use of AE towards the early diagnosis and differentiation between five
different kinds of joint pathologies

- a contrast between an expanded handcrafted feature extraction scheme and an unsu-
pervised multiscale feature extraction method for the characterisation of a candidate
AE signal

- an exploratory observation of the optimal machine learning model for this sort of data
and pattern recognition exercise through the training and validation of 12 different
candidate machine learning models

From this, it is hypothesised that an optimal underlying technical pathway that can
be used towards an AE-driven joint pathology monitoring system can be identified and
fleshed out, allowing a real-time, affordable and non-invasive method towards monitoring
joint wear in orthopaedic medicine and allowing for proactive care interventions.

2. AE Sensing

The concept behind AE sensing is based on the use of a passive monitoring technique
capable of recording source events that emanate from events of various kinds during
energy release [15]. The said energy release is known to travel in the form of stress waves
in high-frequency regions (unless stated as audible), which are detected and measured
by a sensor that converts an equivalent stress magnitude into a corresponding electrical
signal [15]. A visual illustration is shown in Figure 2, while an illustration of the acoustic
spectrum can be seen in Figure 3.
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The output electrical signal—which is typically measured in voltage V(t) and gives 
an indication and magnitude of the AE signal and event itself—is a function of a convolu-
tional process that has three sub-dependencies, namely: (1) the source function S(t), which 
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Figure 3. The acoustic spectrum [17].

Figure 2 shows a source event, indicated by S, undergoing some form of deformation,
which culminates in the release of energy in the form of stress waves. These are shown as
arrows pointing away from the source and ultimately acquired by the biosensor, which
records the entire acoustic device and is saved within the supporting electronic module.
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Figure 3 shows the various groups of AE regions across the frequency spectrum,
consisting of low frequencies, audible acoustics centred on human hearing, and higher
frequencies, which are the regions where joint pathologies have been seen to be centred.

The output electrical signal—which is typically measured in voltage V(t) and gives an
indication and magnitude of the AE signal and event itself—is a function of a convolutional
process that has three sub-dependencies, namely: (1) the source function S(t), which is
related to the source AE event itself; (2) the wave propagation medium G(t); and (3) the
acquisition characteristics of the recording instrument, which is termed as the instrument
response function, mathematically expressed as Equation (1):

V(t) = S(t) ∗ G(t) ∗ R(t) (1)

For scenarios where the tissue characteristics do not vary considerably, the stress
waves from the source event and the instrument response function from the acquisition
electronics remain constant. It can be presumed that a pseudo-linear relationship exists
between the source acoustic event and the concurrent magnitude of the output voltage
signal. Diagrammatically, this can be represented as seen in Figure 4.
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3. Tribological Surface Mechanics

Tribology is the science of surfaces that rub and are in contact with each other, which
serves as an equivalent scale-down and theoretical basis towards the study of biotribological
and orthopaedic conditions that can occur in the joints of a human being, assuming a set
of surfaces that have contact and an apparent interaction that can span nano/macro-scale
contact depending on the level and scale of the interaction [19].

Di Puccio and Mattei [19] described the contact forces, assuming a macro-scale in-
teraction, as ideal bodies that are elastic under loading conditions and that undergo a
form of elastic deformation that can be physically governed using the principle of Young’s
modulus. For a scenario involving contact with two surfaces assumed to be perfect spheres,
an analytical solution can be obtained using Hertz’s theory of contact, which considers the
contact pressure and area for two spheres in contact [20]. Although Hertz’s proposition is
for nonconformal bodies of two spheres, its principles can be extrapolated forward for a
scenario involving biological joint contact [20].

The friction during the process is a resistance source between the two bodies in
contact, which, as per Di Puccio and Mattei [19], can either be rolling or sliding. These can
coincide where the friction force is likely due to adhesions and surface deformations at
contact junctions [19]. In order to minimise the effect of friction on contacting bodies in
biological joints, a lubrication source (synovial fluid) usually is present to promote a safe
and sustainable range of motion [19]. This lubrication source is optimally placed between
contact bodies to minimise the asperities and frictional force between them [19].

In this paper, the following five joint pathological conditions are examined and inves-
tigated with the aid of AE sensing.

(1) Abrasive wear involves the concept of abrasion and refers to the scratching and
rubbing motion between a set of contact bodies.

