

 sensors-23-04430

sensors-23-04430

Sensors 2023, 23(9), 4430; doi:10.3390/s23094430

Article

Enhancing Intrusion Detection Systems for IoT and Cloud Environments Using a Growth Optimizer Algorithm and Conventional Neural Networks

Abdulaziz Fatani 1,2[image: Orcid], Abdelghani Dahou 3[image: Orcid], Mohamed Abd Elaziz 4,5,6,7[image: Orcid], Mohammed A. A. Al-qaness 8[image: Orcid], Songfeng Lu 9,10,*[image: Orcid], Saad Ali Alfadhli 11[image: Orcid] and Shayem Saleh Alresheedi 12[image: Orcid]

1

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2

Computer Science Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia

3

Faculty of Computer Sciences and Mathematics, Ahmed Draia University, Adrar 01000, Algeria

4

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

5

Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates

6

Department of Artificial Intelligence Science and Engineering, Galala University, Suze 435611, Egypt

7

Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon

8

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China

9

Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

10

Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China

11

Department of Computer Techniques Engineering, Imam Al-Kadhum College, Baghdad 10081, Iraq

12

War College, National Defense University, Riyadh 12211, Saudi Arabia

*

Correspondence: lusongfeng@hust.edu.cn

Academic Editor: Stefan Poslad

Received: 12 February 2023 / Revised: 7 April 2023 / Accepted: 18 April 2023 / Published: 30 April 2023

Abstract

:

Intrusion detection systems (IDS) play a crucial role in securing networks and identifying malicious activity. This is a critical problem in cyber security. In recent years, metaheuristic optimization algorithms and deep learning techniques have been applied to IDS to improve their accuracy and efficiency. Generally, optimization algorithms can be used to boost the performance of IDS models. Deep learning methods, such as convolutional neural networks, have also been used to improve the ability of IDS to detect and classify intrusions. In this paper, we propose a new IDS model based on the combination of deep learning and optimization methods. First, a feature extraction method based on CNNs is developed. Then, a new feature selection method is used based on a modified version of Growth Optimizer (GO), called MGO. We use the Whale Optimization Algorithm (WOA) to boost the search process of the GO. Extensive evaluation and comparisons have been conducted to assess the quality of the suggested method using public datasets of cloud and Internet of Things (IoT) environments. The applied techniques have shown promising results in identifying previously unknown attacks with high accuracy rates. The MGO performed better than several previous methods in all experimental comparisons.

Keywords:

metaheuristics; cyber security; intrusion detection system; Internet of Things (IoT); Growth Optimizer; CNNs

1. Introduction

The need to secure online data, information, and related systems has grown in importance with the development of information communication, particularly the Internet. Sensitive data is created, transported, stored, or updated worldwide daily in enormous quantities. Private emails, financial transactions, simple holiday photos, and military communications are all examples of sensitive information. Malicious parties have sought to steal, alter, or erase this information for a long time. Hackers and other hostile actors have developed, exploited, and enhanced various cyberattacks to accomplish these objectives [1]. A paradigm shift from straightforward defense mechanisms to complex defense systems was necessary for this new era of cyber security. While simple network security measures such as firewalls may have been enough in the past, the sophistication of cyberattacks has made them ineffective when used alone. Intrusion Detection Systems (IDS) are currently the cornerstone of cyber security to defend against these sophisticated attacks [1]. In the cloud and IoT, there are three primary divisions of cloud services: infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS). To give users security, it is necessary to address the weaknesses and problems each of these services and methods possesses [2]. In recent years, different methods have been proposed for the IDS, such as the traditional machine learning techniques, for example, the support vector machine (SVM) [3,4], decision trees [5,6], k-means clustering [7,8], and others. The recent advances in deep neural networks, including conventional neural networks (CNNs) and recurrent neural networks (RNNs), were also adopted in this field [9]. Several IDS were developed based on ANNs, such as RNNs [10] and CNNs [11].

In recent years, a new direction was utilized for the IDS by employing the power of the metaheuristic optimization algorithms adopted in different and complex engineering and optimization problems, including IDS. For example, Alazab et al. [12] employed the moth–flame optimizer algorithm to build an IDS method. The MFO was a feature selection method that enhanced the classifier’s performance (Decision Tree). The evaluation showed that the classification accuracy of the DT was improved by applying the MFO. In [13], the authors applied a combined MH method using the firefly algorithm (FA) and ant lion optimization algorithm to build an efficient IDS system. Zhou et al. [14] employed the bat algorithm as a feature selection to build an IDS. It was evaluated with random forest classifier, C4.5, and ForestPA. It is clear that MH optimization algorithms have shown significant performance in IDS applications; thus, they have been widely adopted, such as whale optimization algorithm [15], particle swarm optimization algorithm [16], Aquila optimization algorithm [17], reptile search algorithm [18], salp swarm algorithm [19], and many others.

Paper Contribution

Following the successful applications of MH optimization algorithms in IDS, we propose an efficient feature selection technique called MGO. This method is developed based on two aspects; the first is to utilize the power of the Growth Optimizer (GO) in the exploration phase of the search process. The second aspect is to employ the integration between GO and WOA in the exploitation phase. The main objective of this study can be simplified as the following points:

	
Suggest a different method for securing IoT by combining DL and feature selection techniques.

	
Use a CNN model to analyze network traffic records and identify complex feature representations.

	
Create a modified version of Growth Optimizer (GO) for improved intrusion detection in IoT environments. The modification uses the operators of the Whale Optimization Algorithm (WOA). The proposed method, called MGO, is employed to address the issue of discrete feature selection.

	
Evaluate the performance of the MGO against established methods using four actual intrusion datasets.

The paper is structured as follows: Section 2 explains the employed methods, Section 3 outlines the proposed IoT security system, Section 4 assesses the system, and Section 5 concludes the results.

