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Abstract: Unsupervised domain adaptation (UDA) is a transfer learning technique utilized in deep
learning. UDA aims to reduce the distribution gap between labeled source and unlabeled target
domains by adapting a model through fine-tuning. Typically, UDA approaches assume the same
categories in both domains. The effectiveness of transfer learning depends on the degree of similarity
between the domains, which determines an efficient fine-tuning strategy. Furthermore, domain-
specific tasks generally perform well when the feature distributions of the domains are similar.
However, utilizing a trained source model directly in the target domain may not generalize effectively
due to domain shift. Domain shift can be caused by intra-class variations, camera sensor variations,
background variations, and geographical changes. To address these issues, we design an efficient
unsupervised domain adaptation network for image classification and object detection that can learn
transferable feature representations and reduce the domain shift problem in a unified network. We
propose the guided transfer learning approach to select the layers for fine-tuning the model, which
enhances feature transferability and utilizes the JS-Divergence to minimize the domain discrepancy
between the domains. We evaluate our proposed approaches using multiple benchmark datasets.
Our domain adaptive image classification approach achieves 93.2% accuracy on the Office-31 dataset
and 75.3% accuracy on the Office-Home dataset. In addition, our domain adaptive object detection
approach achieves 51.1% mAP on the Foggy Cityscapes dataset and 72.7% mAP on the Indian Vehicle
dataset. We conduct extensive experiments and ablation studies to demonstrate the effectiveness and
efficiency of our work. Experimental results also show that our work significantly outperforms the
existing methods.

Keywords: domain adaptation; transfer learning; image classification; object detection; convolutional
neural network; deep learning

1. Introduction

Deep learning has achieved significant success in the field of computer vision in
recent years, particularly in image classification and object detection using Convolutional
Neural Networks (CNNs). Typically, CNNs are trained with supervised learning using
large amounts of labeled data, drawn from an identical distribution for both training and
testing the model. However, collecting and labeling data can be very time-consuming,
labor-intensive, and expensive, especially for new tasks in various domains. In addition,
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adequate training samples do not always exist. Furthermore, the training of deep CNNs
is domain-specific. The existing models show promising results on the dataset used for
training. However, they often fail to generalize well to new, similar domains due to the
problem of domain shift [1]. Domain shift arises when the distribution of data in the
target domain differs from the source domain, posing a significant challenge for image
classification and object detection tasks. This discrepancy can occur due to variations in
the visual appearance of the data, which leads to several practical implications for real-
world applications in the field of image classification and object detection. For instance,
consider an intelligent system to detect objects on the road using CCTV (Closed-Circuit
Television) footage captured from various camera sensors. If the training data from each of
the camera sensors do not encompass variations in noise characteristics, image resolutions,
and different weather conditions, the system’s performance may degrade in the presence of
adverse conditions. Similarly, if we train an image classification model on data downloaded
from e-commerce websites and test it on real camera images, the model’s performance
is likely to be compromised due to differences in image characteristics across different
domains, such as intra-class variations, camera angles, lighting conditions, and complex
backgrounds. Therefore, there is a need to develop algorithms that can address both
label scarcity and domain shift problems. The objective of domain adaptation approaches
is to overcome these challenges by learning domain-invariant features to align the data
distributions of the source and target domains.

Domain adaptation is a type of transfer learning utilized to train a model with unseen
data in the target domain by acquiring knowledge from a related source domain [2]. The
source domain refers to the data distribution used to train the model with labeled data for
the source task, while the target domain refers to data from another related domain used to
fine-tune the pre-trained model to learn the target task. There are three types of domain
adaptation approaches: supervised, semi-supervised, and unsupervised [3]. Significant
progress has been seen in supervised and semi-supervised domain adaptation, while
unsupervised domain adaptation (UDA) has recently gained attention. UDA methods
aim to learn a domain-invariant feature space by bridging the labeled source domain and
unlabeled target domain, as shown in Figure 1. UDA methods can be divided into two
main categories: (i) domain discrepancy-based methods, where domain-invariant features
are found by fine-tuning the model and minimizing domain shift using statistical measures,
and (ii) adversarial-based methods using a generative model, where domain-invariant
features are learned by encouraging domain confusion using a discriminator network. This
method is more complex, as the discriminator needs to be trained from scratch, and hence
it takes more training time.

Although deep transfer learning-based UDA approaches have seen a lot of success
so far, they still face challenges that need to be overcome to improve their performance.
The present study mainly focuses on aligning the marginal or conditional distributions
and utilizing the pre-trained model for transferability. Transferability depends on the
relatedness and size of the source dataset and target dataset. Transferability plays a
significant role in fine-tuning the network to improve the performance of the target task;
otherwise, negative transfer or overfitting may occur and degrade performance [4]. In
domain adaptation, it is unclear how to efficiently fine-tune the model using the feature
transferability across the domains. Moreover, the size of the dataset is also not balanced to
improve the marginal probability of the task. Additionally, the present study uses various
asymmetric statistical distribution measures [5–9]. Furthermore, the majority of current
research in object detection utilizes the de-facto object detection model, Faster R-CNN [10],
which is a two-stage network.

In this paper, our goal is to develop a unified unsupervised domain adaptation net-
work for image classification and object detection that can learn more transferable feature
representations and effectively reduce the domain shift problem. Firstly, we propose a
guided transfer learning (GTL) approach to measure transferability between the source
and target domains, called the τ-score metric. The τ-score is obtained without training the
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deep network. Instead, we use the deep CNN for feature extraction only to calculate the
τ-score, saving expensive computation time before the actual training of domain adaptation.
Moreover, it is simple to understand and interpret and can be employed in various deep
transfer learning CNNs. The τ-score has been utilized to identify the layer of the network
to fine-tune, instead of selecting only the last few fully connected layers or randomly
from the entire network. Secondly, we utilize the weighted cross-entropy loss for domain
adaptive image classification and object detection to handle the class imbalance problem.
Lastly, we employ the JS (Jensen–Shannon) divergence to calculate the domain discrepancy
loss between the domains. The JS-divergence is symmetric and finite, and can be used to
calculate the distance between the two distributions. Our domain adaptive object detection
method is not dependent on the detection model, such as Faster R-CNN, as it does not
consider the regional proposal loss to learn the domain invariant features. Our model only
considers the image-level and object-level features to reduce the domain shift in object
detection and can be implemented with a two-stage or one-stage object detection network.
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Figure 1. Example of unsupervised domain adaptation; Source domain and the target domain (left)
are classified through a source-only classifier with source labeled data and target unlabeled data;
Source and target domain (right) are classified after domain adaptation, which aligns the feature
distributions of both domains.

The main contributions can be summarized as follows.

• To the best of our knowledge, we propose the first-of-its-kind layer selection strategy
using the Guided Transfer Learning approach to fine-tune the domain adaptation
network and maximize feature transfer between domains.

• We employ JS-Divergence to reduce the feature distribution gap between source and
target domains.

• We introduce the weighted cross entropy loss to tackle the class imbalance problem.
• We further propose a robust object detection UDA framework that is applied to the

two-stage Faster R-CNN and single-stage SSD (Single Shot multibox Detector) object
detector effectively.

• We conduct extensive experiments on benchmark datasets to validate the perfor-
mance of our UDA image classification and object detection method, compare it with
state-of-the-art (SOTA) methods, and obtain promising results. Moreover, we also
demonstrate ablation studies to show the impact of each component in our proposed
framework. Furthermore, we present the first-of-its-kind Indian Vehicle dataset for
domain adaptive object detection task to evaluate the adaptivity of our object detector
in the new domain.
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The rest of the paper is organized as follows: Section 2 discusses recent work on
UDA-based image classification and object detection methods. The proposed framework
for domain adaptive image classification and object detection is explained in Section 3.
Section 4 presents the result analysis of both proposed methods with various experiments.
Finally, Section 5 summarizes the paper with the conclusion and shows the future directions.