(2) Adhesive wear is generated under plastic contact and ultimately leads to a fracture
due to the adhesion between the two surfaces. It thus represents a kind of wear that occurs
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when the atomic force between a set of materials under a loading condition supersedes
the apparent properties of the material surface [21]. It is common for particles to form a
by-product of the wear between two surfaces, typically called ‘wear particles’ [21].

(3) Burnishing wear involves the systematic plastic deformation of a surface by another
due to prolonged and continuous sliding contact, during which surface smoothening creates
a glare-like reflection of the burnished surface. The mechanical principle is based on the
induced localised contact stress exceeding the overall yield strength of the material. A
series of images illustrating this concept for a candidate tibial polyethylene material can be
seen in Figure 5.
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Figure 5. Tibial polyethylene with successive higher resolutions. In (a), the highlighted rectangle is
zoomed in and can be seen in (b), showing a series of horizontal wear marks at the bottom, while
(c) is a scanning electron microscopic image that further shows the machining marks on the surface
of the material [22].

(4) Burnishing to scratching is a wear type that represents an intermediary and transi-
tion between two types of wear and thus carries a superimposed characteristic of both the
burnishing and the scratching wear.

(5) Scratching is a wear type caused by advanced abrasion and involves ploughing
a material’s surface, which results in the alteration of the material surface with a series
of lines along the direction of the stress [22]. Images of this kind of wear can be seen in
Figure 6 below.
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Figure 6. (a) Image of a polyethylene material with a red rectangle, which is zoomed into for (b) with
a further magnification of the scratched area, while (c) represents a scanning electron microscopic
image in high resolution, further providing a visual illustration of the concept [22].

4. Data Acquisition

The data collection sequence employed in this paper follows the sequence described by
Olorunlambe et al. [15], where AE signals were acquired in a setup comprising a tribometer
and an AE signal acquisition platform, which is designed to simulate the various wear
conditions described in the prior section. An image of the experimental layout can be seen
in Figure 7 below.
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Figure 7. Schematic view of the TE77 tribometer setup: (1) PEEK upper specimen and AE sensor,
(2) steel lower specimen, (3) lubricant bath, (4) lubricant (Ringer’s solution), (5) heater block [15].
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The data collection description was chunked into two significant parts reflecting the
kinds of fault simulations, as follows.

- Abrasion and adhesive wear: sliding tests were done with the TE77 high-frequency
reciprocating machine with a cylinder-on-plate configuration. The tests were con-
ducted with a polyetheretherketone (PEEK) rod as the reciprocating specimen, while
a steel plate served as the fixed lower specimen [15]. The candidate materials were
explicitly selected to replicate a metal form on polymer joint articulation. All plates
were cleansed in ethanol prior to experiments and, in particular, were roughened with
a belt sander attached with P40 grade sandpaper to mimic an abrasive wear condition.
Quarter-strength Ringer’s solution was used as the lubricant for this set of tests [15].

The initial load tests were calculated using the Hertzian theory for contact mechanics,
assuming a ball-and-socket Charité lumbar spinal implant with a 10 mm ball radius and
0.35 mm radial clearance, with loading and displacement conditions as described by BSISO
18192-1 for wear conditions of total intervertebral spinal disc prostheses. Further test
parameters included a load of 150 N, frequency of 2 Hz, a stroke of 12.5 mm, AE acquisition
threshold of 40 dB, preamplifier gain of 60 dB, and bandpass filter of 100–600 kHz.

- Burnishing, burnishing to scratching and scratching: the same experimental condi-
tions as above were adopted for these experiments. The tests were conducted with
an ultra-high-molecular-weight polyethylene (UHMWPE) disc as the reciprocating
sample, with medical grade cobalt chromium molybdenum alloy (CoCrMo) as the
fixed specimen. The dimensions of the UHMWPE disc were a diameter of 10 mm
with a 3 mm thickness, which was subsequently machined to a fine surface finish of
0.65 ± 0.17 µm. These test conditions were replicas of the linear motion of a set of
hinged knees as established using appendix A1 of ASTM F732-17 loading conditions,
while the recommended contact pressure of 3.54 MPa was doubled in an attempt to
simulate variants of severe wear damage. The burnishing wear was simulated using
the UHMWPE continuously sliding on the CoCrMo plate, while the scratching wear
was simulated with 45 mg of 80-grit-size silicon carbide with grinding grit added to
the contact surface between the UHMWPE disc and the CoCrMo plate before testing.