2. Background

2.1. Growth Optimizer

In this section, the Growth Optimizer (GO) simulates how people train and reflect as they progress in society. In the learning phase, the information is collected from the environment, whereas the reflection aims to examine the shortcomings and improve the learning method.

In general, the GO starts by using Equation (1) to generate the population X which stands for the solutions for the tested problem.

 X i = r × (U − L) + L , i = 1 , . . . , N

(1)

where r is the random value and the limits of the search domain of the problem are represented using U and L. N refers to the total number of solutions in X.

Following [20], X is divided into three parts according to the parameters named P 1 = 5 . The first part comprises the leader and the elites (varying from 2 to P 1). The second part contains the middle level (i.e., from P 1 + 1 to N − P 1) and the third part contains the bottom level (i.e., N − P 1 + 1 and N), whereas the best solution is the leader of the upper level.

2.1.1. Learning Stage

By confronting disparities between people, examining the causes of those differences, and learning from them, individuals can be greatly helped in their progress. The GO’s learning stage simulates four key gaps that are formulated:

 G 1 = X b − X b t G 2 = X b − X w G 1 = X b t − X w G 1 = X r 1 − X r 2

(2)

where X b , X b t , X w indicate best, better, and worst solution, respectively; in addition, X r 1 , and X r 2 are two random solutions. G k (k = 1 , 2 , 3 , 4) stands for the gap used to improve the skills learned and decrease the difference between them. Moreover, to reflect the variation between the groups, the parameter named learning factor (LF) is applied and its formulation is given as:

 L F k = | | G k | | ∑ k = 1 4 | | G k | | , k = 1 , 2 , 3 , 4

(3)

Following [20], the individual can assess his learned knowledge using the parameter (S F i):

 S F i = G R i G R m a x

(4)

where G R m a x and G R i represent the maximum growth resistance of X and the growth of X i , respectively.

According to the information collected from L F k and S F i each X i can receive new knowledge from the solution belonging to each gap G k using the knowledge acquisition (K A k) that is defined as:

 K A k = S F i × L F k × G k , k = 1 , 2 , 3 , 4

(5)

After that, the solution X i can improve its information using the following formula:

 X i (t + 1) = X i (t) + ∑ k = 1 4 K A k

(6)

The quality of the updated version of X i is computed and compared with the previous one to determine whether there is a significant difference between them.

 X i (t + 1) = X i (t + 1) i f f (X i (t + 1)) ≤ f (X i (t)) X i (t + 1) i f r 1 < P 2 , i n d (i) = i n d (1) X i (t) o t h e r w i s e o t h e r w i s e ,

(7)

where r 2 stands for a random number and P 2 = 0.001 is the probability retention. i n d (i) refers to the ranking of X i based on the ascending order X using the fitness value.

2.1.2. Reflection Stage

The solution must develop their ability to reflect on the knowledge they have learned, meaning that X must identify all of their areas of weakness, make up for them, and retain their information. They ought to adopt the undesirable attributes of successful X while retaining their outstanding qualities. When the lesson of a specific aspect cannot be mended, the prior information should be abandoned and systematic learning should resume. Equations (8) and (9) can be used to mathematically model this process.

 X i (t + 1) = r 4 × (U − L) i f r 3 < A F X i (t) + r 5 × (X R − X i (t)) o t h e r w i s e o t h e r w i s e X i (t) o t h e r w i s e ,

(8)

 A F = 0.01 + 0.99 × (1 − F E s m a x F E)

(9)

where r 3 , r 4 , and r 5 are random values. X R refers to a solution defined as the top P 1 + 1 solutions in X. A F refers to the attenuation factor which depends on function evaluation F E and the total number of functions evaluations m a x F E .

After the complete reflection stage, X i should evaluate its growth, similar to the learning phase. Therefore, Equation (7) is also applied to achieve this task.

2.2. Whale Optimization Algorithm

The WOA [21] draws inspiration from the unique hunting strategy used by a particular species of killer whale known as humpback, whose hunting style is bubble-net feeding. WOA’s mathematical formulation depends on how it behaves when hunting. Each whale’s location can be represented by the solution X b , which can be updated depending on how the whale behaves when attacking its prey. The whales can attack their prey using two different methods. The humpback whale locates its prey and encircles it using the first strategy, known as encircling prey. WOA presupposes that the target prey is the best option (X b (t)). The other whales attempt to update their locations in the direction of X b (t) after it has been identified (found), as in Equation (10):

 D i s i = | B ⊙ X b (t) − X i (t) | , B = 2 r

(10)

 X i (t + 1) = X b (t) − A ⊙ D i s i , A = 2 a ⊙ r − a

(11)

where D i s i stands for the distance between X i (t) and X b (t) . r ∈ [0 , 1] refers to a random value. In addition, a denotes a parameter that decreases from 2 to 0 during the process of updating the solution, formulated as a = a − t a t m a x (t m a x is the total of iterations).

The second strategy is called the bubble-net attack. This phase has two main steps: spiral updating location and shrinking encircling mechanism, and reducing the value of a in Equation (11) for satisfying the process of shrinking encircling. The whale’s locations, X i and X b , are separated by the following distance, which is calculated by the spiral updating position method [21]:

 X (t + 1) = D i s ′ ⊙ e b l ⊙ c o s (2 π l) + X b (t)

(12)

In Equation (12), l stands for a constant value which represents the shape of the logarithmic spiral.

The whales can also swim simultaneously around the X b utilizing a spiraling path and a contracting circle. The following equation depends on integrating Equations (10)–(11) and Equation (12) [21]; therefore, X can be enhanced as:

 X (t + 1) = X b (t) − A ⊙ D i s i f p ≥ 0.5 D i s ′ ⊙ e b l ⊙ c o s (2 π l) + X b (t) i f p < 0.5 .