2. Related Work

The problem of transferring knowledge from a labeled source domain to an unlabeled
target domain is said to be solved by unsupervised domain adaptation. Significant research
contributions have been put into supervised and semi-supervised domain adaptation
methods. In recent years, increasing research efforts are focused on unsupervised domain
adaptation methods that use deep learning architectures to improve the performance of
image classifiers and object detectors. To reduce the domain divergence between the
source and target domain, there are mainly two main types of UDA methods that have
gained significant attention: discrepancy-based UDA methods and adversarial-based UDA
methods. In this section, we describe recent works on these approaches for domain adaptive
image classification and object detection.

2.1. Unsupervised Domain Adaptive Image Classification
2.1.1. Discrepancy-Based Approaches

In discrepancy-based methods, domain adaptation is achieved by minimizing the
distance between domain distributions using statistical measures to find domain invari-
ance features.

Ghifary et al. [11] introduced the maximum mean discrepancy (MMD) metric for
feedforward neural networks with one hidden layer. The MMD measure reduces the
mismatch in the latent space distribution between domain representations. Tzeng et al. [5]
employed two AlexNet [12] CNNs in the deep domain confusion network (DDC) for
source and target domains with shared weights. An adaptation layer with the MMD
metric measures domain difference and optimizes the network for classification loss in
the source domain. Long et al. [13] developed the deep adaptation network (DAN) to
match marginal distributions across domains by adding adaptation layers and evaluating
different kernels. A joint adaptation network (JAN) [14] introduced a joint maximum mean
discrepancy (JMMD) and applied it in various domain-specific layers of ResNet-50 [15]
to find domain invariance features. Yoo et al. [16] recently presented a weighted MMD
model that includes an additional weight for each class in the source domain when the
target domain class weights are different. In contrast to MMD, Sun et al. [17] proposed a
CORrelation ALignment (CORAL) loss function for deep neural networks, which aligns the
second-order statistics across domains and minimizes the domain shift. The Contrastive
Adaptation Network (CAN) [7] utilized a new metric contrastive domain discrepancy
(CCD), which optimizes the intra- and inter-class discrepancy across the domains and
trains the CAN in an end-to-end manner. Lee et al. [18] used the task-specific decision
boundary in unsupervised domain adaptation to align feature distributions across domains
using sliced Wasserstein discrepancy (SWD). Deng et al. [19] proposed a similarity-guided
constraint (SGC) in the form of a triplet loss, which is integrated into the network as an
additional objective term to optimize the network. Ref. [20] introduced the balanced weight
joint geometrical and statistical alignment (BW-JGSA) for UDA to minimize the distribution
divergence between marginal and conditional distributions across domains. In order to
discover domain-invariant feature representations, Xie et al. [21] used the Wasserstein
distance between the two distributions collaboratively and presented the collaborative
alignment framework (CAF) to minimize the global domain discrepancy and retain the
local semantic consistency. Wang et al. [22] proposed the manifold dynamic distribution
adaptation (MDDA) to learn the domain-invariant transfer classifier in the target domain
using the Grassmann manifold.
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2.1.2. Adversarial-Based Approaches

Adversarial-based methods train discriminator networks to confuse the domain dis-
tributions. The domain-adversarial neural network (DANN) was first introduced in [23]
for use in adversarial training by a gradient reversal layer (GRL). DANN uses shared
feature extraction layers to reduce label prediction loss and GRL to maximize domain
confusion loss. Adversarial discriminative domain adaptation (ADDA) [24] unties the
weights and initializes the target model parameters with the pre-trained source model.
Learning domain-specific feature extractions makes ADDA more adaptable. ADDA min-
imizes source and target representation distances by iteratively reducing the generative
adversarial network (GAN)-based loss function. Cao et al. presented the selective adversar-
ial network (SAN) [25] to handle transfer learning for small domains by filtering outlier
source classes and matching data distributions in the common label space by separating
the domain discriminator into several class-wise domain discriminators, which reduces
negative transfer and promotes positive transfer. In [26], the feature generator is learned
by augmenting the source domain data, and the minimax algorithm is employed to find
the domain invariant feature. Wasserstein distance is used to measure domain distance
in the discriminator by Shen et al. [9]. and improved the feature extractor network to
find the invariant features in an adversarial manner. In [27], a feature extractor generates
target features that are similar to the source, while discriminators are trained to increase
the discrepancy to recognize target samples outside the source’s support. Zhang et al. [28]
introduced Domain-Symmetric Networks (SymNets) for domain adaptation. SymNet
was built on the symmetric source and target task classifiers and an extra classifier that
shares layer neurons. They proposed a unique adversarial learning method based on a
two-level domain confusion method to train the SymNet. The category-level confusion
loss tried to reduce the object-level loss by forcing intermediate network features to be
invariant. The Hierarchical Gradient Synchronization Domain Adaptation (GSDA) [29]
method was presented to align the domain hierarchically including global alignment and
local alignment. Local alignment is performed using class-wise alignment. In [30], the
authors employed a Hybrid Adversarial Network (HAN) with a classification loss to train
the discriminative classifier using adversarial training to find the transferable features
across domains. To improve target discrimination, structural regularization deep clustering
(SRDC) [31] combines the clustering of features of an intermediate network with structural
regularisation and a soft selection of less dissimilar source samples. Na et al. [32] provided
a solution by augmenting several intermediate domains using a fixed ratio-based mixup
approach to bridge the source and target domains (FixBi). They trained the source-leading
and target-leading models that shared common characteristics. Pei et al. [33] introduced
a multi-adversarial domain adaptation (MADA) technique to leverage multiple domain
discriminators to capture the fine-grained alignment of multimodal structures of the source
and target domains. Pinheiro et al. [34] presented an end-to-end similarity learning net-
work (SimNets) method to learn a pairwise similarity function for evaluating the similarity
between prototype representations of each class. Long et al. [35] proposed a conditional
domain adversarial network (CDAN) that uses multilinear conditioning to capture the
cross-covariance between feature representations for discriminability and classifier pre-
dictions for classification. Chen et al. [36] introduced the discriminator-free adversarial
learning network (DALN), which can use the predicted discriminative information for fea-
ture alignment and employs nuclear-norm Wasserstein discrepancy (NWD) for performing
discrimination. Table 1 presents a comparative summary of the existing state-of-the-art
methods of domain adaptation for image classification.
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Table 1. Comparative summary of the existing domain adaptive image classification methods.

Method
Type of Domain

Adaptation Base Network Loss
Datasets

YearOffice-31
[37]

Office-Home
[38]

Digits
(MNIST [39]/USPS [40])

DDC [5] Discrepancy-based AlexNet MMD 3 - - 2014

DAN [13] Discrepancy-based AlexNet MK-MMD 3 - - 2015

DANN [23] Adversarial-based AlexNet GAN-based
Discriminator 3 - 3 2015

CORAL [17] Discrepancy-based AlexNet CORAL 3 - - 2016

ADDA [24] Adversarial-based AlexNet &
ResNet-50

GAN-based
Discriminator 3 - 3 2017

JAN [14] Discrepancy-based ResNet-50 JMMD 3 - - 2017

CDAN [35] Discrepancy-based ResNet-50 Conditional- based
Discriminator 3 3 3 2018

MADA [33] Adversarial-based ResNet-50 GAN-based
Discriminator 3 - - 2018

SimNets [34] Adversarial-based ResNet-50 GAN-based
Discriminator 3 - 3 2018

CAN [7] Discrepancy-based ResNet-50 CCD 3 - - 2019

SymNets [28] Adversarial-based ResNet-50 GAN-based
domain confusion 3 3 - 2019

SGC [19] Discrepancy-based ResNet-50 JMMD 3 3 3 2020

MDDA [22] Discrepancy-based ResNet-50 MMD 3 3 3 2020

HAN [30] Discrepancy &
Adversarial-based ResNet-50

CORAL and
GAN-based

Discriminator
3 3 - 2020

GSDA [29] Adversarial-based ResNet-50
Global and local

Adversarial
Discriminator

3 3 - 2020

SRDC [31] Adversarial-based ResNet-50 Clustering-based
Discriminator 3 3 - 2020

FixBi [32] Adversarial-based ResNet-50 Augmentation 3 3 - 2021

CAF [21] Discrepancy-based ResNet-50 Wasserstein distance 3 - - 2022

DALN [36] Adversarial-based ResNet-50 NWD-based
Discriminator 3 3 - 2022

2.2. Unsupervised Domain Adaptive Object Detection

In past decades, CNN-based object detection methods have shown significant improve-
ments applied to various datasets and have been successfully utilized in many computer
vision applications. Object detection algorithms are categorized into two-stage [10,41,42]
and one-stage [43–45] object detectors. These object detection algorithms require the an-
notated datasets and obtain marginal reductions in performance when applied to another
domain with the same label space. Recently, research efforts have been focused on aligning
domains for object detection tasks.

