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Abstract: Intrusion detection systems (IDS) play a crucial role in securing networks and identify-
ing malicious activity. This is a critical problem in cyber security. In recent years, metaheuristic
optimization algorithms and deep learning techniques have been applied to IDS to improve their
accuracy and efficiency. Generally, optimization algorithms can be used to boost the performance
of IDS models. Deep learning methods, such as convolutional neural networks, have also been
used to improve the ability of IDS to detect and classify intrusions. In this paper, we propose a new
IDS model based on the combination of deep learning and optimization methods. First, a feature
extraction method based on CNNs is developed. Then, a new feature selection method is used based
on a modified version of Growth Optimizer (GO), called MGO. We use the Whale Optimization
Algorithm (WOA) to boost the search process of the GO. Extensive evaluation and comparisons have
been conducted to assess the quality of the suggested method using public datasets of cloud and
Internet of Things (IoT) environments. The applied techniques have shown promising results in
identifying previously unknown attacks with high accuracy rates. The MGO performed better than
several previous methods in all experimental comparisons.

Keywords: metaheuristics; cyber security; intrusion detection system; Internet of Things (IoT);
Growth Optimizer; CNNs

1. Introduction

The need to secure online data, information, and related systems has grown in im-
portance with the development of information communication, particularly the Internet.
Sensitive data is created, transported, stored, or updated worldwide daily in enormous
quantities. Private emails, financial transactions, simple holiday photos, and military com-
munications are all examples of sensitive information. Malicious parties have sought to
steal, alter, or erase this information for a long time. Hackers and other hostile actors have
developed, exploited, and enhanced various cyberattacks to accomplish these objectives [1].
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A paradigm shift from straightforward defense mechanisms to complex defense systems
was necessary for this new era of cyber security. While simple network security measures
such as firewalls may have been enough in the past, the sophistication of cyberattacks has
made them ineffective when used alone. Intrusion Detection Systems (IDS) are currently the
cornerstone of cyber security to defend against these sophisticated attacks [1]. In the cloud
and IoT, there are three primary divisions of cloud services: infrastructure-as-a-service
(IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS). To give users security,
it is necessary to address the weaknesses and problems each of these services and methods
possesses [2]. In recent years, different methods have been proposed for the IDS, such
as the traditional machine learning techniques, for example, the support vector machine
(SVM) [3,4], decision trees [5,6], k-means clustering [7,8], and others. The recent advances
in deep neural networks, including conventional neural networks (CNNs) and recurrent
neural networks (RNNs), were also adopted in this field [9]. Several IDS were developed
based on ANNs, such as RNNs [10] and CNNs [11].

In recent years, a new direction was utilized for the IDS by employing the power of
the metaheuristic optimization algorithms adopted in different and complex engineering
and optimization problems, including IDS. For example, Alazab et al. [12] employed the
moth–flame optimizer algorithm to build an IDS method. The MFO was a feature selection
method that enhanced the classifier’s performance (Decision Tree). The evaluation showed
that the classification accuracy of the DT was improved by applying the MFO. In [13],
the authors applied a combined MH method using the firefly algorithm (FA) and ant lion
optimization algorithm to build an efficient IDS system. Zhou et al. [14] employed the
bat algorithm as a feature selection to build an IDS. It was evaluated with random forest
classifier, C4.5, and ForestPA. It is clear that MH optimization algorithms have shown
significant performance in IDS applications; thus, they have been widely adopted, such
as whale optimization algorithm [15], particle swarm optimization algorithm [16], Aquila
optimization algorithm [17], reptile search algorithm [18], salp swarm algorithm [19], and
many others.

Paper Contribution

Following the successful applications of MH optimization algorithms in IDS, we
propose an efficient feature selection technique called MGO. This method is developed
based on two aspects; the first is to utilize the power of the Growth Optimizer (GO) in the
exploration phase of the search process. The second aspect is to employ the integration
between GO and WOA in the exploitation phase. The main objective of this study can be
simplified as the following points:

1. Suggest a different method for securing IoT by combining DL and feature selec-
tion techniques.

2. Use a CNN model to analyze network traffic records and identify complex feature
representations.

3. Create a modified version of Growth Optimizer (GO) for improved intrusion detection
in IoT environments. The modification uses the operators of the Whale Optimization
Algorithm (WOA). The proposed method, called MGO, is employed to address the
issue of discrete feature selection.