(13)

In Equation (13), p ∈ [0 , 1] refers to a probability value used to identify the strategy of updating. In addition, X i can be enhanced using a random selecting solution X r instead of X b as represented using Equation (14) [21]:

 X (t + 1) = X r − A ⊙ D i s

(14)

 D i s = | B ⊙ X r a n d − X (t) |

(15)

3. Proposed Method

The steps of the developed IoT security are introduced in this section. The developed technique depends on improving the performance of the Growth Optimizer using the Whale Optimization Algorithm (WOA).

3.1. Prepare IoT Dataset

The developed MGO starts by preparing the IoT dataset by normalizing it. This is performed using the min−max technique that applied to the IoT data D S [22], which is represented as

 D S = d s 11 d s 12 . . . d s 1 d d s 21 d s 22 . . . d s 2 d d s n 1 d s n 2 . . . d s n d

(16)

where D S i = [d s i 1 , d s i 2 , . . . , d s i d] denotes the features of traffic i, whereas n and d are sample and feature numbers, respectively. The normalized version of D S based on min−max technique is represented as [22]:

 N D S i j = D s i j − m i n (D S j) m a x (D S j) − m i n (D S j)

(17)

3.2. CNN for Feature Extraction

Convolutional neural networks (CNNs) are widely used in computer vision as they are robust feature extraction modules, especially when employing pre-trained models alongside transfer learning methods. Meanwhile, CNN is also used in applications where the data are one-dimensional such as in natural language processing. Our study aims to train a DL model that benefits from the big data generated from IoT devices to perform network intrusion detection and reduce processing complexity and inference time. Thus, this section proposes a light CNN model to automatically learn helpful patterns/representations rather than relying on the raw data collected from experimental and real network intrusion detection experiments. In addition, we extract the learned features for further processing (feature selection) to improve the overall framework performance (detection accuracy) and reduce the dimensionality space of the represented feature to accelerate the inference process.

The proposed CNN architecture receives a set of samples, X, where each row is a one-dimensional raw sample representing a network traffic record which includes several network attributes (columns) related to the possible attack class, such as flags related to the IP address, TCP flags, destination, source information, type of service, communication protocols, and protection protocols. The CNN architecture, as shown in Figure 1, is composed of two convolution blocks (ConvBlock) to learn spatial relations between raw attributes and generate new representations as output (feature maps). Each ConvBlock comprises a convolutional layer with a one-dimensional kernel k, activation function, and pooling operation. Each ConvBlock uses a kernel of size 1 × 3 and 64 output channels to produce the output feature maps out (t) which is a new transformation of the input raw data at a certain timestamp t where i is the input channel. A non-linear activation function name rectified linear unit (ReLU) after each convolution operation is followed by a max-pooling with size two to output the final feature maps.

3.3. Feature Selection-Based MGO Approach

We developed an alternative FS approach based on a modified version of GO algorithm using WOA as given in Figure 2. This algorithm allocates the relevant features from those extracted using the CNN model.

The first step in MGO as FS approach is to split the data into training and testing sets, which represent 80% and 20%, respectively. Then, the initial solution X is built as given in Equation (18).

 X i = L B + r a n d (1 , D) × (U B − L B) , i = 1 , 2 , . . . , N

(18)

where N stands for the total number of solutions and D the number of features. L B and U B are the limits of the search domain. r a n d (1 , D) stands for the random value with D values.

The next step is to generate the Boolean version of X i using the following formula:

 B X i j = 1 i f X i j > 0.5 0 o t h e r w i s e

(19)

We select only the features corresponding to ones in B X i and remove the other features. Then, we compute the fitness value of X i as:

 F i t i = (1 − λ) × (| B X i | D) + λ × γ i

(20)

where γ i stands for the classification error based on KNN using the training sets, whereas, λ ∈ [0 , 1] is the weight used to control the balancing between γ i and the (| B X i | D) , which represents the ratio of relevant features.

Thereafter, we determined the best solution X b and used it to enhance the current solutions by combining GO and WOA. This was conducted using GO operators in the exploration phase, while the following integration schema was used during the exploitation phase.

 X i = X W O A i f P r > r s X G O o t h e r w i s e

(21)

where X G O refers to using the operators of GO that were used to update X i and X W O A is the operator of WOA defined in Equations (10)–(15). P r is the probability of each X i and it is defined as:

 P r = F i t i ∑ i = 1 N X i

(22)

where F i t i stands for the fitness value of X i . In addition, the value of r s is updated using the following formula.

 r s = m i n (P r) + r a n d × (m a x (P r) − m i n (p r))

(23)

where m i n and m a x are the minimum and maximum functions, respectively.

Then, the stop condition is checked and in case they are met, the update process is stopped. Otherwise, we repeat it again. After that, X b is used to remove irrelevant features from the testing set and evaluate this process using different performance criteria.

The time complexity of the developed MGO as FS method depends on some factors such as (1) the size of population N, (2) the dimension of features D, and (3) the number of iterations t m a x . So, the complexity of MGO is formulated as:

 O (M G O) = N + t × (N × D + (O (W O A) + O (G O R e f l e c t i o n)) × D)

(24)

 O (M G O) = N × D + t × (N × D + (K w × D + (N − K w) × D))

(25)

So,

 O (M G O) = N × D + t × (N × D) = O (N × D × t)

(26)

where K w refers to the number of solutions that will be updated using WOA.

4. Experimental Series and Results

The section uses a set of experimental series to assess the developed IoT security based on a modified version of the GO algorithm using WOA. These experimental series are implemented using a set of real-world IoT datasets.

4.1. Evaluation Measures

The effectiveness of the suggested technique and all comparing methodologies is evaluated using several indicators.

	
Average accuracy (A V A c c : This measure stands for the rate of a correct intrusion detected using the algorithm and it is represented as:

 A V A c c = 1 N r ∑ k = 1 N r A c c B e s t k ,

(27)

 A c c B e s t = T P + T N T P + F N + F P + T N

in which N r = 30 indicates the iteration numbers.