Chen et al. [46] proposed the first-of-its-kind domain-adaptive object detection algo-
rithm using Faster R-CNN with adversarial feature adaptation to minimize distribution
divergence at the image and instance levels. Saito et al. [47] employed strong local and
weak global alignments to propose strong-weak distribution alignment (SWDA) for shallow
receptive fields and image-level features on deep convolutional layers respectively.

Zhu et al. [48] aligned the region proposal generated by the Faster R-CNN detectors
from the source and target domain by applying the k-means clustering algorithm using
selective cross-domain alignment (SCDA). Zheng et al. [49] performed adversarial feature
learning with the coarse-to-fine adaptation (CFA) approach by proposing the attention-
based region transfer (ART) and prototype-based semantic alignment (PSA) to learn domain
invariant features. In [50], the authors applied image-level alignment at multiple layers of
the backbone network and trained it using an adversarial manner with the multi-adversarial
Faster R-CNN (MAF) framework. Kim et al. [51] trained the domain adaptive object
detector by augmenting the samples from both domains and learned the domain invariant
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features across the domains. Conditional Domain Normalization (CDN) is introduced to
reduce the domain divergence between the domains in [52]. CDN encodes characteristics
from different domains into a latent space with the same domain attribute. It is applied in
multiple convolutional layers of the detection model to align the domains. A Hierarchical
Transferability Calibration Network (HTCN) is employed by Chen et al. [53] to learn the
transferability and discriminability of feature representations hierarchically. They proposed
three components consisting of Weighted Adversarial Training, Context-aware Instance-
Level Alignment, and local feature masks. Rodriguez et al. [54] proposed domain adaptive
object detection using the style consistency (ODSC) framework based on SSD [43] and
trained the framework with the style transfer method for pixel-level adaptation and pseudo
labeling to reduce the negative samples from the unlabeled target domain. Wang et al. [55]
introduced the sequence feature alignment (SFA) technique on the deformable detection
transformer (DefDETR) network [45] to adapt the domain discriminative features. The
SFA comprises two distinct modules: a token-wise feature alignment (TDA) module and
a domain query-based feature alignment (DQFA) module. Zhou et al. [56] utilized the
multi-granularity alignment (MGA) with three-level domain alignment losses to learn
the domain-invariant features between the domains including pixel-level, instance-level,
and category-level. The MGA method has been developed based on faster R-CNN and
fully convolutional one-stage (FCOS) [44] backbone detectors. Gong et al. [57] introduced
the O2net method with the object-aware alignment (OAA) and optimal transport-based
alignment (OTA) modules to apply pixel and instance levels domain alignment loss. Table 2
summarizes the existing state-of-the-art methods for domain adaptation in object detection.

Table 2. Comparative summary of the existing domain adaptive object detection methods.

Method Detection Network Loss
Datasets

Year
Cityscapes [58] Foggy Cityscapes [58] KITTI [59]

DA-Faster [46] Faster R-CNN H-divergence based
Discriminator 3 3 3 2018

SWDA [47] Faster R-CNN Weak Global and Strong local
Feature Alignment 3 3 3 2019

SCDA [48] Faster R-CNN Region-Level
Adversarial Alignment 3 3 - 2019

CFA [49] Faster R-CNN Prototype-based
Semantic Alignment 3 3 3 2020

MAF [50] Faster R-CNN Adversarial domain alignment loss 3 3 3 2019

CDN [52] Faster R-CNN CDN-based adversarial loss 3 3 3 2020

HTCN [53] Faster R-CNN Pixel-wise adversarial loss 3 3 - 2020

ODSC [54] SSD Pseudo Labels and Style
Transfer alignment 3 3 - 2020

SFA [55] DefDETR Token-wise and Hierarchical
Sequence Feature Alignment loss 3 3 - 2021

MGA [56] Faster R-CNN & FCOS Pixel-level, instance-level, and
category-level. 3 3 3 2022

O2net [57] DefDETR Pixel- and instance-level 3 3 - 2022

3. Methodology

This section presents the proposed algorithm (Domain Adaptation using Guided
Transfer Learning—DAGTL) in detail. First, the notations are defined for domain adap-
tation, and the problem statement is formulated. Then, we introduce the guided transfer
learning approach to select the layer from which the model is fine-tuned. Next, we explain
two proposed approaches: Domain Adaptation using Guided Transfer Learning for image
classification (DAGTL-IC) and Domain Adaptation using Guided Transfer Learning for ob-
ject detection (DAGTL-OD). Finally, we present the overall objective functions to minimize
the loss for domain adaptive image classification and object detection.
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3.1. Problem Formulation

Let x denote the input image and y denote the corresponding label of the image. We
define the domain as D = {X, P(x)}, where X is the feature space X = {x1, x2, . . . , xn} and P(x)
is a marginal probability distribution. The proposed algorithm is designed to address the
problem of unsupervised domain adaptation and aims to adapt the features from a label-
rich source domain Ds = {Xs, Ps(Xs)} to a label-scarce target domain Dt =

{
Xt, Pt(Xt)}.

The source domain has adequate labeled samples, which are denoted as Ds = {(xs
n, ys

n)}
Ns

n=1
where xs is source sample, ys is the associated label of the given source sample and Ns is the
number of samples available in the source domain. Furthermore, the target domain contains

unlabeled samples, which are denoted as Dt =
{(

xt
n
)}Nt

n=1, where Nt � Ns. Usually, the
source and target data distribution spaces are different in domain adaptation. However, the
label space of samples is the same in both domains, the label space Y = {1, 2, . . . , C}, |Y| =
number of labels. The task is also identical. The goal of our work is to learn domain
invariant features by aligning the source and target domain features in a common latent
space and to minimize the domain discrepancy between the domains. Thus, the target task
performance increases with unlabeled target data.

3.2. Guided Transfer Learning Approach

The deep domain adaptation utilizes the deep convolutional neural network to im-
prove the performance of the target task for image classification and object detection. Our
proposed work is based on the discrepancy-based deep domain adaptation approach.
In this approach, transfer learning is performed by fine-tuning the convolutional neu-
ral network using target data to minimize the distribution shift between the source and
target domains.

The convolutional neural network requires a large amount of labeled data to train the
model from scratch. However, this assumption does not necessarily hold in real life due to
the scarcity of annotated data. Additionally, deep learning algorithms are data-dependent
for a particular domain or problem. These algorithms require re-training when the domain
shifts. The transfer learning approach utilizes the knowledge from the source domain
to improve the performance of the target task in the related target domain. Therefore,
transfer learning substantially enhances the model performance and decreases the model
development time. However, the effectiveness of transfer learning depends on the size
of the target domain and the similarity between domains. In domain adaptation, source,
and target domains share common label space but feature distributions are different and
the size of target data is also small. Therefore, we applied the fine-tuning strategy of
transfer learning on the target domain using deep convolutional neural networks. The
convolutional neural networks are designed with a hierarchical representation of layers,
including convolutional, pooling, and fully connected layers. The initial layers of CNNs
learn simple features of an object, while higher-level layers attempt to learn more complex
and abstract features. In the fine-tuning strategy of transfer learning, initial layers are
frozen to reuse low-level features, and deeper layers are fine-tuned to train the parameters
based on the relatedness of the source and target domain. The transfer learning algorithm
trains partial layers of the pre-trained network. Selecting partial layers of pre-trained CNN
models depends on the correlation between the target and source domain. Therefore, it
is essential to investigate the effective layer selection strategy from which layer to freeze
and fine-tune the model to perform the target task efficiently, rather than selecting layers
empirically or randomly.