4. Evaluate the performance of the MGO against established methods using four actual
intrusion datasets.

The paper is structured as follows: Section 2 explains the employed methods, Section 3
outlines the proposed IoT security system, Section 4 assesses the system, and Section 5
concludes the results.

2. Background
2.1. Growth Optimizer

In this section, the Growth Optimizer (GO) simulates how people train and reflect
as they progress in society. In the learning phase, the information is collected from the
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environment, whereas the reflection aims to examine the shortcomings and improve the
learning method.

In general, the GO starts by using Equation (1) to generate the population X which
stands for the solutions for the tested problem.

Xi = r× (U − L) + L, i = 1, ..., N (1)

where r is the random value and the limits of the search domain of the problem are
represented using U and L. N refers to the total number of solutions in X.

Following [20], X is divided into three parts according to the parameters named P1 = 5.
The first part comprises the leader and the elites (varying from 2 to P1). The second part
contains the middle level (i.e., from P1 + 1 to N− P1) and the third part contains the bottom
level (i.e., N − P1 + 1 and N), whereas the best solution is the leader of the upper level.

2.1.1. Learning Stage

By confronting disparities between people, examining the causes of those differences,
and learning from them, individuals can be greatly helped in their progress. The GO’s
learning stage simulates four key gaps that are formulated:

G1 = Xb − Xbt

G2 = Xb − Xw

G1 = Xbt − Xw

G1 = Xr1 − Xr2

(2)

where Xb, Xbt, Xw indicate best, better, and worst solution, respectively; in addition, Xr1,
and Xr2 are two random solutions. Gk(k = 1, 2, 3, 4) stands for the gap used to improve
the skills learned and decrease the difference between them. Moreover, to reflect the
variation between the groups, the parameter named learning factor (LF) is applied and its
formulation is given as:

LFk =
||Gk||

∑4
k=1 ||Gk||

, k = 1, 2, 3, 4 (3)

Following [20], the individual can assess his learned knowledge using the parameter
(SFi):

SFi =
GRi

GRmax
(4)

where GRmax and GRi represent the maximum growth resistance of X and the growth of
Xi, respectively.

According to the information collected from LFk and SFi each Xi can receive new
knowledge from the solution belonging to each gap Gk using the knowledge acquisition
(KAk) that is defined as:

KAk = SFi × LFk × Gk, k = 1, 2, 3, 4 (5)

After that, the solution Xi can improve its information using the following formula:

Xi(t + 1) = Xi(t) +
4

∑
k=1

KAk (6)

The quality of the updated version of Xi is computed and compared with the previous
one to determine whether there is a significant difference between them.

Xi(t + 1) =


Xi(t + 1) i f f (Xi(t + 1)) ≤ f (Xi(t)){

Xi(t + 1) i f r1 < P2, ind(i) = ind(1)
Xi(t) otherwise

otherwise
, (7)
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where r2 stands for a random number and P2 = 0.001 is the probability retention. ind(i)
refers to the ranking of Xi based on the ascending order X using the fitness value.

2.1.2. Reflection Stage

The solution must develop their ability to reflect on the knowledge they have learned,
meaning that X must identify all of their areas of weakness, make up for them, and
retain their information. They ought to adopt the undesirable attributes of successful X
while retaining their outstanding qualities. When the lesson of a specific aspect cannot
be mended, the prior information should be abandoned and systematic learning should
resume. Equations (8) and (9) can be used to mathematically model this process.

Xi(t + 1) =


{

r4 × (U − L) i f r3 < AF
Xi(t) + r5 × (XR − Xi(t)) otherwise

otherwise

Xi(t) otherwise
, (8)

AF = 0.01 + 0.99× (1− FEs
maxFE

) (9)

where r3, r4, and r5 are random values. XR refers to a solution defined as the top P1 + 1
solutions in X. AF refers to the attenuation factor which depends on function evaluation
FE and the total number of functions evaluations maxFE.

After the complete reflection stage, Xi should evaluate its growth, similar to the
learning phase. Therefore, Equation (7) is also applied to achieve this task.