	
Average Recall (A V r e c a l l) : is the percentage of intrusion predicted positively (it can be called true positive rate (TPR)). It can be computed as:

 A V R e c a l l = 1 N r ∑ k = 1 N r R e c a l l B e s t k , R e c a l l B e s t = T P T P + F N

(28)

	
Average Precision (A V P r e c) : stands for the rate of TP samples of all positive cases with the formulation:

 A V P r e c = 1 N r ∑ k = 1 N r P r e c B e s t k , P r e c B e s t = T P F P + T P

(29)

	
Average F1-measure (A V F 1) : can be computed as:

 A V F 1 = 2 R e c a l l × P r e c i s i o n P r e c i s i o n + R e c a l l

(30)

	
Average G-mean (A V G M) : can be computed as:

 A V G M = R e c a l l × P r e c i s i o n

(31)

4.2. Experiments Setup

In our experiments, we trained the CNN model on each dataset record for 100 epochs with early stopping and Adam with a 0.005 learning rate to update the network parameters. A batch of size 2024 is used to iterate over the data samples. In addition, batch normalization and dropout with a 0.38 ratio were used as regularization techniques to prevent overfitting, increase generalization, and accelerate the training. The network hyper-parameters were selected based on several experiments with different setups where the best hyper-parameters were used in our experiments that maximize the detection accuracy. The CNN was developed using Pytorch framework (https://pytorch.org/, accessed on 15 January 2023) and the training was performed using Nvidia GTX 1080.

To test the performance of the developed MGO, we compared it to several optimizers, namely, the traditional WOA [21], the traditional GO, grey wolf optimizer (GWO) [23], Transient Search Optimization (TSO) [24], firefly algorithm (FFA) [25], and moth flame optimization (MFO) [26]. We set the parameters of each algorithm based on its original implementation, whereas the iterations number is set to 50, and the agent number is 20.

4.3. Experimental Datasets

To validate the proposed framework, we used four well-known datasets for network intrusion detection, which are publicly available. The datasets used to train and test the proposed framework are KDDCup-99, NSL-KDD, BoT-IoT, and CICIDS-2017. Figure 3 shows the corresponding statistics of the datasets used in our experiments. The KDD (Knowledge Discovery and Data Mining) Cup 1999 dataset (KDDCup-99) was created in 1999 for the KDD cup competition organized by the Defence Advanced Research Project Agency (DARPA). The KDDCup-99 collects TCP/IP dump files containing network traffic records recorded for two months. The total number of records is around five million, with 41 features. We used the 10% version of the KDDCup-99 dataset, which contains less than one million records with four attack types, including user-to-root (U2R), probing, remote-to-user (R2L), and denial-of-service (DoS) besides normal traffic. The NSL-KDD dataset is a distilled version of the KDDCup-99 dataset with 41 features. The CICIDS-2017 [27] dataset provides more realistic network traffic records with 79 features collected by the CICFlowMeter tool focusing on SSH, HTTP, HTTPS, email, and FTP protocols. The dataset is presented in several CSV files, where we used four files to train and test the framework. The total used network records are around 600 thousand, with seven attack types and normal traffic. For the Bot-IoT dataset [28], we used the 5% version with 3.5 million records collected from various IoT devices.

4.4. Result and Discussions

This section discusses the comparison results between the developed MGO and other methods to improve the quality of IoT security. Table 1 shows the average over 25 independent runs for each algorithm using the performance measures.

In the multi-classification analysis, the MGO algorithm demonstrates superior efficiency compared to other algorithms during the learning phase on the datasets (i.e., KDD99, NSL-KDD, BIoT, and CIC2017). However, it falls behind the RSA regarding performance on the BIoT dataset. Furthermore, MGO excels in detecting attack types using testing samples on all four datasets compared to other methods.

In addition, the accuracy value of RSA is better than other methods, followed by MFO which allocates the third rank overall to the other methods during the training stage, whereas the Accuracy of RSA based on the testing set is the best after the developed MGO algorithm. Based on Precision, F1-Measure, and Recall, the FFA, GWO, and MFO is the best algorithm that allocates the second rank among the tested algorithms within the testing phase.

Figure 4 illustrates the average performance of each method across various datasets for various measures. The MGO method has the highest average performance for training and testing in multi-classification, followed by the Accuracy method which has better accuracy. The RSA method has better Recall in both training and testing, and GWO has a better F1-Measure in both training and testing. MFO and FFA have higher Precision in training and testing sets, respectively.

To further analyze the results, we applied the Friedman test to determine if there was a significant difference between the different methods. The Friedman test gave us the mean rank for each method, as seen in Table 2. From these mean ranks, we can see that MGO has the highest mean rank across all training and testing set performance measures, followed by RSA overall performance measures in case of using the training set. Meanwhile, the mean rank of the accuracy, precision, F1-measure, recall, and GM for the GO, FFA, MFO, TSO, and FFA, respectively, is the second rank after the developed MGO in the case of the testing set.

4.5. Comparison with Existing Methods

This section compares the results of the developed MGO with other techniques as given in Table 3. Most of those methods may use either one or two datasets. From these results, we can observe that in the case of KDD99, the accuracy of MGO is better than the method applied in [29]; however, the method presented in [30] has better performance than MGO. In the case of the BIoT, we can observe that the developed MGO performs better than other methods mentioned in this study, followed by the method introduced in Churcher et al. [31] (KNN) which is superior to other methods. For the CICIDS2017 dataset, we noticed that MGO provided better results than the competitive methods.

From the previous results, it is clear that the developed method has a high potential to improve the prediction of attacks in IoT environments. However, the method has some limitations, such as being time-consuming due to the model learning process. These limitations can be addressed by using transfer learning techniques. In addition, the MGO still requires handling the imbalanced datasets in IoT and this can be handled by using the mechanism mentioned in [40].