The proposed guided transfer learning approach is illustrated in Figure 2 and it is
based on the ResNet-50 (Residual Network) architecture. This approach calculates the
transferability score (τ − score) to determine the optimal layer for fine-tuning the proposed
algorithms and to guide the network on which layer to freeze and fine-tune during the
training process. The transferability score (τ − score) measures the effectiveness of the
transfer learning algorithm to transfer the knowledge from the source domain Ds to the
target domain Dt which can improve the performance of the target task Tt. The τ − score
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indicates the similarity between source and target domains, which is used to identify
the layers of the CNN to be frozen or fine-tuned. The τ − score value ranges in [0, 1].
Intuitively, if τ − score is near to 1, it shows less similarity between the Ds and Dt due to
the high distribution distance between the domains. Thus, few or none of the CNN layers’
parameters can be transferred from the source model to the target model. If τ− score is near
to 0, it indicates high similarity between the Ds and Dt and the CNN layers’ parameters
can be transferred from the source model to the target model.
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Let L define the layers of the CNN where L = {L1, L2, . . . , Lk, . . . Lm}, m indicates the
total number of layers which includes convolutional and fully connected layers. The key
idea of this approach is to find the kth layer (Lk) of the CNN from which, layers L1 to Lk−1
are frozen and layers Lk to Lm are fine-tuned. The layer (Lk) is identified using Algorithm 1.

3.3. Proposed Approach

In this paper, we introduce the discrepancy-based unsupervised domain adaptation
framework using GTL for image classification (DAGTL-IC) and object detection (DAGTL-
OD). In unsupervised domain adaptation, the target domain cannot be directly used to
fine-tune the model for the target task due to unlabeled data. In the proposed approach,
we utilize labeled source data and unlabeled target data with the same categories of class.
The objective is to reduce the domain distribution distance using domain loss functions
and to learn better transferable feature representations, which can improve the overall
performance of the target task. This is achieved by fine-tuning the ResNet-50 network for
image classification and fine-tuning the Faster R-CNN and SSD for object detection. The
ResNet-50 network is used as the backbone to extract features in object detection models.
The ResNet-50 model comprises five stages, each stage contains a convolution and Identity
block. Each convolution block and identity block have three convolution layers. There are
forty-nine convolutional layers and one fully connected layer. A detailed explanation of
the proposed approaches is given in subsequent sections.
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Algorithm 1: Guided Transfer Learning (GTL) approach to find the kth layer

Input: labeled source domain (Xs , Ys), unlabeled target domain data (Xt)
Output: kth layer (Lk)
1: Take five random samples (Rs) from the Source domain (Ds) and Target domain (Ds) for each label (Y). Here, each

label is considered as per the labeled data available in the source domain. Since label space is the same in both
domains, five random samples have been selected from the target domain. Here, we consider whole images for the
image classification problem and cropped images as per the bounding box for the object detection problem.

2: Pass all samples through the ResNet-50 network up to the last convolution layer to generate a flattened feature
vector and apply the mean on five feature vectors of the same labeled images. Fs

ij —source feature vectors,
Ft

ij —target feature vectors, where j = 1 to 5 (#samples), i = 1 to |Y| (#labels). The mean of five samples’ feature vectors
of each label is calculated using Equations (1) and (2).

Fs
i = ∑Rs

j=1 Fs
ij /Rs (1)

Ft
i = ∑Rs

j=1 Ft
ij /Rs (2)

3: Apply JS (Jensen–Shannon) distance among Fs
i source feature vectors and Ft

i the target feature vector of each label
to find the similarity score (SCi) between each source label to the target label. Transferability measures should be
symmetric in the domain adaptation because the label space is common in both domains and the distance between
two feature vectors is computed using JS-Divergence.

SCi =
√

JS(Fs
i

∣∣∣∣ Ft
i ) (3)

where JS-Divergence is the measure of the difference between two probability distributions. In particular, it assesses
the similarity between two probability distributions by calculating the average Kullback–Leibler (KL) Divergence
between each distribution.
The JS-Divergence can be calculated as follows between the two distributions P and Q:

JS(P || Q) = 1/2 × KL(P || M) + 1/2 × KL(Q || M) (4)

KL(P, M) is the KL-Divergence between the two probability distributions P and M. Similarly, KL(Q, M) is the
KL-Divergence between the two probability distributions P and M; where M is the average of P and Q and is
defined as

M = 1/2 × (P + Q) (5)

4: Calculate Transferability Score (τ − score). τ − score is computed by taking an average of the similarity score of each
label, calculated in step-3.

τ − score =
|Y|

∑
i=1

SCi/|Y| (6)

5: Find the kth layer. Layers L1 to Lk−1 are frozen and layers Lk to Lm are fine-tuned during the training process.

k = b τ − score×m c (7)

3.3.1. Unsupervised Domain Adaptation for Image Classification (DAGTL-IC)

The proposed DAGTL-IC architecture consists of two streams of ResNet-50 networks
for the source and target domains with weight parameter sharing, as illustrated in Figure 3.
We pass labeled source domain data to the source network and unlabeled target domain
data to the target network. The last layer of the ResNet-50 network, which is a fully
connected layer with 1000 neurons, is omitted. The last convolutional layer is converted
to a flattened layer and comprises 2048 neurons. After this flattened layer, we added one
additional bottleneck layer with 512 neurons. The bottleneck layer takes the input from the
flattened layer of both the source and target streams and computes the domain discrepancy
loss using JS-Distance which reduces the distance between the domain distributions and
finds domain invariant features. The last layer of ResNet-50 is modified based on the
number of classes available in the domains for classification. The proposed architecture is
trained using the guided transfer learning approach based on the layer selection strategy
to select which layers are kept frozen and which layers are fine-tuned as mentioned in
Section 3.2, instead of a random selection of layers. The first stream uses labeled source data
to train a classifier using the cross-entropy loss function and both streams use data from
both domains to find the discrepancy loss using JS-Distance between the domains. These
loss functions are explained in the following section and Algorithm 2 presents the steps to
perform the proposed approach DAGTL-IC. During inference, the fine-tuned network is
directly applied to the target domain for the target task.
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3.3.2. Loss Functions for Domain Adaptive Image Classification

1. Classification loss
Classification loss is calculated using the first stream of the architecture. It uses the
labeled data from the source domain only as the target domain does not have labeled
data. The features extracted from the last flattened layers are fed into the output layer
with a softmax classifier to optimize the classification loss. The classification loss
function can be written as follows:

Lc = −
1

Ns

n

∑
i=1

wi × (yi log(ŷ)) (8)

where Lc is the classification loss in the source domain which represents the cross-
entropy loss function, yi is the actual label, ŷ is the predicted label, and wi is the
weight parameter used to handle the class imbalance problem.
The classifier is expected to train well the conditional probability of input data Xs

i
to Ys

i in the source label space. However, this assumption holds true only when
the labeled data are equally divided among the number of classes. In the dataset of
domain adaptation, it is observed that the data are not equally divided, resulting in a
biased classification. In order to mitigate this situation, we introduced the weight wi
to each of the classes to improve the performance of the classifier. wi can be defined
as follows for each category:
Let F =

{
fc1 , fc2 , . . . , fc|Y|

}
, this represents the frequency of each category.

wi =
fmax

fci

(9)

where i = 1 to |Y|; fmax = max(F).

• F is a set of frequencies (number of samples) of each category, where fci represents
the frequency of the ith category.

• |Y| is the total number of categories in the dataset.
• fmax is the maximum frequency in F, i.e., the highest number of samples among

all categories.
• wi is the weight for the ith category, which represents how important that category

is in the dataset.
• The formula calculates wi by taking the ratio of fmax and fci .
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The intuition behind this equation is to assign lower weights to categories that appear
more frequently, and higher weights to categories that occur less frequently. This
equation balances the importance of each category during training and reduces the
class bias problem due to an imbalanced dataset.