2.2. Whale Optimization Algorithm

The WOA [21] draws inspiration from the unique hunting strategy used by a particular
species of killer whale known as humpback, whose hunting style is bubble-net feeding.
WOA’s mathematical formulation depends on how it behaves when hunting. Each whale’s
location can be represented by the solution Xb, which can be updated depending on how
the whale behaves when attacking its prey. The whales can attack their prey using two
different methods. The humpback whale locates its prey and encircles it using the first
strategy, known as encircling prey. WOA presupposes that the target prey is the best option
(Xb(t)). The other whales attempt to update their locations in the direction of Xb(t) after it
has been identified (found), as in Equation (10):

Disi = |B� Xb(t)− Xi(t)|, B = 2r (10)

Xi(t + 1) = Xb(t)− A� Disi, A = 2a� r− a (11)

where Disi stands for the distance between Xi(t) and Xb(t). r ∈ [0, 1] refers to a random
value. In addition, a denotes a parameter that decreases from 2 to 0 during the process of
updating the solution, formulated as a = a− t a

tmax
(tmax is the total of iterations).

The second strategy is called the bubble-net attack. This phase has two main steps:
spiral updating location and shrinking encircling mechanism, and reducing the value of a
in Equation (11) for satisfying the process of shrinking encircling. The whale’s locations, Xi
and Xb, are separated by the following distance, which is calculated by the spiral updating
position method [21]:

X(t + 1) = Dis′ � ebl � cos(2πl) + Xb(t) (12)

In Equation (12), l stands for a constant value which represents the shape of the logarith-
mic spiral.
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The whales can also swim simultaneously around the Xb utilizing a spiraling path and
a contracting circle. The following equation depends on integrating Equations (10)–(11)
and Equation (12) [21]; therefore, X can be enhanced as:

X(t + 1) =

{
Xb(t)− A� Dis i f p ≥ 0.5
Dis′ � ebl � cos(2πl) + Xb(t) i f p < 0.5

. (13)

In Equation (13), p ∈ [0, 1] refers to a probability value used to identify the strategy of
updating. In addition, Xi can be enhanced using a random selecting solution Xr instead of
Xb as represented using Equation (14) [21]:

X(t + 1) = Xr − A� Dis (14)

Dis = |B� Xrand − X(t)| (15)

3. Proposed Method

The steps of the developed IoT security are introduced in this section. The developed
technique depends on improving the performance of the Growth Optimizer using the
Whale Optimization Algorithm (WOA).

3.1. Prepare IoT Dataset

The developed MGO starts by preparing the IoT dataset by normalizing it. This is
performed using the min−max technique that applied to the IoT data DS [22], which is
represented as

DS =


ds11 ds12 ... ds1d
ds21 ds22 ... ds2d
... ... ... ...

dsn1 dsn2 ... dsnd

 (16)

where DSi = [dsi1, dsi2, ..., dsid] denotes the features of traffic i, whereas n and d are sample
and feature numbers, respectively. The normalized version of DS based on min−max
technique is represented as [22]:

NDSij =
Dsij −min(DSj)

max(DSj)−min(DSj)
(17)

3.2. CNN for Feature Extraction

Convolutional neural networks (CNNs) are widely used in computer vision as they are
robust feature extraction modules, especially when employing pre-trained models along-
side transfer learning methods. Meanwhile, CNN is also used in applications where the
data are one-dimensional such as in natural language processing. Our study aims to train a
DL model that benefits from the big data generated from IoT devices to perform network
intrusion detection and reduce processing complexity and inference time. Thus, this section
proposes a light CNN model to automatically learn helpful patterns/representations rather
than relying on the raw data collected from experimental and real network intrusion detec-
tion experiments. In addition, we extract the learned features for further processing (feature
selection) to improve the overall framework performance (detection accuracy) and reduce
the dimensionality space of the represented feature to accelerate the inference process.

The proposed CNN architecture receives a set of samples, X, where each row is a
one-dimensional raw sample representing a network traffic record which includes several
network attributes (columns) related to the possible attack class, such as flags related to
the IP address, TCP flags, destination, source information, type of service, communication
protocols, and protection protocols. The CNN architecture, as shown in Figure 1, is
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composed of two convolution blocks (ConvBlock) to learn spatial relations between raw
attributes and generate new representations as output (feature maps). Each ConvBlock
comprises a convolutional layer with a one-dimensional kernel k, activation function, and
pooling operation. Each ConvBlock uses a kernel of size 1× 3 and 64 output channels
to produce the output feature maps out(t) which is a new transformation of the input
raw data at a certain timestamp t where i is the input channel. A non-linear activation
function name rectified linear unit (ReLU) after each convolution operation is followed by
a max-pooling with size two to output the final feature maps.