5. Conclusions and Future work

Our study investigated the development of a two-phase framework to improve the detection accuracy over existing intrusion detection systems (IDS). In addition, the developed framework integrates a deep learning (DL) model and swarm intelligence (SI) technique to combine both techniques’ advantages and facilitate the deployment of the framework in the Internet of Things (IoT) system. We implemented a convolutional neural network architecture as a core feature extraction module to learn and extract new feature representation from the raw input data (network traffic records). In addition, we proposed a novel feature selection (FS) approach based on a modified variant of the Growth Optimizer (GO) algorithm to reduce the extracted feature representation space, speed up the inference, and improve the overall framework performance on IDS. The proposed FS method relies on applying the GWO to boost the search process of the traditional GO algorithm. Thus, the results show that the suggested method performed best compared to several optimization techniques using different evaluation indicators with several public IDS datasets. In future work, the developed MGO can be extended and experimented with in different applications such as healthcare, human activity recognition, fake news detection, and others.

Author Contributions

Conceptualization: A.F., A.D. and M.A.A.A.-q.; Data curation: A.F., M.A.A.A.-q., S.A.A. and S.S.A.; Formal analysis: M.A.A.A.-q., M.A.E., S.A.A. and S.S.A.; Funding acquisition: A.F., Investigation: A.F.; Methodology: A.F. and A.D.; Resources: A.F.; Project administration: A.F. and S.L.; Software: M.A.A.A.-q.; Supervision: A.F. and S.L.; Validation: S.L., S.A.A. and S.S.A.; Visualization: A.D. and M.A.A.A.-q.; Writing—original draft preparation: A.F., A.D. and M.A.A.A.-q.; Writing—review and editing: M.A.A.A.-q., S.L., S.A.A. and S.S.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the National Key R&D Program of China under Grand No. 2021YFB2012202 and the Hubei Provincial Science and Technology Major Project of China under Grant No. 2020AEA011 and the Key Research & Development Plan of Hubei Province of China under Grant No. 2021BAA171, 2021BAA038, 2020BAB100 and the project of Science, Technology and Innovation Commission of Shenzhen Municipality of China under Grant No. JCYJ20210324120002006 and JSGG20210802153009028, the 2021 Industrial Technology Basic Public Service Platform Project of the Ministry of Industry and Information Technology of PRC under Grand No. 2021-0171-1-1.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All the datasets are public, as we described in the main text.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Debicha, I.; Bauwens, R.; Debatty, T.; Dricot, J.M.; Kenaza, T.; Mees, W. TAD: Transfer learning-based multi-adversarial detection of evasion attacks against network intrusion detection systems. Future Gener. Comput. Syst. 2023, 138, 185–197. [Google Scholar] [CrossRef]

	

Lata, S.; Singh, D. Intrusion detection system in cloud environment: Literature survey & future research directions. Int. J. Inf. Manag. Data Insights 2022, 2, 100134. [Google Scholar]

	

Schueller, Q.; Basu, K.; Younas, M.; Patel, M.; Ball, F. A hierarchical intrusion detection system using support vector machine for SDN network in cloud data center. In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 21–23 November 2018; pp. 1–6. [Google Scholar]

	

Wei, J.; Long, C.; Li, J.; Zhao, J. An intrusion detection algorithm based on bag representation with ensemble support vector machine in cloud computing. Concurr. Comput. Pract. Exp. 2020, 32, e5922. [Google Scholar] [CrossRef]

	

Peng, K.; Leung, V.; Zheng, L.; Wang, S.; Huang, C.; Lin, T. Intrusion detection system based on decision tree over big data in fog environment. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]

	

Modi, C.; Patel, D.; Borisanya, B.; Patel, A.; Rajarajan, M. A novel framework for intrusion detection in cloud. In Proceedings of the Fifth International Conference on Security of Information and Networks, Jaipur, India, 25–27 October 2012; pp. 67–74. [Google Scholar]

	

Kumar, G.R.; Mangathayaru, N.; Narasimha, G. An improved k-Means Clustering algorithm for Intrusion Detection using Gaussian function. In Proceedings of the International Conference on Engineering & MIS 2015, Istanbul, Turkey, 24–26 September 2015; pp. 1–7. [Google Scholar]

	

Zhao, X.; Zhang, W. An anomaly intrusion detection method based on improved k-means of cloud computing. In Proceedings of the 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 21–23 July 2016; pp. 284–288. [Google Scholar]

	

Hodo, E.; Bellekens, X.; Hamilton, A.; Dubouilh, P.L.; Iorkyase, E.; Tachtatzis, C.; Atkinson, R. Threat analysis of IoT networks using artificial neural network intrusion detection system. In Proceedings of the 2016 International Symposium on Networks, Computers and Communications (ISNCC), Yasmine Hammamet, Tunisia, 11–13 May 2016; pp. 1–6. [Google Scholar]

	

Almiani, M.; AbuGhazleh, A.; Al-Rahayfeh, A.; Atiewi, S.; Razaque, A. Deep recurrent neural network for IoT intrusion detection system. Simul. Model. Pract. Theory 2020, 101, 102031. [Google Scholar] [CrossRef]

	

Wu, K.; Chen, Z.; Li, W. A novel intrusion detection model for a massive network using convolutional neural networks. IEEE Access 2018, 6, 50850–50859. [Google Scholar] [CrossRef]

	

Alazab, M.; Khurma, R.A.; Awajan, A.; Camacho, D. A new intrusion detection system based on moth–flame optimizer algorithm. Expert Syst. Appl. 2022, 210, 118439. [Google Scholar] [CrossRef]

	

Samadi Bonab, M.; Ghaffari, A.; Soleimanian Gharehchopogh, F.; Alemi, P. A wrapper-based feature selection for improving performance of intrusion detection systems. Int. J. Commun. Syst. 2020, 33, e4434. [Google Scholar] [CrossRef]

	