2. Dyomain discrepancy loss
The domain discrepancy loss is computed between the bottleneck layers of both
domain streams. To minimize the distance between the domains, JS-Distance is
employed to learn the domain invariant features. We intend to transfer as much
knowledge as possible from the source domain to the target domain by minimizing
the domain alignment loss. The feature vectors of the bottleneck layers of the source
and target domains are denoted as Xs

b and Xt
b respectively. This loss function can be

calculated as follows:
Ld =

√
JS(Xs

b

∣∣∣∣ Xt
b) (10)

JS-Distance is the square root of the JS-Divergence and its value ranges between 0
(highly similar distributions) and 1 (maximally different distributions) when using a
base-2 logarithm. JS-Divergence is a method used to measure the similarity between
two probability distributions. The reasons to use JS-Divergence are two folds. These
are: (i) It is a symmetric version of KL-Divergence and can be used to calculate the
distance between distributions because it has a finite range between 0 and 1. (ii) It
is a kind of average between two distributions, thus two distributions are equally
participating to find the domain invariant features.

3. Overall objective loss function for domain adaptive image classification
To achieve efficient domain adaptation in image classification, the aim is to minimize
the distance between the domains and train a classifier that can be transferred across
the domains. To meet both these criteria, an integrated approach is used by combining
the classification loss and domain shift loss as an overall objective loss function with a
trade-off parameter. The objective is to minimize the overall loss. After reducing the
overall loss to a minimum, the trained model is directly applied to the target domain.
The overall objective loss function for image classification is given as follows:
The overall objective loss function of DAGTL-IC:

min(LDAGTL−IC = Lc + λLd) (11)

Lc denotes the classification loss in the source domain, Ld represents the domain
discrepancy loss between the domains and λ is the trade-off parameter; λ > 0.

Algorithm 2: Unsupervised Domain Adaptation for Image Classification (DAGTL-IC)

Input: labeled Source domain (Xs , Ys), Unlabeled target domain data (Xt), regularization parameters λ.
Output: Domain invariant features F, Classifier C.
1: Configure the CNN. Initialize the ResNet-50 model until the last convolutional layer, then add a bottleneck layer of

512 neurons. Finally, add an output (classification) layer with a number of neurons that is equal to the number of
categories in the dataset.

2: Find the kth layer (Lk) using a guided transfer learning approach, according to Algorithm 1.
3: Freeze the layers L1 to Lk−1 and fine-tune the layers Lk to Lm during the training process.
4: Repeat
5: Sample mini-batch from the source domain with labeled data and the target domain with unlabeled data
6: Feed the sampled mini-batch and calculate domain discrepancy loss (Ld), classification loss (Lc) and the overall

objective loss function LDAGTL−IC .
7: Update the parameters of the network by minimizing the overall loss LDAGTL−IC using the stochastic gradient descent

(SGD) method.
8: Until LDAGTL−IC converges.
9: Return trained Classifier C.

3.3.3. Unsupervised Domain Adaptation for Object Detection (DAGTL-OD)

The proposed DAGTL-OD architecture consists of two streams of the object detection
network for source and target domains as illustrated in Figure 4. Faster R-CNN and SSD
object detection networks are utilized in the proposed method. Faster R-CNN is a two-stage
object detection network and has three main components: backbone CNN layers, a Region
Proposal Network (RPN) for generating region proposals, and a Region-of-Interest (ROI)
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based classifier Network (RCN) for the classification of objects and predicting bounding
boxes. SSD is a one-stage object detection network that directly classifies objects from the
features map. Our approach can be applied to both types of object detection networks. We
pass the annotated images of the source domain and unlabeled images of the target domain
to the proposed model. We use the ResNet-50 model as the backbone of the detection
network and its features are shared between both streams. Instead of selecting random
layers to fine-tune, we utilize the guided transfer learning strategy mentioned in Section 3.2
to train the base layers of the network. The feature vectors from the flattened layers of
ResNet-50 are then passed to the detection head to predict the object coordinates and their
categories. Both networks are jointly trained to minimize the loss function (Ldet_net), which
is composed of the classification loss (Lcls) and regression loss

(
Lreg

)
for object detection

in the source network. The regression loss is used to find the accurate bounding box of
the objects in the given image. Moreover, we utilize two types of domain losses in the
proposed network training: image-level domain discrepancy loss and object-level domain
discrepancy loss. These losses and the overall objective function for domain adaptive
object detection are presented in the following section and Algorithm 3 presents the steps
to perform the proposed approach DAGTL-OD. Once the domain invariant features are
learned from the training of both networks, these features are directly utilized to detect
objects in the target domain by the fine-tuned network.
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3.3.4. Loss Functions for Domain Adaptive Object Detection

1. Detection loss
The object detection model is trained with classification loss and regression loss.
Classification loss (Lcls) and regression loss (Lreg) are used to classify the object with
a label and bounding box for better object localization from the ROIs. Classification
loss is calculated as per Equation (8) with weight to handle the class imbalance
problem. Regression loss is computed by applying the smooth L1 loss function to the
difference between the predicted and ground truth bounding box values. These losses
are computed in the source network, as this network is trained with labeled data only.
The loss function of the detection model is written as follows:

Ldet_net = Lcls + Lreg (12)
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2. Domain discrepancy loss
In object detection, there are two important aspects for reducing the shift between the
domains: whole image differences like scale, illumination, etc., and particular objects
of the image differences like scale, and appearance. To align the distribution between
domains, we introduce the two types of losses in the proposed network training:
image-level domain discrepancy loss Limg and object-level domain discrepancy loss
Lobj. The image level discrepancy loss is calculated using JS-Divergence between the
features extracted from the flattened layer of the source and target networks. This
loss eliminates the distance between the distribution of both domains at the image
level and learns the domain invariant features across the domains. Let Xs

f and Xt
f

denote the feature vectors of the flattened layer from the source and target networks
respectively. The image-level domain discrepancy loss can be written as

Limg =

√
JS(Xs

f

∣∣∣∣∣∣ Xt
f ) (13)

The object-level features are obtained from the vectors of the region of interest. These
feature vectors from both domains are utilized to computeLobj using the JS-divergence.
However, there is not a fixed number of ROI vectors in both domains. Thus, the object-
level domain discrepancy loss can be written for the jth ROI vector in the ith image
as follows.

Lobj =
1

Nroi
∑
i,j

√
JS(Xs

roii,j

∣∣∣∣∣∣ Xt
roii,j

) (14)

3. Overall objective loss function for domain adaptive object detection
To obtain an effective domain adaptive object detector, we attempt to reduce the
domain shift gap across the domains including the classification and regression loss
of the object detection model. We combine the detection loss and domain shift loss
as an overall objective loss function with a trade-off parameter, and our goal is to
minimize the total loss. After reducing the overall loss to a minimum, the trained
detector model is directly applied to the target domain. The overall objective loss
function for object detection is as follows.
The overall objective loss function of DAGTL-OD:

min(LDAGTL−OD = Ldet_net + λ(Limg + Lobj)) (15)

Ldet_net defines the object detection loss, which includes classification loss and regres-
sion loss, Limg denotes the image-level domain discrepancy loss, Lobj represents the
object-level domain discrepancy loss, and λ is the trade-off parameter; λ > 0.

Algorithm 3: Unsupervised Domain Adaptation for object detection (DAGTL-OD)

Input: labeled Source domain (Xs , Ys), Unlabeled target domain data (Xt), regularization parameters λ.
Output: Domain invariant features at image-level (Fimg) and object-level (Fobj), Detector D.
1: Configure the object detection model. Initialize the backbone network as a ResNet-50 model until the last

convolutional layer. Add detection head (Faster R-CNN/SSD).
2: Find the kth layer (Lk) from the ResNet-50 network using the guided transfer learning approach according to

Algorithm 1.
3: Freeze the layers L1 to Lk−1 and fine-tune the layers Lk to Lm of ResNet-50. including the whole detection head during

the training process.
4: Repeat
5: Sample mini-batch from the source domain with labeled data and the target domain with unlabeled data
6: Feed the sampled mini-batch and calculate object detection loss (Ldet_net), image-level domain discrepancy loss (Limg),

object-level domain discrepancy loss (Lobj) and overall objective loss function LDAGTL−OD .
7: Update the parameters of the network by minimizing the overall loss LDAGTL−OD using the SGD method.
8: Until LDAGTL−OD converges.
9: Return trained detection network D.