Input
Softmax

BN

ConvBlock 1 ConvBlock 2

FC 1 (128)

FC 2 (128)

FC 3 (64)

Classification

C
on

vo
lu

ti
on

 
(1

×3
@
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R
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U

D
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ng

Extracted features
Feature selection 

using MGO

Figure 1. The CNN architecture employed for feature extraction.

3.3. Feature Selection-Based MGO Approach

We developed an alternative FS approach based on a modified version of GO algorithm
using WOA as given in Figure 2. This algorithm allocates the relevant features from those
extracted using the CNN model.

Figure 2. The workflow structure of the MGO feature selection technique.

The first step in MGO as FS approach is to split the data into training and testing sets,
which represent 80% and 20%, respectively. Then, the initial solution X is built as given in
Equation (18).

Xi = LB + rand(1, D)× (UB− LB), i = 1, 2, ..., N (18)
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where N stands for the total number of solutions and D the number of features. LB and UB
are the limits of the search domain. rand(1, D) stands for the random value with D values.

The next step is to generate the Boolean version of Xi using the following formula:

BXij =

{
1 i f Xij > 0.5
0 otherwise

(19)

We select only the features corresponding to ones in BXi and remove the other features.
Then, we compute the fitness value of Xi as:

Fiti = (1− λ)× (
|BXi|

D
) + λ× γi (20)

where γi stands for the classification error based on KNN using the training sets, whereas,
λ ∈ [0, 1] is the weight used to control the balancing between γi and the ( |BXi |

D ), which
represents the ratio of relevant features.

Thereafter, we determined the best solution Xb and used it to enhance the current
solutions by combining GO and WOA. This was conducted using GO operators in the
exploration phase, while the following integration schema was used during the exploita-
tion phase.

Xi =

{
XWOA i f Pr > rs
XGO otherwise

(21)

where XGO refers to using the operators of GO that were used to update Xi and XWOA is
the operator of WOA defined in Equations (10)–(15). Pr is the probability of each Xi and it
is defined as:

Pr =
Fiti

∑N
i=1 Xi

(22)

where Fiti stands for the fitness value of Xi. In addition, the value of rs is updated using
the following formula.

rs = min(Pr) + rand× (max(Pr)−min(pr)) (23)

where min and max are the minimum and maximum functions, respectively.
Then, the stop condition is checked and in case they are met, the update process is

stopped. Otherwise, we repeat it again. After that, Xb is used to remove irrelevant features
from the testing set and evaluate this process using different performance criteria.

The time complexity of the developed MGO as FS method depends on some factors
such as (1) the size of population N, (2) the dimension of features D, and (3) the number of
iterations tmax. So, the complexity of MGO is formulated as:

O(MGO) = N + t× (N × D + (O(WOA) + O(GORe f lection))× D) (24)

O(MGO) = N × D + t× (N × D + (Kw × D + (N − Kw)× D)) (25)

So,
O(MGO) = N × D + t× (N × D) = O(N × D× t) (26)

where Kw refers to the number of solutions that will be updated using WOA.

4. Experimental Series and Results

The section uses a set of experimental series to assess the developed IoT security based
on a modified version of the GO algorithm using WOA. These experimental series are
implemented using a set of real-world IoT datasets.
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4.1. Evaluation Measures

The effectiveness of the suggested technique and all comparing methodologies is
evaluated using several indicators.

• Average accuracy (AVAcc: This measure stands for the rate of a correct intrusion
detected using the algorithm and it is represented as:

AVAcc =
1

Nr

Nr

∑
k=1

Acck
Best, (27)

AccBest =
TP + TN

TP + FN + FP + TN
in which Nr = 30 indicates the iteration numbers.