Zhou, Y.; Cheng, G.; Jiang, S.; Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble classifier. Comput. Netw. 2020, 174, 107247. [Google Scholar] [CrossRef]

	

Mojtahedi, A.; Sorouri, F.; Souha, A.N.; Molazadeh, A.; Mehr, S.S. Feature Selection-based Intrusion Detection System Using Genetic Whale Optimization Algorithm and Sample-based Classification. arXiv 2022, arXiv:2201.00584. [Google Scholar]

	

Talita, A.; Nataza, O.; Rustam, Z. Naïve bayes classifier and particle swarm optimization feature selection method for classifying intrusion detection system dataset. J. Phys. Conf. Ser. 2021, 1752, 012021. [Google Scholar] [CrossRef]

	

Fatani, A.; Dahou, A.; Al-Qaness, M.A.; Lu, S.; Elaziz, M.A. Advanced feature extraction and selection approach using deep learning and Aquila optimizer for IoT intrusion detection system. Sensors 2021, 22, 140. [Google Scholar] [CrossRef]

	

Dahou, A.; Abd Elaziz, M.; Chelloug, S.A.; Awadallah, M.A.; Al-Betar, M.A.; Al-qaness, M.A.; Forestiero, A. Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6473507. [Google Scholar] [CrossRef]

	

Karuppusamy, L.; Ravi, J.; Dabbu, M.; Lakshmanan, S. Chronological salp swarm algorithm based deep belief network for intrusion detection in cloud using fuzzy entropy. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2948. [Google Scholar] [CrossRef]

	

Zhang, Q.; Gao, H.; Zhan, Z.H.; Li, J.; Zhang, H. Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl.-Based Syst. 2023, 261, 110206. [Google Scholar] [CrossRef]

	

Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]

	

Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]

	

Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]

	

Fatani, A.; Abd Elaziz, M.; Dahou, A.; Al-Qaness, M.A.; Lu, S. IoT Intrusion Detection System Using Deep Learning and Enhanced Transient Search Optimization. IEEE Access 2021, 9, 123448–123464. [Google Scholar] [CrossRef]

	

Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef]

	

Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]

	

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp 2018, 1, 108–116. [Google Scholar]

	

Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]

	

Wu, P. Deep learning for network intrusion detection: Attack recognition with computational intelligence. Ph.D. Thesis, UNSW Sydney, Kensington, Australia, 2020. [Google Scholar]

	

Farahnakian, F.; Heikkonen, J. A deep auto-encoder based approach for intrusion detection system. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Republic of Korea, 11–14 February 2018; pp. 178–183. [Google Scholar]

	

Churcher, A.; Ullah, R.; Ahmad, J.; Ur Rehman, S.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W.J. An experimental analysis of attack classification using machine learning in IoT networks. Sensors 2021, 21, 446. [Google Scholar] [CrossRef]

	

Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X. A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks. Sensors 2016, 16, 1701. [Google Scholar] [CrossRef]

	

Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (Formerly BIONETICS), New York, NY, USA, 3–5 December 2015; pp. 21–26. [Google Scholar]

	

Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for network intrusion detection in software defined networking. In Proceedings of the 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263. [Google Scholar]

	

Imamverdiyev, Y.; Abdullayeva, F. Deep learning method for denial of service attack detection based on restricted boltzmann machine. Big Data 2018, 6, 159–169. [Google Scholar] [CrossRef]

	

Alkadi, O.; Moustafa, N.; Turnbull, B.; Choo, K.K.R. A deep blockchain framework-enabled collaborative intrusion detection for protecting IoT and cloud networks. IEEE Internet Things J. 2020, 8, 9463–9472. [Google Scholar] [CrossRef]

	

Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [Google Scholar] [CrossRef]

	

Laghrissi, F.; Douzi, S.; Douzi, K.; Hssina, B. Intrusion detection systems using long short-term memory (LSTM). J. Big Data 2021, 8, 65. [Google Scholar] [CrossRef]

	

Alkahtani, H.; Aldhyani, T.H. Intrusion detection system to advance internet of things infrastructure-based deep learning algorithms. Complexity 2021, 2021, 5579851. [Google Scholar] [CrossRef]

	

Luque, A.; Carrasco, A.; Martín, A.; de Las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]

[image: Sensors 23 04430 g001 550]

Figure 1. The CNN architecture employed for feature extraction.

Figure 1. The CNN architecture employed for feature extraction.

[image: Sensors 23 04430 g001]

[image: Sensors 23 04430 g002 550]

Figure 2. The workflow structure of the MGO feature selection technique.

Figure 2. The workflow structure of the MGO feature selection technique.

[image: Sensors 23 04430 g002]

[image: Sensors 23 04430 g003 550]

Figure 3. Datasets statistics where the Test set is the outer circle and the Train set is the inner circle. (a) KDDCup-99. (b) NSL-KDD. (c) CICIDS-2017. (d) Bot-IoT.

Figure 3. Datasets statistics where the Test set is the outer circle and the Train set is the inner circle. (a) KDDCup-99. (b) NSL-KDD. (c) CICIDS-2017. (d) Bot-IoT.

[image: Sensors 23 04430 g003]

[image: Sensors 23 04430 g004 550]

Figure 4. The average overall of the tested sets for multi-classification. (a) Train Set. (b) Testing set.

Figure 4. The average overall of the tested sets for multi-classification. (a) Train Set. (b) Testing set.

[image: Sensors 23 04430 g004]

[image: Table]

Table 1. The performance of MGO using the IoT security datasets. (Note: bold indicate best results).

Table 1. The performance of MGO using the IoT security datasets. (Note: bold indicate best results).