A time-domain visualisation of the various kinds of signals can be seen in Figure 8 below.
From Figure 8, a qualitative view of the various wear signatures produced various

time-series patterns. From this, it can be seen that a snapshot view of the abrasive wear
produces a signature that resembles an enveloped pattern with a unique rise time followed
by a peak and then a transient decay. The same appears to be the case for the adhesive
wear owing to the similarity of the two sets of wear classes, with the critical differences
between them being the reduced overall amplitude of the adhesive wear signal itself, with
a reduced level of “roughness” of the resulting amplitude waveform when compared to
that of the abrasive wear. The burnishing wear exhibits many cyclical envelopes per time
frame compared with the abrasive and adhesive wear, indicative of much more dynamic
activity in a much shorter time frame. The subsequent signal represents an intermediary
and transitional burnishing to the scratching wear signal and exhibits a nearly identical
pattern to the prior burnishing signal, albeit with a slightly higher amplitude. The final
scratching wear signal from the transition is characterised by the same multiple dynamic
events within the same time frame relative to the first two conditions, albeit this time with a
much more intense amplitude, which is symbolic of the extreme activity that occurs during
this wear scenario.
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Figure 8. A visual image of the various kinds of signals considered as part of this work: (a) abra-
sive wear, (b) adhesive wear, (c) burnishing wear, (d) burnishing to scratching transitional signal,
(e) scratching wear.

AE Signal Conditioning and Post-Processing

AE signals were acquired using an acquisition and recording system (supplied by the
Mistras Group, Cambridge, UK) comprising a nano-30 AE sensor, a 2/4/6 preamplifier
with a gain of 60 dB, and the AEWin PCI2 software [23]. The sensor was fixed to the upper
specimen holder (Figure 7, item (1)), connected to the preamplifier and then to a computer
with the software installed for signal conditioning and acquisition. Signals were acquired
at a sampling frequency of 2 MHz throughout the tests.

5. Methods
5.1. Data Preprocessing

In order to replicate the online process that the final model is intended for, the data
were preprocessed and windowed in a specific format, where—primarily due to the high
sampling rate of the AE signal—1,000,000 samples were used for the model build process.
These data were windowed using a disjointed window scheme of 10 equal slices, which
ultimately amounted to 100,000 samples per window.

5.2. Feature Extraction

The feature group utilised as a part of this study represented an expanded group of
features seen in previous studies to characterise and contribute towards the effective mod-
elling and pattern recognition of stochastic nonlinear signals, in addition to physiological
signals [24–27]. The group represented a concatenation spanning statistical, frequency,
nonlinear and fractal-based features. Table 1 shows the comprehensive list of features, their
characteristics and associated parameters, where relevant.
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Table 1. List of features, their characteristics and associated parameters (where necessary).

Feature Characteristic Parameters
(Where Necessary) References

- Mean Absolute
Value (MAV)

- provides a quantification of the mean amplitude
and intensity of a signal - n/a

[24–27]

- Waveform Length
(WL)

- this feature quantifies the cumulative length of a
waveform over a defined segment, which can
provide insight into characteristics such as the
amplitude, frequency, and duration

- threshold = 0.000001

- Zero Crossing (ZC)
- represents a robust feature which indicates how

many times the waveform crosses a
predefined threshold

- threshold = 0.000001

- Slope Sign
Change (SSC)

- working concerning a threshold, this feature
indicates the changes in the polarity of the slope
values across a set of three consecutive samples

- threshold = 0.000001

- Root Mean
Squared (RMS) - gives a quantified reflection of the amount of power - n/a

- 4th Order
Autoregressive
Coefficient (4th AR)

- is a time-series analysis-based model which
linearly combines and regresses estimations of
previous samples and has proved to be effective in
the differentiation of time-varying signals that
have a varying mean-amplitude

- n/a

- Sample Entropy
(SampEN)

- is a feature which indicates the regularity and
complexity present within a signal - m = 2, r = 0.2

- Max Cepstrum
Component (Ceps)

- this feature deconvolves a signal into a spectrum,
following which the maximum value is obtained - n/a