4. Experimental Analysis

In this section, the proposed DAGTL-IC and DAGTL-OD have been extensively
evaluated on four benchmark domain adaptation datasets. Firstly, dataset description
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and implementation setup along with hyper-parameter value are described. Secondly, the
DAGTL approaches are compared with the state-of-the-art domain adaptation methods to
examine their performance. Lastly, we analyze the performance by taking various trade-off
parameter values and present an ablation study to know the impact of each component on
the overall performance of the proposed DAGTL algorithms.

4.1. Dataset Description
4.1.1. Office-31

Office-31 [37] is a widely used image dataset in domain adaptation for an image
classification task. It comprises three distinct domains, namely Amazon (A), Webcam (W),
and DSLR (D) with 31 categories and 4110 images in total. Amazon contains 2817 images
collected from the amazon.com website with a white background, Webcam has 795 low-
resolution images and DSLR covers 498 high-resolution images. This dataset constructs six
transfer tasks with one domain as the source and another as the target domain: A→W, A
→ D, W→ A, W→ D, D→ A, D→W. Sample images are illustrated in Figure 5.
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Figure 5. Example images of Office-31 dataset.

4.1.2. Office-Home

Office-Home [38] is a standard benchmark and challenging dataset in visual domain
adaptation. It consists of 65 object categories, 15,588 total images, and four domains,
namely Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). This dataset contains
2427 artistic images including paintings and sketches, 4365 clip-art images, 4439 product
images downloaded from e-commerce websites, and 4357 real-world images taken from
cameras having complex backgrounds. Twelve transfer tasks are conducted by selecting
one domain as the source and another as the target domain. Sample images are shown in
Figure 6.
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4.1.3. Cityscapes

Cityscapes [58] is a dataset of real urban street scenes. This dataset is captured through
a car dashboard-mounted camera from the urban roads of 50 cities and collects the various
object categories, including person, rider, motorcycle (bike), car, bus, truck, train, and
bicycle. It contains 3475 images with annotations. We use the standard ratio of training
and testing sets as utilized by other researchers to compare our work which is 2975 images
as the training set and 500 images as the testing set. Example images are presented in
Figure 7a.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 26 
 

 

4.1.3. Cityscapes 

Cityscapes [58] is a dataset of real urban street scenes. This dataset is captured 

through a car dashboard-mounted camera from the urban roads of 50 cities and collects 

the various object categories, including person, rider, motorcycle (bike), car, bus, truck, 

train, and bicycle. It contains 3475 images with annotations. We use the standard ratio of 

training and testing sets as utilized by other researchers to compare our work which is 

2975 images as the training set and 500 images as the testing set. Example images are pre-

sented in Figure 7a. 

4.1.4. Foggy Cityscapes 

Foggy Cityscapes [58] is a synthetic dataset generated from the Cityscapes dataset. 

Three different intensity levels of synthetic fog have been added to analyze the effect of 

domain adaptive algorithms in adverse weather. It contains the same eight categories of 

objects with annotations from the Cityscapes dataset. The training set and testing set sizes 

are also the same, which are 2975 images for training and 500 images for testing. Samples 

are depicted in Figure 7b. 

4.1.5. Indian Vehicle Dataset 

The Indian Vehicle dataset is collected from the CCTV cameras of six different cross-

roads in Vadodara city, Gujarat, India. This dataset contains 3500 images of real road 

scenes with five categories of objects. This dataset is divided into 2975 images for the train-

ing set and 525 images for the testing set. Object categories are car, truck, bus, motorcycle 

(bike), and bicycle with rectangle annotations. Each image is a color image, and the reso-

lution is 1359 × 720. This dataset is utilized to show the effect of adapting to a new dataset. 

Samples are illustrated in Figure 7c. 

 

Figure 7. Sample images of object detection dataset—(a) Cityscapes; (b) Foggy Cityscapes; and (c) 

Indian Vehicle dataset. 

4.2. Implementation Details 

The proposed DAGTL methods are implemented using the PyTorch deep learning 

library. The hardware configuration of the system was 64 GB RAM, Nvidia RTX A4000 

(16 GB) graphics card, and an Intel Xeon processor. The ResNet-50 architecture has been 

selected as the backbone network for the proposed DAGTL approaches for two reasons. 

Firstly, ResNet-50 has a relatively smaller number of parameters compared to other 

deeper convolutional neural network (CNN) architectures, which makes it computation-

ally efficient, less prone to overfitting, and easier to fine-tune for domain adaptation tasks. 

Secondly, other existing methods have also utilized ResNet-50 as the backbone network. 

Therefore, employing ResNet-50 enables a fair comparison of the proposed DAGTL ap-

proaches with other state-of-the-art methods. The proposed model is fine-tuned to update 

Figure 7. Sample images of object detection dataset—(a) Cityscapes; (b) Foggy Cityscapes; and
(c) Indian Vehicle dataset.

4.1.4. Foggy Cityscapes

Foggy Cityscapes [58] is a synthetic dataset generated from the Cityscapes dataset.
Three different intensity levels of synthetic fog have been added to analyze the effect of
domain adaptive algorithms in adverse weather. It contains the same eight categories of
objects with annotations from the Cityscapes dataset. The training set and testing set sizes
are also the same, which are 2975 images for training and 500 images for testing. Samples
are depicted in Figure 7b.

4.1.5. Indian Vehicle Dataset

The Indian Vehicle dataset is collected from the CCTV cameras of six different cross-
roads in Vadodara city, Gujarat, India. This dataset contains 3500 images of real road scenes
with five categories of objects. This dataset is divided into 2975 images for the training set
and 525 images for the testing set. Object categories are car, truck, bus, motorcycle (bike),
and bicycle with rectangle annotations. Each image is a color image, and the resolution is
1359 × 720. This dataset is utilized to show the effect of adapting to a new dataset. Samples
are illustrated in Figure 7c.

4.2. Implementation Details

The proposed DAGTL methods are implemented using the PyTorch deep learning
library. The hardware configuration of the system was 64 GB RAM, Nvidia RTX A4000
(16 GB) graphics card, and an Intel Xeon processor. The ResNet-50 architecture has been
selected as the backbone network for the proposed DAGTL approaches for two reasons.
Firstly, ResNet-50 has a relatively smaller number of parameters compared to other deeper
convolutional neural network (CNN) architectures, which makes it computationally effi-
cient, less prone to overfitting, and easier to fine-tune for domain adaptation tasks. Secondly,
other existing methods have also utilized ResNet-50 as the backbone network. Therefore,
employing ResNet-50 enables a fair comparison of the proposed DAGTL approaches with
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other state-of-the-art methods. The proposed model is fine-tuned to update the weights
from Lk convolutional layer to the last layer while keeping the earlier layers from the
first convolutional layer to the Lk−1 convolutional layer frozen as per Table 3. This layer
selection strategy is implemented using the guided transfer learning approach mentioned
in Section 3.2.

Table 3. Transferability score and kth layer (Lk ) between the source and target domains.

Domains A & W A & D W & D Ar & Cl Ar & Pr Ar & Rw Cl & Pr Cl & Rw Pr & Rw C & F C & I

τ − score 0.758 0.721 0.93 0.65 0.72 0.775 0.7 0.68 0.836 0.88 0.67

Lk 37 35 45 31 35 38 34 33 41 43 32

We follow the standard evaluation protocol for our UDA transfer tasks, which is
considered in [5,13,23] to implement UDA algorithms. We utilize all the labeled source
samples and unlabeled target samples. A mini-batch stochastic gradient descent (SGD)
optimizer is used to train the network for 100 epochs with a batch size of 128, momentum
of 0.9, and weight decay set to 5 × 10–4. The base learning rate is 0.0001, which is used
in frozen layers, and the learning rate is set to be 10 times higher than the base learning
rate for the layers trained from scratch. Five random experiments are conducted for all the
transfer tasks of Office-31 and Office-Home datasets, and the average result in accuracy
is reported. A trade-off parameter (λ) of 0.8 was chosen from {0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1,
1.5, 2}, which balances the classification loss and discriminative losses to achieve minimum
objective loss value.