	

	

	
Train

	
Test

	

	

	
Accuracy

	
Precision

	
F1

	
Recall

	
GM

	
Accuracy

	
Precision

	
F1

	
Recall

	
GM

	
KDD99

	
GO

	
98.515

	
93.483

	
92.652

	
91.835

	
92.655

	
90.615

	
84.249

	
83.797

	
83.350

	
83.798

	
WOA

	
92.275

	
92.414

	
97.304

	
93.126

	
92.769

	
84.375

	
82.501

	
87.351

	
85.225

	
83.852

	
TSO

	
95.439

	
91.027

	
97.437

	
94.919

	
92.953

	
87.536

	
80.791

	
87.479

	
87.016

	
83.846

	
GWO

	
95.513

	
94.062

	
98.482

	
92.383

	
93.219

	
87.618

	
84.131

	
88.533

	
84.488

	
84.310

	
MFO

	
96.073

	
97.631

	
98.371

	
97.123

	
97.377

	
88.175

	
87.763

	
88.420

	
89.225

	
88.491

	
FFA

	
91.988

	
97.328

	
91.538

	
93.368

	
95.328

	
84.318

	
91.609

	
84.285

	
85.698

	
88.604

	
RSA

	
99.910

	
99.909

	
99.906

	
99.910

	
99.910

	
92.040

	
89.684

	
89.985

	
92.040

	
90.855

	
MGO

	
99.910

	
99.959

	
99.946

	
99.933

	
99.946

	
92.040

	
90.841

	
90.941

	
91.040

	
90.941

	
NSL-KDD

	
GO

	
97.108

	
95.104

	
93.017

	
91.020

	
93.040

	
70.224

	
72.200

	
69.794

	
67.544

	
69.833

	
WOA

	
91.947

	
92.080

	
96.968

	
92.797

	
92.438

	
67.951

	
71.131

	
68.907

	
68.801

	
69.956

	
TSO

	
95.078

	
90.657

	
97.067

	
94.558

	
92.587

	
71.330

	
71.298

	
69.697

	
70.810

	
71.053

	
GWO

	
95.182

	
93.724

	
98.143

	
92.052

	
92.884

	
71.066

	
72.151

	
69.948

	
67.936

	
70.012

	
MFO

	
95.745

	
97.297

	
98.035

	
96.795

	
97.046

	
71.626

	
76.122

	
69.844

	
72.676

	
74.379

	
FFA

	
91.660

	
96.991

	
91.201

	
93.040

	
94.995

	
67.437

	
75.873

	
62.944

	
68.817

	
72.259

	
RSA

	
99.201

	
99.158

	
99.148

	
99.201

	
99.180

	
76.107

	
82.171

	
71.731

	
76.107

	
79.081

	
MGO

	
99.214

	
99.458

	
99.437

	
99.416

	
99.437

	
76.725

	
83.105

	
79.759

	
76.672

	
79.824

	
BIoT

	
GO

	
99.068

	
99.107

	
99.076

	
99.045

	
99.076

	
99.141

	
98.100

	
98.371

	
98.644

	
98.372

	
WOA

	
99.472

	
99.472

	
99.472

	
99.472

	
99.472

	
98.956

	
98.957

	
99.005

	
98.964

	
98.960

	
TSO

	
99.460

	
99.459

	
99.459

	
99.460

	
99.460

	
98.986

	
98.941

	
99.005

	
98.981

	
98.961

	
GWO

	
99.477

	
99.476

	
99.476

	
99.477

	
99.477

	
98.990

	
98.975

	
99.019

	
98.959

	
98.967

	
MFO

	
99.480

	
99.480

	
99.480

	
99.480

	
99.480

	
98.998

	
99.013

	
99.020

	
99.009

	
99.011

	
FFA

	
99.479

	
99.478

	
99.478

	
99.479

	
99.478

	
98.954

	
99.007

	
98.949

	
98.968

	
98.987

	
RSA

	
98.829

	
98.829

	
98.829

	
98.829

	
98.829

	
99.020

	
99.098

	
99.070

	
99.038

	
99.068

	
MGO

	
99.629

	
99.529

	
99.629

	
99.729

	
99.629

	
99.220

	
99.188

	
99.218

	
99.248

	
99.218

	
CIC2017

	
GO

	
99.130

	
99.239

	
99.204

	
99.170

	
99.204

	
99.170

	
99.020

	
99.215

	
99.410

	
99.215

	
WOA

	
99.690

	
99.490

	
99.450

	
99.690

	
99.590

	
99.430

	
99.240

	
99.190

	
99.430

	
99.335

	
TSO

	
99.680

	
99.750

	
99.680

	
99.710

	
99.730

	
99.420

	
99.480

	
99.420

	
99.450

	
99.465

	
GWO

	
99.370

	
99.430

	
99.380

	
99.560

	
99.495

	
99.110

	
99.180

	
99.120

	
99.300

	
99.240

	
MFO

	
99.360

	
99.370

	
99.480

	
99.430

	
99.400

	
99.100

	
99.120

	
99.220

	
99.170

	
99.145

	
FFA

	
99.450

	
99.480

	
99.600

	
99.740

	
99.610

	
99.200

	
99.220

	
99.350

	
99.490

	
99.355

	
RSA

	
99.911

	
99.910

	
99.889

	
99.911

	
99.910

	
99.911

	
99.907

	
99.888

	
99.911

	
99.909

	
MGO

	
99.941

	
99.920

	
99.926

	
99.931

	
99.926

	
99.941

	
99.947

	
99.942

	
99.936

	
99.942

[image: Table]

Table 2. Results of Friedman test.

Table 2. Results of Friedman test.