- Maximum Fractal
Length (MFL)

- is a stochastic complexity-based feature which
calculates the level of power within a signal - n/a

- Higuchi Fractal
Dimension (HFD)

- is a complex feature which is computationally
used towards calculating the fractal dimension
of a signal

- Kmax = 10

- Detrended
Fluctuation Analysis
(DFA)

- is a complexity-based feature towards computing
the degree, level, self-similarity and affinity
of a signal

- 30:10:300

- Median
Frequency (MF)

- is a frequency domain-based feature which
extracts the medium frequency value across a
candidate frequency spectrum

- n/a

- Peak Frequency (PF)
- is a frequency domain-based feature which

extracts the peak/maximum frequency value
across a candidate frequency spectrum

- n/a

- Number of Peaks
(NP)

- this feature provides a cumulative sum of the
number of peaks detected based on a peak
detection heuristic algorithm

- threshold = 0.000001

- Simple Squared
Integral (SSI)

- provides an alternate perspective towards
capturing the power existing within a signal - n/a

- Variance (VAR)
- provides an indication of the sample variation and

overall spread of the values within a candidate set
of values

- n/a

5.3. Deep Wavelet Scattering (DWS)

DWS is a multiresolution approach that combines properties from wavelet decomposi-
tion and the deep learning-based convolutional neural network (CNN). The concept of the
DWS allows for an unsupervised feature extraction where the features are continuous and
robust to any translations. The significant difference here involves using preset wavelets
and scaling filters instead of a data-driven iterative learning process [28–32].
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DWS is a result of seminal contributions from several researchers, including Mallat
et al., who provided a mathematical formalism of the CNN and how its properties con-
tribute towards the overall functionality of DWS, which include multiscale contractions,
the linearisation of hierarchical symmetries, and sparse representations [28–33]. One of the
critical differences and apparent strengths of DWS relative to the standard CNN is based
on being able to work with a smaller sample set due to not needing to iteratively learn its
values for its filters [28–33]. A flow diagram illustrating the various substages of the DWS
can be seen in Figure 9.
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In terms of mathematical formalisms, given a signal f (t) being analysed with Ø
being a low-pass filter and a wavelet function of Ψ for filtering purposes, whose range
spans the range of frequencies of the signal, the wavelet family indices possess an octave
frequency resolution Qk and are denoted as ∧k, as well as the multiscale high-pass filter
banks

{
Ψjk

}
jk∈∧k

, which are constructed via dilation of the wavelet Ψ. Furthermore,

ØJ(t) is a low-pass filter that provides a localised translation invariance of f at a defined
scale T [28–32].

As mentioned, the DWS was implemented as a wavelet scattering network with the
use of a CNN, which sequentially performs convolutions first through classical wavelets,
then a nonlinear modulus, and is tailed off with an averaging scaling function, as indi-
cated by the flow diagram in Figure 9 [28–32]. The process of convolutions indicated
by S0 f (t) = f ∗ J(t), where S0 is the zero-order scattering coefficients, produces locally
invariant translation features of f , which, although at first result in a temporary loss of
high-frequency information, can be dually recouped via the wavelet modulus process |W1|,
as expressed in Equation (2) [28–32]:

|W1| f =
{

S0 f (t),
∣∣ f ∗Ψj1(t)

∣∣}
j1∈∧1

(2)

Hierarchically, the first set of scattering coefficients can be obtained via an averaging
process of the wavelet modulus coefficient J(t), as seen in Equation (3):

S1 f (t) =
{∣∣ f ∗Ψj1(t)

∣∣ ∗ J(t)
}

j1∈∧1
(3)

A certain amount of information is lost from the averaging process, which once again can be
recovered via a mathematical transformation (S1 f (t), which can be seen to be the low-frequency
constituent of

∣∣ f ∗Ψj1
∣∣) via the application of the wavelet modulus as part of the information

recovery process, as shown as |W2|
∣∣ f ∗Ψj1

∣∣ = {S1 f (t),
∣∣∣∣ f ∗Ψj1

∣∣∗Ψj2(t)
∣∣}

j2∈∧2
[28–32].