• Average Recall (AVrecall): is the percentage of intrusion predicted positively (it can be
called true positive rate (TPR)). It can be computed as:

AVRecall =
1

Nr

Nr

∑
k=1

Recallk
Best, RecallBest =

TP
TP + FN

(28)

• Average Precision (AVPrec): stands for the rate of TP samples of all positive cases with
the formulation:

AVPrec =
1

Nr

Nr

∑
k=1

Preck
Best, PrecBest =

TP
FP + TP

(29)

• Average F1-measure (AVF1): can be computed as:

AVF1 = 2
Recall × Precision
Precision + Recall

(30)

• Average G-mean (AVGM): can be computed as:

AVGM =
√

Recall × Precision (31)

4.2. Experiments Setup

In our experiments, we trained the CNN model on each dataset record for 100 epochs
with early stopping and Adam with a 0.005 learning rate to update the network param-
eters. A batch of size 2024 is used to iterate over the data samples. In addition, batch
normalization and dropout with a 0.38 ratio were used as regularization techniques to
prevent overfitting, increase generalization, and accelerate the training. The network hyper-
parameters were selected based on several experiments with different setups where the
best hyper-parameters were used in our experiments that maximize the detection accuracy.
The CNN was developed using Pytorch framework (https://pytorch.org/, accessed on
15 January 2023) and the training was performed using Nvidia GTX 1080.

To test the performance of the developed MGO, we compared it to several optimizers,
namely, the traditional WOA [21], the traditional GO, grey wolf optimizer (GWO) [23],
Transient Search Optimization (TSO) [24], firefly algorithm (FFA) [25], and moth flame
optimization (MFO) [26]. We set the parameters of each algorithm based on its original
implementation, whereas the iterations number is set to 50, and the agent number is 20.

4.3. Experimental Datasets

To validate the proposed framework, we used four well-known datasets for network
intrusion detection, which are publicly available. The datasets used to train and test the
proposed framework are KDDCup-99, NSL-KDD, BoT-IoT, and CICIDS-2017. Figure 3
shows the corresponding statistics of the datasets used in our experiments. The KDD

https://pytorch.org/
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(Knowledge Discovery and Data Mining) Cup 1999 dataset (KDDCup-99) was created in
1999 for the KDD cup competition organized by the Defence Advanced Research Project
Agency (DARPA). The KDDCup-99 collects TCP/IP dump files containing network traffic
records recorded for two months. The total number of records is around five million, with
41 features. We used the 10% version of the KDDCup-99 dataset, which contains less than
one million records with four attack types, including user-to-root (U2R), probing, remote-
to-user (R2L), and denial-of-service (DoS) besides normal traffic. The NSL-KDD dataset
is a distilled version of the KDDCup-99 dataset with 41 features. The CICIDS-2017 [27]
dataset provides more realistic network traffic records with 79 features collected by the
CICFlowMeter tool focusing on SSH, HTTP, HTTPS, email, and FTP protocols. The dataset
is presented in several CSV files, where we used four files to train and test the framework.
The total used network records are around 600 thousand, with seven attack types and
normal traffic. For the Bot-IoT dataset [28], we used the 5% version with 3.5 million records
collected from various IoT devices.
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Figure 3. Datasets statistics where the Test set is the outer circle and the Train set is the inner circle.
(a) KDDCup-99. (b) NSL-KDD. (c) CICIDS-2017. (d) Bot-IoT.

4.4. Result and Discussions

This section discusses the comparison results between the developed MGO and other
methods to improve the quality of IoT security. Table 1 shows the average over 25 indepen-
dent runs for each algorithm using the performance measures.
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In the multi-classification analysis, the MGO algorithm demonstrates superior effi-
ciency compared to other algorithms during the learning phase on the datasets (i.e., KDD99,
NSL-KDD, BIoT, and CIC2017). However, it falls behind the RSA regarding performance on
the BIoT dataset. Furthermore, MGO excels in detecting attack types using testing samples
on all four datasets compared to other methods.

In addition, the accuracy value of RSA is better than other methods, followed by
MFO which allocates the third rank overall to the other methods during the training stage,
whereas the Accuracy of RSA based on the testing set is the best after the developed MGO
algorithm. Based on Precision, F1-Measure, and Recall, the FFA, GWO, and MFO is the
best algorithm that allocates the second rank among the tested algorithms within the
testing phase.

Table 1. The performance of MGO using the IoT security datasets. (Note: bold indicate best results).