We utilize the Faster R-CNN and SSD models as object detection networks with
ResNet-50 as the backbone network. We consider a 0.5 IoU threshold for experiments to
evaluate mean average precisions (mAP). Training and testing set images are resized to
600 pixels in length. The batch size is set to 16, and the learning rate is 0.001 for 60 epochs
and 0.0001 for the remaining 40 epochs. We use stochastic gradient descent (SGD) to
train the model with a momentum of 0.9 and a weight decay of 0.0005. We set λ = 0.2
and 0.4 for the Cityscapes→ Foggy-Cityscapes (C→ F) and Cityscapes→ Indian Vehicle
Dataset (C→ I) domain transfer tasks, respectively. The foggy dataset has three variants of
fog intensity levels, and we choose the highest intensity level of fog (β = 0.02) as per the
baseline algorithms for fair comparison for the C→ F domain transfer task.

4.3. Results and Discussion

We evaluate the effectiveness of our proposed DAGTL methods by comparing them
with various state-of-the-art deep domain adaptation algorithms, which are discussed in
the related work and presented in Tables 1 and 2. We either utilize results reported by other
authors in their publications or perform the experiments using publicly provided source
codes with the same settings and protocols. The experiments of DAGTL-IC are imple-
mented using two benchmark datasets, namely Office-31 and Office-Home. Furthermore,
the experiments of DAGTL-OD are conducted using three benchmark datasets, namely the
Cityscapes, Foggy Cityscapes, and Indian Vehicle datasets. The results of DAGTL-IC and
DAGTL-OD are discussed in the following sections.

4.3.1. Office-31

Table 4 shows a comparative analysis of the results of DAGTL-IC and previous state-
of-the-art deep domain adaptation algorithms on the Office-31 dataset. It can be seen that
the average accuracy of our method outperforms all other algorithms. Our method achieves
93.2% average accuracy, which shows a performance improvement of 1.8% compared to
the recent FixBi unsupervised domain adaptation algorithm and a significant performance
improvement compared to baseline algorithms. There are six transfer tasks in the Office-31
dataset. The result reveals that among these six transfer tasks, our method shows significant
improvement in four hard transfer tasks i.e., A→W, W→ A, A→ D, and D→ A, and
achieves 97.1%, 82.7%, 97.2%, and 82.9% accuracy, respectively. In these transfer tasks, the
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similarity of the source domain and target domain is less and there is a large difference in
the size of the data between the source domain and the target domain.

Table 4. Result Analysis of the Office-31 dataset.

Methods
(Source→ Target) A→ D A→W D→ A D→W W→ A W→ D Avg.

Accuracy

ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1

CORAL [17] 81.5 77.0 65.9 97.1 64.3 99.6 80.9

DANN [23] 79.7 82.0 68.2 96.9 67.4 99.1 82.2

ADDA [24] 77.8 86.2 69.5 96.2 68.9 98.4 82.9

JAN [14] 84.7 85.4 68.6 97.4 70.0 99.8 84.3

MADA [33] 87.8 90.0 70.3 97.4 66.4 100 85.2

MDDA [22] 86.3 86.0 72.1 97.1 73.2 99.2 85.7

SimNets [34] 88.6 85.3 73.4 98.2 71.8 99.7 86.2

SymNets [28] 93.9 90.8 74.6 98.8 72.5 100 88.4

HAN [30] 95.3 94.4 72.1 98.8 71.7 100 88.7

GSDA [29] 94.8 95.7 73.5 99.1 74.9 100 89.7

SRDC [31] 95.8 95.7 76.7 99.2 77.1 100 90.8

DALN [36] 95.4 95.8 76.4 99.1 76.5 100 90.4

FixBi [32] 95.0 96.1 78.7 99.3 79.4 100 91.4

Ours (DAGTL-IC) 97.2 97.1 82.9 99.2 82.7 100 93.2

4.3.2. Office-Home

Table 5 illustrates the performance analysis of the Office-Home dataset among twelve
transfer tasks. It can be seen that the average accuracy of our approach DAGTL-IC is
superior to other mentioned algorithms. DAGTL-IC achieves 75.3% average accuracy and
outperforms FixBi by 2.6% and baseline algorithms by a significant margin. DAGTL-IC
shows substantial improvement in eleven transfer tasks and achieves the highest accuracy.
Furthermore, DAGTL-IC achieves the second-highest accuracy in the Rw→ Ar transfer
task. Additionally, results show that DAGTL-IC outperforms in the transfer tasks where
Cl (Clipart) is either the source domain or target domain because Cl (Clipart) has less
similarity compared to other domains in this dataset.

Table 5. Result Analysis of the Office-Home dataset.

Source
↓

Target

Ar
↓

Cl

Ar
↓
Pr

Ar
↓

Rw

Cl
↓

Ar

Cl
↓
Pr

Cl
↓

Rw

Pr
↓

Ar

Pr
↓

Cl

Pr
↓

Rw

Rw
↓

Ar

Rw
↓

Cl

Rw
↓
Pr

Avg.
Accuracy

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

CORAL [17] 42.2 59.1 64.9 46.4 56.3 58.3 45.4 41.2 68.5 60.1 48.2 73.1 55.3

DANN [23] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [14] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN [35] 46.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

MDDA [22] 54.9 75.9 77.2 58.1 73.3 71.5 59.0 52.6 77.8 67.9 57.6 81.8 67.3

SymNets [28] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2

GSDA [29] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3

SRDC [31] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

DALN [36] 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.3 71.8

FixBi [32] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

Ours
(DAGTL-IC) 61.3 80.5 83.2 70.2 82.5 80.4 69.2 61.8 84.1 75.8 65.1 89.5 75.3
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4.3.3. Cityscape→ Foggy Cityscapes

Weather is a significant cause of domain discrepancy, as changing weather conditions
result in a visibly distinct scene. We utilize the Cityscapes and Foggy Cityscapes datasets as
the source and target domains, respectively, to assess the model adaptability from normal to
foggy weather conditions. Table 6 presents the results of domain adaptive object detection
algorithms and their comparison with our DAGTL-OD model. Table 6 reveals that the mean
average precision (mAP) of our object detection model outperforms the other baselines. Our
model achieves 49.7% mAP when Faster R-CNN is the base detector model, which shows
a significant gain of 22.1% compared to DA-Faster and outperforms the state-of-the-art
O2net [57] by 2.9%. Moreover, our algorithm does not depend on regional proposals to
learn domain invariant features through the region proposal loss and depends only on
image level and object level features. Thus, we also employ a one-stage object detector SSD
to examine the performance of our object detector and achieve promising results among
all other results with 51.1% mAP, showing a 4.3% improvement in mAP compared to the
state-of-the-art O2net. It is worth noting that the performance of our model in each category
is highest except for the rider when Faster R-CNN is the base model. This indicates that
the DAGTL-OD approach can decrease the domain gap across various objects. Detection
samples are shown in Figure 8a.

Table 6. Result analysis from Cityscapes to Foggy-Cityscapes domain adaptation.