Whilst the second-order coefficient can be defined as
S2 f (t) =

{∣∣∣∣ f ∗ Ψj1
∣∣ ∗ Ψj2

∣∣ ∗ J(t)
}

j1∈∧1
i = 1, 2, a continuous iteration via the defined

process yields the following wavelet convolutions as Equation (4):

Um f (t) =
{∣∣∣∣ f ∗Ψj1

∣∣ ∗ . . . .
∣∣∗Ψjm

∣∣}
j1∈∧1

, i = 1, 2, . . . m. (4)

where Um is an mth-order modulus.
How to obtain the mth-order scattering coefficient, Um f (t) with J can be seen as in

Equation (5):

Sm f (t) =
{∣∣∣∣ f ∗Ψj1

∣∣ ∗ . . . .
∣∣∗Ψjm

∣∣ ∗ J(t)
}

j1∈∧1
, i = 1, 2, . . . m (5)
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The defined approach is used to obtain a final scatter matrix S f (t) = {Sm f (t)}0≤m≤l ,
which concatenates the scattering coefficients from all orders to characterise an input signal,
where l represents the maximum decomposition level [28–32]. A tree-based visualisation
of the scattering decomposition network can be seen in Figure 10.
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Figure 10. A tree-based visualisation of the scattering decomposition network [33].

As described, the DWS retains the simultaneous characteristics of both the CNN and
the wavelet by exhibiting translation invariance while also being stable to local deforma-
tions [28–32]. As far as the critical differences between them, the filter parameters are
preset in DWS and thus negate the need for subsequent iterative learning of the optimal
parameters, in addition to the final output not being solely from the output layer but rather
a combination from multiple preceding layers [28–32].

As the energy of the resulting scatter coefficients has been seen to attenuate with
an increasing number of network layers, with the bulk of the energy hosted in the first
layers, as a result of this, a two-order scattering network configuration would be adopted
in this work, as adapted from related studies [28–32]. The other supporting configuration
parameters used towards running the DWS include the use of the Gabor wavelet as the
principal mother wavelet for the decomposition actions, with an invariance scale of 1 s,
alongside a series of filter banks spanning eight wavelets per octave in the first filter bank
followed by one wavelet per octave in the second filter bank.

Images of the various filter banks from the two network layers alongside a low-pass
filter with a 1 s scale invariance can be seen in Figures 11 and 12.
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5.4. Prediction Machines

Decision Tree (DT): this model is nonparametric and works with Boolean logic to-
wards distinguishing and sorting incoming data into their various classes in a hierarchical
fashion reminiscent of a tree [34]. This model is regarded as a grey-box-type modelling
approach due to carrying a specific level of transparency and, therein, model decision
explainability [34].

Discriminant Analysis (DA): this is a computationally efficient model underpinned by
statistical reasoning. The model works with a projection of the candidate feature vector into
a lower dimensional subspace and is followed by the placement of decision boundaries to
separate the various classes [24]. The linear version of the model was utilised in this paper,
i.e., linear discriminant analysis (LDA).

Kernel Naïve Bayes (KNB): the naïve Bayes classifier works with probabilistic reason-
ing, which stems from Bayes’s theorem alongside different independence assumptions.
Unlike its counterparts in the literature, it has been seen to work well with relatively fewer
data, mainly due to its empirical formalism, as opposed to an iterative one [35]. The
implemented configuration of the naïve Bayes classifier utilises a kernel, a nonparametric
estimation method used to identify random variable density functions [35].

Support Vector Machine: these models are of an iterative configuration finding a
solution to an optimisation problem of finding the best location of the separation bound-
ary between data classes whilst utilising a portion of the data, referred to as the support
vectors [36]. SVM typically involves the projection of the data into a higher dimensional
subspace whilst working with the notion that data classes have a greater degree of separa-
tion in a higher dimensional subspace, followed by the placement of the various decision
boundaries [36]. The data are subsequently projected back down into a lower dimensional
space whilst continuously preserving the overall structure of the data and the locations of
the class boundaries in a process referred to as the ‘kernel trick’ [36]. Six different config-
urations of the SVM were used in this paper, namely, the linear support vector machine
(LSVM), quadratic support vector machine (QSVM), cubic support vector machine (CSVM),
fine Gaussian support vector machine (FGSVM), medium Gaussian support vector machine
(MGSVM), and coarse Gaussian support vector machine (CGSVM).