Train Test

Accuracy Precision F1 Recall GM Accuracy Precision F1 Recall GM

KDD99

GO 98.515 93.483 92.652 91.835 92.655 90.615 84.249 83.797 83.350 83.798
WOA 92.275 92.414 97.304 93.126 92.769 84.375 82.501 87.351 85.225 83.852
TSO 95.439 91.027 97.437 94.919 92.953 87.536 80.791 87.479 87.016 83.846

GWO 95.513 94.062 98.482 92.383 93.219 87.618 84.131 88.533 84.488 84.310
MFO 96.073 97.631 98.371 97.123 97.377 88.175 87.763 88.420 89.225 88.491
FFA 91.988 97.328 91.538 93.368 95.328 84.318 91.609 84.285 85.698 88.604
RSA 99.910 99.909 99.906 99.910 99.910 92.040 89.684 89.985 92.040 90.855

MGO 99.910 99.959 99.946 99.933 99.946 92.040 90.841 90.941 91.040 90.941

NSL-KDD

GO 97.108 95.104 93.017 91.020 93.040 70.224 72.200 69.794 67.544 69.833
WOA 91.947 92.080 96.968 92.797 92.438 67.951 71.131 68.907 68.801 69.956
TSO 95.078 90.657 97.067 94.558 92.587 71.330 71.298 69.697 70.810 71.053

GWO 95.182 93.724 98.143 92.052 92.884 71.066 72.151 69.948 67.936 70.012
MFO 95.745 97.297 98.035 96.795 97.046 71.626 76.122 69.844 72.676 74.379
FFA 91.660 96.991 91.201 93.040 94.995 67.437 75.873 62.944 68.817 72.259
RSA 99.201 99.158 99.148 99.201 99.180 76.107 82.171 71.731 76.107 79.081

MGO 99.214 99.458 99.437 99.416 99.437 76.725 83.105 79.759 76.672 79.824

BIoT

GO 99.068 99.107 99.076 99.045 99.076 99.141 98.100 98.371 98.644 98.372
WOA 99.472 99.472 99.472 99.472 99.472 98.956 98.957 99.005 98.964 98.960
TSO 99.460 99.459 99.459 99.460 99.460 98.986 98.941 99.005 98.981 98.961

GWO 99.477 99.476 99.476 99.477 99.477 98.990 98.975 99.019 98.959 98.967
MFO 99.480 99.480 99.480 99.480 99.480 98.998 99.013 99.020 99.009 99.011
FFA 99.479 99.478 99.478 99.479 99.478 98.954 99.007 98.949 98.968 98.987
RSA 98.829 98.829 98.829 98.829 98.829 99.020 99.098 99.070 99.038 99.068

MGO 99.629 99.529 99.629 99.729 99.629 99.220 99.188 99.218 99.248 99.218

CIC2017

GO 99.130 99.239 99.204 99.170 99.204 99.170 99.020 99.215 99.410 99.215
WOA 99.690 99.490 99.450 99.690 99.590 99.430 99.240 99.190 99.430 99.335
TSO 99.680 99.750 99.680 99.710 99.730 99.420 99.480 99.420 99.450 99.465

GWO 99.370 99.430 99.380 99.560 99.495 99.110 99.180 99.120 99.300 99.240
MFO 99.360 99.370 99.480 99.430 99.400 99.100 99.120 99.220 99.170 99.145
FFA 99.450 99.480 99.600 99.740 99.610 99.200 99.220 99.350 99.490 99.355
RSA 99.911 99.910 99.889 99.911 99.910 99.911 99.907 99.888 99.911 99.909

MGO 99.941 99.920 99.926 99.931 99.926 99.941 99.947 99.942 99.936 99.942

Figure 4 illustrates the average performance of each method across various datasets
for various measures. The MGO method has the highest average performance for training
and testing in multi-classification, followed by the Accuracy method which has better
accuracy. The RSA method has better Recall in both training and testing, and GWO has
a better F1-Measure in both training and testing. MFO and FFA have higher Precision in
training and testing sets, respectively.
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(a)

(b)

Figure 4. The average overall of the tested sets for multi-classification. (a) Train Set. (b) Testing set.

To further analyze the results, we applied the Friedman test to determine if there was
a significant difference between the different methods. The Friedman test gave us the mean
rank for each method, as seen in Table 2. From these mean ranks, we can see that MGO has
the highest mean rank across all training and testing set performance measures, followed
by RSA overall performance measures in case of using the training set. Meanwhile, the
mean rank of the accuracy, precision, F1-measure, recall, and GM for the GO, FFA, MFO,
TSO, and FFA, respectively, is the second rank after the developed MGO in the case of the
testing set.