Methods Person Rider Car Truck Bus Train Mcycle Bicycle mAP

Faster R-CNN 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8

DA-Faster [46] 25.0 31.0 40.5 22.1 35.3 20.2 20.1 27.1 27.6

SCDA [48] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8

ODSC [54] 29.9 42.3 43.5 24.5 36.2 32.6 35.3 30.0 34.3

SWDA [47] 30.3 42.5 44.6 24.5 36.7 31.6 30.2 35.8 34.8

CDN [52] 35.8 45.7 50.9 30.1 42.5 29.8 30.8 36.5 36.6

HTCN [53] 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8

SFA [55] 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3

MGA [56] 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3

O2net [57] 48.7 51.5 63.6 31.1 47.6 47.8 38.0 45.9 46.8

Ours
(FRCNN) 50.2 52.2 63.5 36.7 57.5 47.8 40.6 49.8 49.7

Ours
(SSD) 51.8 51.4 62.2 38.4 63.1 49.8 38.8 53.4 51.1
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4.3.4. Cityscape→ Indian Vehicle Dataset

Domain adaptation is essential when changes occur in intra-class variations, camera
sensors, geographic areas, or environmental setups. We investigate the adaptability of
our method for such changes by considering the Cityscapes dataset as the source domain
and the Indian Vehicles dataset as the target domain. To the best of our knowledge, this
transfer task (Cityscapes→ Indian Vehicles) is the first of its kind. Both are real datasets
and we consider five categories including car, truck, bus, motorcycle, and bicycle from both
datasets for our experiments. Table 7 shows the results of our method with Faster R-CNN
and SSD object detector models and compares them with Faster R-CNN only. It can be
seen that we obtain a significant improvement in the performance of the proposed object
detector with Faster R-CNN and SSD by 12.5% and 14.7%, respectively. This proves that
our work outperforms the above domain adaptation challenge and reduces the distance
between the distributions of the two domains. Output images are illustrated in Figure 8b.

Table 7. Result analysis from Cityscapes to Indian Vehicle dataset domain adaptation.

Methods Car Truck Bus Mcycle Bicycle mAP

Faster R-CNN 70.8 48.6 50.3 65.2 55.3 58.0

Ours (FRCNN) 85.8 61.3 65.4 78.5 61.3 70.5

Ours (SSD) 82.5 65.9 69.7 82.5 63.1 72.7

4.4. Feature Visualization

To verify the feature transferability of the proposed DAGTL approaches, we utilize
t-Distributed Stochastic Neighbor Embedding (t-SNE) [60] to visualize the learned feature
embedding of the A → W task. Features are taken from the bottleneck layer after the
convergence of the A → W task. ResNet-50 features, DANN features, and DAGTL-IC
features are plotted in Figure 9—(a), (b), and (c), respectively. Figure 9a represents the
source and target features under the source-only setting, and it is observed that target
features are not aligned, indicating a need for domain adaptation. In Figure 9b, DANN
discriminates between the source and target features, but there is still a distance between
the two domain features. Our proposed DAGTL algorithm aligns the source and target
samples the most, as shown in Figure 9c, and shows better intra-class separation and
intra-class clusters. This indicates that DAGTL is capable of learning more transferable
features, enabling it to effectively adapt to new domains with better feature discrimination.
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4.5. Parameter Sensitivity and Convergence

We investigate the sensitivity of the parameter λ on classification tasks A→W and A
→ D and object detection tasks C→ F and C→ I. Figure 10a,b illustrate the classification
and object detection performance of these transfer tasks by considering λ ∈ {0.1, 0.2, 0.4, 0.5,
0.6, 0.8, 1, 1.5, 2} for classification and λ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} for object detection. The
trade-off parameter λ balances the contributions of domain discriminative loss in the overall
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objective function which leads to obtaining more discriminating features. Figure 10 reveals
that the accuracy increases gradually until λ = 0.8 for classification and λ = 0.2 and 0.4 for
object detection, then accuracy decreases as λ increases, following a bell-shaped curve. This
demonstrates the effectiveness of λ in joint training of learning the classification task and
discriminative features for domain adaptation which improves the feature transferability.
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Figure 10. DAGTL performance on various values of λ.

Figure 11a,b depict the convergence analysis of DAGTL-IC on transfer tasks A→W
and A→ D and DAGTL-OD on transfer tasks C→ F and C→ I with Faster R-CNN. The
convergence graph shows that DAGTL models can stabilize after some iterations. It proves
that DAGTL models are superior for cross-domain training with the combined loss of
classification or detection loss and domain discriminative loss. Moreover, DAGTL methods
converge in fewer iterations compared to adversarial-based approaches [23,28,32,52,53]
where specific adversarial network training is required to learn transferable and discrimi-
native feature representations.
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4.6. Ablation Studies

In this section, ablation experiments are demonstrated to investigate the impact of
individual components of the proposed model on overall performance. DAGTL-IC consists
of three components with the ResNet-50 network: domain adaptation loss, GTL strategy,
and weighted classification loss. We conduct a comprehensive evaluation of DAGTL-IC
on a subset of tasks from the Office-31 and Office-Home datasets, and Table 8 presents
the accuracy achieved by adding each component for image classification. These tasks
have been selected from Table 3, which has a lower transferability score compared to other
tasks, to show the performance of the proposed model when there is a considerable domain
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gap. DAGTL-OD comprises four components with a Faster R-CNN network: image-level
discrepancy loss, object-level discrepancy loss, GTL strategy, and weighted classification
loss. Table 9 illustrates the contribution of the components of DAGTL-OD in mAP for
improving detection performance. The results in Tables 8 and 9 reveal that each component
has some significance for enhancing the overall performance. Results are substantially
improved using the guided transfer learning strategy compared to the algorithm with
only a domain adaptation loss function. It can also be seen that weighted cross-entropy
(classification) loss shows marginal improvement in increasing the overall results.

Table 8. Ablation results by the components of the proposed DAGTL-IC approach on Office-31 and
Office-Home in accuracy.

ResNet-50 ResNet-50
+Ld

ResNet-50
+Ld + GTL

ResNet-50 +Ld
+ GTL + Weighted
Classification

Loss (Lc)

A→W A→ D W→ A D→ A Ar→ Rw Cl→ Pr

ResNet-50 3 68.4 68.9 60.7 62.5 58 41.9

Proposed
Model

3 3 95.6 95.4 77.3 77.6 78.9 77.8
3 3 3 96.2 96.4 81.1 80.1 81.3 80.5
3 3 3 3 97.1 97.2 82.7 82.9 83.2 82.5

Table 9. Ablation results by the components of the proposed DAGTL-OD approach on Foggy
cityscapes and Indian Vehicle dataset in mAP.

Faster R-CNN Faster R-CNN
+Limg

Faster R-CNN
+Lobj

Faster R-CNN
+Limg +Lobj

+ GTL

Faster R-CNN +Limg
+Lobj + GTL + Weighted
Classification Loss (Lcls)

C→ F C→ I

Faster
R-CNN 3 18.8 58.0

Proposed Model

3 3 44.6 63.5
3 3 3 46.2 66.9
3 3 3 3 48.9 69.2
3 3 3 3 3 49.7 70.5

5. Conclusions and Future Work

In this paper, we propose a novel unified unsupervised domain adaptation network
to tackle feature transferability during fine-tuning and to align the source and target
domain distributions simultaneously for image classification and object detection tasks.
We introduce the layer selection strategy using the guided transfer learning approach to
fine-tune the model for better knowledge transfer between source and target domains.
Furthermore, we employ the JS-Divergence to reduce the domain discrepancy between the
domains, which can obtain the domain-invariant features and align the domain distribution.
Our proposed UDA networks utilize the ResNet-50 network as a backbone. Extensive
experimental analysis reveals that our proposed method has the ability to learn the domain
invariant feature representations by training the algorithm using the layer selection strategy
and domain discrepancy loss. It is also observed in the ablation study that our method has
an obvious advantage in learning more transferable features based on the similarity score
between the domains using the layer selection strategy. It is also important to note that
training of our objective function is based on domain discrepancy loss, thus it requires less
convergence time compared to adversarial-based approaches. The DAGTL-IC approach
improves accuracy by 1.8% and 2.6% on Office-31 and Office-Home datasets, respectively
compared to the state-of-the-art method. Similarly, the DAGTL-OD approach achieves
4.3% and 14.7% improvements in mAP on Foggy Cityscapes and the Indian vehicle dataset,
respectively. These results demonstrate the effectiveness of our approach for domain
adaptive image classification and object detection.

In the future, the proposed approaches can be applied to various real-world applica-
tions where improving performance through transferability and domain alignment between
source and target domains are primary concerns. Furthermore, these approaches can be
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extended to other deep CNN backbone networks to enhance the performance of image
classification and real-time object detection.
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