K-Nearest Neighbour (KNN): this represents a category of nonparametric-based clas-
sification models with a majority vote on the nearest neighbour. Here, K is chosen as
one, and the model is based on the association of a sample to a data class using the sole
nearest neighbour and is a computationally efficient configuration of the model [37]. The
Euclidean distance criteria were selected as the distance index for this work, and three
different variants of the model were used, namely, fine KNN (F-KNN), medium KNN
(M-KNN) and coarse KNN (C-KNN).

The design and validation of all listed prediction machines were performed with
the MATLAB Classification Learner app, which automatically tuned and optimised all
models to achieve their optimal parameters. All models were validated using a K-fold
cross-validation approach, with K chosen as 10 and a data split format of 80:20, with 80%
used towards the model’s training, while the remaining 20% was utilised towards the
validation of the designed models.

6. Results and Discussion

Figure 13 is a principal component analysis (PCA) plot of the DWS of the four pathol-
ogy cases considered in this study.
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Figure 13. PCA plot of the DWS of four pathology cases: abrasive wear, adhesive wear, burnishing
and burnishing to scratching.

From the PCA plot, it can be seen that although there exists a cluster separation
between the abrasive and adhesive wear, they appear to be close to each other, primarily
due to the similarities of their AE signal waveforms, as shown in Figure 8. The burnishing
condition seems distinctly separate from the abrasive and adhesive conditions on the PCA
plot, while the burnishing-to-scratching case appears separate from the rest of the samples’
clusters. There also exists a high degree of separability within the samples of the burnishing
to the scratching cluster itself.

The results for the prediction exercises can be seen in Table 2 across the range of
models investigated. In the case of the raw/handcrafted features, the mean performance
across all 12 models produced an accuracy figure of 90 ± 7.16%, which produced a range
of accuracies. The LDA, alongside distinct configurations of the SVM, resulted in the best
model prediction accuracies. The DWS produced a mean accuracy across all classifiers
of 97 ± 3.77%, up from the raw/handcrafted features figures and provides evidence to
suggest multiscale-based characterisation of the AE signals appears to provide the best
signal performance under the conditions that have been investigated. These results echo
the findings from previous AE-based studies, which have utilised decomposition methods
towards analysing acquired AE signals. The DWS also offers the flexibility of not requiring
expert-based knowledge due to its unsupervised feature learning scheme. Although this
comes at a higher computational cost, it allows for an ensemble of signal decomposition
and feature characterisation in a fused fashion. Subsequent studies would investigate the
effect of low dimensional embedding methods on helping speed up the modelling process
involved with the DWS.
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Table 2. Results comparison table.

Model Raw Features (%) DWS (%)

DT 82 98
LDA 100 98
KNB 78 99

LSVM 94 99
QSVM 94 99
CSVM 96 100

FGSVM 90 87
MGSVM 96 98
CGSVM 92 91
FKNN 96 100
MKNN 80 98
CKNN 82 98

Mean across all models 90 ± 7.16 97 ± 3.77

Figure 14 is a flow diagram comprising the various phases associated with the training
and design of a candidate prediction machine poised towards predicting various joint
pathologies. The critical difference between the pair of modelling flows is that for the
raw/handcrafted features, prior expert knowledge is necessary to assemble and extract the
relevant group of signal features, which can be used towards characterising the signal [38].
Conversely, in the case of the DWS, an unsupervised multiscale feature extraction scheme
is adopted, for which only parameters are to be defined for the process before the signal is
characterised in an unsupervised fashion.
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Table 3 shows and contrasts the various properties of handcrafted feature extraction
and DWS unsupervised feature extraction.
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Table 3. A comparison table contrasting the characteristics and performance of the handcrafted
method with the DWS.

Handcrafted Features DWS

- Relies on expert knowledge to source out
the feature set

- Unsupervised feature extraction, thus
does not rely on expert knowledge

- Less computationally intense/dependent
on feature group - Computationally intense

- Feature groups can be varied - Distinct multiscale features

- Suboptimal performance with
small samples

- Works well with a small set of
data samples

- Mostly algorithmically structured - Based on a fusion of the properties of
both the CNN and wavelet transform

6.1. Feature Ranking Results

In order to observe the critical features from the group of handcrafted features, which
are the key drivers towards the modelling and characterisation of the resulting AE signals,
the Relief feature ranking algorithm was used for the ranking of the importance of the
various features, as seen in Table 4 [39,40]. It should be noted that this was not possible
for the DWS due to the lack of feature interpretability, and therein represents a strength of
handcrafted features over unsupervised feature learners in general.