Table 2. Results of Friedman test.

GO WOA TSO GWO MFO FFA RSA MGO

Training

Accuracy 3.7500 3.5000 3.5000 4.0000 4.7500 3.0000 5.6250 7.8750
Precision 2.5000 3.2500 2.7500 3.7500 5.2500 5.0000 5.5000 8.0000
F1-Measure 1.7500 3.2500 4.2500 4.7500 5.2500 3.2500 5.5000 8.0000
Recall 1.2500 3.5000 4.5000 3.0000 5.2500 5.0000 5.5000 8.0000
GM 2.0000 2.7500 3.5000 3.7500 5.2500 5.2500 5.5000 8.0000

Testing

Accuracy 4.7500 3.0000 4.0000 3.5000 4.2500 1.7500 6.8750 7.8750
Precision 2.5000 2.7500 2.7500 3.2500 4.7500 5.5000 6.7500 7.7500
F1-Measure 2.2500 2.6250 4.1250 4.5000 5.0000 2.5000 7.0000 8.0000
Recall 1.5000 3.2500 5.0000 2.0000 4.7500 4.5000 7.2500 7.7500
GM 1.2500 2.7500 3.7500 3.5000 4.5000 5.2500 7.0000 8.0000
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4.5. Comparison with Existing Methods

This section compares the results of the developed MGO with other techniques as
given in Table 3. Most of those methods may use either one or two datasets. From these
results, we can observe that in the case of KDD99, the accuracy of MGO is better than the
method applied in [29]; however, the method presented in [30] has better performance
than MGO. In the case of the BIoT, we can observe that the developed MGO performs
better than other methods mentioned in this study, followed by the method introduced
in Churcher et al. [31] ( KNN) which is superior to other methods. For the CICIDS2017
dataset, we noticed that MGO provided better results than the competitive methods.

Table 3. Comparison with other methods.

Dataset Work Accuracy

KDD Cup 99
Wu [29] 85.24
Farahnakian et al. [30] 96.53
MGO 0.9204

NSL-KDD

Ma et al. [32] SCDNN 72.64
Javaid et al. [33] STL 74.38
Tang et al. [34] DNN 75.75
Imamverdiyev et al. [35] Gaussian–Bernoulli RBM 73.23
MGO 76.725

BIoT

[36] (BiLSTM) 98.91
Alkadi et al. [36] (NB) 97.5
Alkadi et al. [36] (SVM) 97.8
Churcher et al. [31] (KNN) 99
Churcher et al.[31] (SVM) 79
Churcher et al. [31] (DT) 96
Churcher et al. [31] (NB) 94
Churcher et al. [31] (RF) 95
Churcher et al. [31] (ANN) 97
Churcher et al. [31] (LR) 74
MGO 99.22

CICIDS2017

Vinayakumar [37] 94.61
Laghrissi et al. [38] 85.64
Alkahtani et al. [39] 80.91
MGO 99.941

From the previous results, it is clear that the developed method has a high potential
to improve the prediction of attacks in IoT environments. However, the method has
some limitations, such as being time-consuming due to the model learning process. These
limitations can be addressed by using transfer learning techniques. In addition, the MGO
still requires handling the imbalanced datasets in IoT and this can be handled by using the
mechanism mentioned in [40].

5. Conclusions and Future work

Our study investigated the development of a two-phase framework to improve the
detection accuracy over existing intrusion detection systems (IDS). In addition, the de-
veloped framework integrates a deep learning (DL) model and swarm intelligence (SI)
technique to combine both techniques’ advantages and facilitate the deployment of the
framework in the Internet of Things (IoT) system. We implemented a convolutional neural
network architecture as a core feature extraction module to learn and extract new feature
representation from the raw input data (network traffic records). In addition, we proposed a
novel feature selection (FS) approach based on a modified variant of the Growth Optimizer
(GO) algorithm to reduce the extracted feature representation space, speed up the inference,
and improve the overall framework performance on IDS. The proposed FS method relies on
applying the GWO to boost the search process of the traditional GO algorithm. Thus, the
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results show that the suggested method performed best compared to several optimization
techniques using different evaluation indicators with several public IDS datasets. In future
work, the developed MGO can be extended and experimented with in different applications
such as healthcare, human activity recognition, fake news detection, and others.
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