	

	

	
GO

	
WOA

	
TSO

	
GWO

	
MFO

	
FFA

	
RSA

	
MGO

	
Training

	
Accuracy

	
3.7500

	
3.5000

	
3.5000

	
4.0000

	
4.7500

	
3.0000

	
5.6250

	
7.8750

	
Precision

	
2.5000

	
3.2500

	
2.7500

	
3.7500

	
5.2500

	
5.0000

	
5.5000

	
8.0000

	
F1-Measure

	
1.7500

	
3.2500

	
4.2500

	
4.7500

	
5.2500

	
3.2500

	
5.5000

	
8.0000

	
Recall

	
1.2500

	
3.5000

	
4.5000

	
3.0000

	
5.2500

	
5.0000

	
5.5000

	
8.0000

	
GM

	
2.0000

	
2.7500

	
3.5000

	
3.7500

	
5.2500

	
5.2500

	
5.5000

	
8.0000

	
Testing

	
Accuracy

	
4.7500

	
3.0000

	
4.0000

	
3.5000

	
4.2500

	
1.7500

	
6.8750

	
7.8750

	
Precision

	
2.5000

	
2.7500

	
2.7500

	
3.2500

	
4.7500

	
5.5000

	
6.7500

	
7.7500

	
F1-Measure

	
2.2500

	
2.6250

	
4.1250

	
4.5000

	
5.0000

	
2.5000

	
7.0000

	
8.0000

	
Recall

	
1.5000

	
3.2500

	
5.0000

	
2.0000

	
4.7500

	
4.5000

	
7.2500

	
7.7500

	
GM

	
1.2500

	
2.7500

	
3.7500

	
3.5000

	
4.5000

	
5.2500

	
7.0000

	
8.0000

[image: Table]

Table 3. Comparison with other methods.

Table 3. Comparison with other methods.

	
Dataset

	
Work

	
Accuracy

	
KDD Cup 99

	
Wu [29]

	
85.24

	
Farahnakian et al. [30]

	
96.53

	
MGO

	
0.9204

	
NSL-KDD

	
Ma et al. [32] SCDNN

	
72.64

	
Javaid et al. [33] STL

	
74.38

	
Tang et al. [34] DNN

	
75.75

	
Imamverdiyev et al. [35] Gaussian–Bernoulli RBM

	
73.23

	
MGO

	
76.725

	
BIoT

	
[36] (BiLSTM)

	
98.91

	
Alkadi et al. [36] (NB)

	
97.5

	
Alkadi et al. [36] (SVM)

	
97.8

	
Churcher et al. [31] (KNN)

	
99

	
Churcher et al. [31] (SVM)

	
79

	
Churcher et al. [31] (DT)

	
96

	
Churcher et al. [31] (NB)

	
94

	
Churcher et al. [31] (RF)

	
95

	
Churcher et al. [31] (ANN)

	
97

	
Churcher et al. [31] (LR)

	
74

	
MGO

	
99.22

	
CICIDS2017

	
Vinayakumar [37]

	
94.61

	
Laghrissi et al. [38]

	
85.64

	
Alkahtani et al. [39]

	
80.91

	
MGO

	
99.941

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png
DataSet

Testing set

Initialize all the parameters of MGO I
]

Generate initial population X using Eq. (18)

Stop

Reduce testing

set

condition
met?

4' Return Z, I

Evaluate the performance I

o

~l Convert X; to binary using Eq. (19)

v

Compute fitness value Fit for selected features of E
X; using Eq. (20) and training set

| Determine the best solution X, I
v
| Update X using Egs. (3)-(7) I

]
Update Pr and 75 using Egs. (22)-(23)

Update X using
GO asin Egs.
(8)-(9)

Update X using
WOA as in Egs.
(10)-(15)

] |

nav.xhtml

 sensors-23-04430

 		
 sensors-23-04430

media/file2.png
j’ FC1(128)
ConvBlock 2 l — Classification

Input —> ConvBlock 1 —
~~~~~~ FC2(128) Softmax
3 3| e :
I FC3(64) | BN —
Sx| x| 2| S (64)
S ~ Q| ~
S l

Extracted features —»






media/file5.jpg
@ ®)

@





media/file3.jpg
Dataset

Reduce testing

Initiaize al the parameters of MGO

‘Compute fitness value it forselecte features of
X, using Eq.(20) and rining set

Update  using Eqs. (3147)

Update Pr and  using Eas. (22123)

Fori = 1:N






media/file1.jpg
FC1(129)
Input ConvBlock 1 |—| ComvBlock 2 ,—r 1 Classifleation

FC2(129) Sofimax
[

K FC3(64) | BN

I ..

ReLU.
Dropout
ing






media/file7.jpg
55000
58000
1000
55000
4000
53000
2000

w0
2000
0000
a0
85000
a0
a0

woa

oW wo
mhcarsy mpeion =FuMesure

@
T  awo  wo

ey mhrdson 8 FLMesre

(b)

[

o

pest

o

=G

weo

Gen
Frmesre
precion
sy

Gaesn
recion
secrsey





media/file0.png





media/file8.png
100.000
99.000
98.000
97.000
96.000
95.000
94.000
93.000
92.000

94.000
92.000
90.000
88.000
86.000
84.000
82.000

G-Mean
Recall
F1-Measure
Precision
Accuracy
GO WOA TSO GWO MFO FFA RSA MGO
B Accuracy M Precision mF1-Measure mRecall mG-Mean
(a)
G-Mean
Recall
F1-Measure

Precision
Accuracy

GO WOA TSO GWO MFO FFA RSA MGO

B Accuracy M Precision MF1-Measure ™ Recall mG-Mean

(b)





media/file6.png
m| 229,853
74%

B Normal ® DoS ® Probe m R2[. W U2R

(a)
u| 140,043
14%

=(6997
1%
m]12901
11%

m| 25,388
11%

=574

1%

= ]]69
1%

=299
0% =|31,492
14%

B Benign B DDoS ®m FTP-Patator B SSH-Patator B PortScan ® Brute Force B Sql Injection B XSS

(c)

u| 2887
13%

B Normal ® DoS m Probe m R2], m U2R

(b)

m|[8,163
2%

B Normal B DoS B DDoS B Reconnaisance B Theft

(d)

m| 7458
33%

= 45927
36%

=1 1,541,315
53%

=1330,112
45%