Table 4. Handcrafted features ranked in order of importance towards the modelling and characterisa-
tion of the resulting AE signals.

Feature Ranking Results

(1) Peak Frequency
(2) Median Frequency

(3) Detrended Fluctuation Analysis
(4) Higuchi Fractal Dimension

(5) Slope Sign Change

From the results in Table 4, it can be seen that three of five of the top-ranked features
are frequency-based features in the form of the PF, MF and SSC, which show the importance
of frequency-based characterisation and information for the modelling of these kinds of
AE signals. The remaining two features are from the nonlinear literature in the form of
the two fractal-based features that can be seen in Table 4, which echoes their strength and
importance with a view towards dealing with nonstationary time-varying signals.

6.2. Extension towards a Real-Time Diagnosis System

The envisaged pathway towards a mobile joint health monitoring platform that
can be utilised for the continuous monitoring of patient joint pathologies can be seen in
Figure 15 [41,42]. The method commences with an ergonomically placed AE sensor on the
specific joint of interest on the patient’s body, recording the passive acoustic stress waves
from the kinematic motions of the joint during daily activities. Upon acquisition of these
signals, the usual digitisation process is expected to take place as part of the signal acquisi-
tion and conditioning process. The signal characterisation follows processing via either the
handcrafted features or unsupervised, depending on the embedded computational hard-
ware utilised as a part of the overall system. A feature vector would then be fed towards
a trained machine learning model—which in this case is serving as an online prediction
machine, and based on trained examples—that is expected to proceed to make a prediction
based on the joint pathology and potentially the extent of the joint wear (subject for future
work) based on input data [43]. This prediction is ultimately passed and ported to the
clinicians’ cloud-based system, where it remotely receives an update on the overall health
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of the patient’s joint. Using this, alongside reviewing the patient’s clinical information, the
clinicians can decide what course of clinical action to take subsequently [44]. Thus, from a
broad view, the proposed AE-driven joint pathology system can be referred to as a remote
clinical decision-support platform for monitoring joint pathologies.
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7. Conclusions and Future Work

The condition of joint wear is shaping to become a broader-scale medical issue, am-
plified by the projections of the ageing population in the years to come. On top of this,
athletes who generally play impact sports have been seen to be susceptible to various joint
pathologies. The current means of assessing and diagnosing joint wear and pathologies cur-
rently span X-ray, CT and MRI, all of which have technical shortcomings and are primarily
unaffordable to developing nations within their medical settings.

AE presents an alternative to the modalities above in that it is a mobile sensing method
that makes passive recordings during the natural joint movement of the patient while
presenting no risk of radiation absorption to the patient. The primary challenge associated
with using the modality is based on the considerable amount of signal processing modelling
required to model and decode the AE events from the resulting source events. In this paper,
we have contrasted two independent signal processing methods alongside 12 machine
learning models for identifying and differentiating five kinds of simulated joint pathologies,
where a visual and qualitative view of the AE from the five joint pathologies showed
distinct differences in the various signals.

The two contrasting signal processing methods employed for modelling the mixed AE
signals included using an expanded set of handcrafted features comprising statistical and
nonlinear features, all the way towards complexity and fractal features. At the same time,
the second approach utilised a deep learning-based method in the form of the DWS, which
allowed for an unsupervised feature learning mechanism. The results for both candidate
methods across the various machine learning models showed that the DWS provided the
best prediction and differentiation prowess across the various signal processing methods
considered. The main downside of this method is the relatively tricky computational time
required for its processing, mainly due to the multiscale nature of the algorithm itself.

The proposed signal processing model fits into a broader system for remote con-
dition monitoring of joint pathologies, as shown in Figure 15, which is poised to be a
mobile/remote clinical decision-support platform to aid clinicians towards taking proactive
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decisions regarding the care and treatment of patients with joint pathologies. Potential
future work in this area would involve the expansion of the current model to be able
to detect the wear extent of a specific identified joint pathology in order to support the
clinician towards prioritising care and inferring the stage and extent of the joint pathology
and which would allow for the use of regressions [45–47].
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