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Abstract: In many countries, water quality monitoring is limited due to the high cost of logistics
and professional equipment such as multiparametric probes. However, low-cost sensors integrated
with the Internet of Things can enable real-time environmental monitoring networks, providing
valuable water quality information to the public. To facilitate the widespread adoption of these
sensors, it is crucial to identify which sensors can accurately measure key water quality parameters,
their manufacturers, and their reliability in different environments. Although there is an increasing
body of work utilizing low-cost water quality sensors, many questions remain unanswered. To
address this issue, a systematic literature review was conducted to determine which low-cost sensors
are being used for remote water quality monitoring. The results show that there are three primary
vendors for the sensors used in the selected papers. Most sensors range in price from US$6.9 to
US$169.00 but can cost up to US$500.00. While many papers suggest that low-cost sensors are
suitable for water quality monitoring, few compare low-cost sensors to reference devices. Therefore,
further research is necessary to determine the reliability and accuracy of low-cost sensors compared
to professional devices.

Keywords: low-cost sensor; water quality; Internet of Things; remote sensor; environmental monitoring;
environmental measurements; remote water quality monitoring

1. Introduction

The concept of Internet of Things (IoT) is widely used in various sectors of society due
to the proliferation and advancement of sensing and communication technologies [1,2].
Specialized electronic devices with minimal processing capabilities, also known as smart
objects, are used in homes, industries, cities, large farms, and even small rural producers.
These devices can measure and send monitored data to the Internet in real time, usually
through a wireless communication network. Once the data is stored in the cloud, it opens
up possibilities for data analysis, optimization, and real-time decision-making. The data
collected is diverse and can include variables such as temperature, humidity, geographic
location, heart rate, images of open or closed environments, and others. In the context
of water quality monitoring, the data collected includes parameters such as potential of
Hydrogen, Dissolved Oxygen (DO), turbidity, Oxidation-Reduction Potential (ORP), and
others [3–5].
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Continuous, remote, and reliable monitoring of water quality can improve the manage-
ment and control of water quality. This, combined with the use of low-cost sensing devices,
can increase public access to high-quality water. Worldwide, at least three billion people do
not know the water quality they depend on because there is no monitoring [6]. Providing
access to high-quality freshwater for the population and improving water quality in the
surrounding area are ambitious goals set out in the United Nations 2030 Development
Sustainable Agenda. Therefore, comprehensive and up-to-date water quality monitoring
data is essential for decision-makers to ensure the availability and sustainable management
of water resources for both human use and healthy aquatic ecosystems [7].

In Brazil, for instance, the National Water Agency (ANA) is the government agency
responsible for managing and monitoring water resources. ANA operates a basic water
quality network with 1340 monitoring sites throughout the country [8]. In this network, on-
site analyses of four basic parameters, namely pH, dissolved oxygen, electrical conductivity,
and temperature, are conducted using multiparametric probes during campaigns. However,
monitoring is sporadic, and there are still large gaps in both spatial and temporal coverage
of monitoring because Brazil is a continental country (0.16 points/1000 km2), and not all
federal units can monitor the quality of their waters due to the high cost of multiparametric
probes and the logistics involved.

While IoT applications for real-time water quality monitoring are expected to reduce
costs associated with operations and logistics and increase the number of sites monitored,
several challenges, such as availability, reliability, performance, scalability, interoperability,
and security, need to be addressed. The perception or sensing layer is located at the bottom
of the IoT model, and it contains the sensor responsible for monitoring water quality
parameters in various water bodies such as rivers, lakes, reservoirs, and tanks. Ensuring
the quality of the data, i.e., the reliability and accuracy of the measurements; is a main
concern in this context [5,9,10]. Whereas reference instrument sensors are very expensive
and based on proprietary technology, cost-effective sensors are also available in the market,
known as low-cost sensors. For example, a single probe for the Hanna 9829 multiparameter
probe costs around 1000 USD [11]. In contrast, low-cost sensors capable of measuring the
same parameters are available for around 300 USD (see Table 4), which is less than a third
of the value.

Low-cost sensors can be easily integrated into rapid prototyping boards such as
Arduino and small development boards such as Raspberry PI. However, the lack of infor-
mation about their characteristics, such as robustness, lifetime, and interference, among
others, is a problem. Therefore, the following open questions arise: (i) To what extent are
the measurements provided by low-cost sensors reliable to certify water quality? (ii) Which
low-cost sensors are suitable for use in water quality monitoring systems for water resources?

The literature contains hundreds of papers that use sensors, electronic devices, and
computer systems to monitor water quality in real-time for various purposes [12–16].
Despite this, there are currently no studies or databases documenting which low-cost
sensors have been systematically used to monitor water quality, nor any evaluation of
their performance compared to professional devices and their applicability in different
environments on a continuous or sporadic basis. From a technological perspective, sen-
sors are not standardized; each operates at different measurement frequencies, is made
of different materials, and has different operating principles, power supplies, and data
representations [5]. Furthermore, as far as we know, the existing literature reviews that
address water quality and the Internet of Things also do not address low-cost sensors,
including their manufacture, model, and cost.

In this sense, the objective of this paper is to conduct a systematic review of the
literature to determine which low-cost sensors are being used for remote water quality
monitoring and what performance has been achieved in making the measurements. We
provide an overview of water quality low-cost sensors based on 10 guiding questions and
point out the challenges and main recommendations to guide the practical application of
this technology. We emphasize that while there are major challenges in operationalizing
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IoT applications, regardless of context, such as security fault tolerance [17,18], energy
efficiency [19,20], and others. There are also many research opportunities, such as using
machine learning to analyze water quality data [21,22]. However, this work focuses
on the perception level of the IoT model, especially the low-cost sensor used for water
quality monitoring.

The remainder of this paper is organized as follows. Section 2 presents the background
on water quality parameters monitored in Brazil to determine the water quality index and
briefly describes related review articles. Section 3 presents the water quality parameters
monitored to determine the water quality index in Brazil and briefly describes related
review articles. Section 4 presents the results obtained, and Section 5 concludes with the
main challenges and recommendations.

2. Background
2.1. Water Quality Index

The water quality index is a tool that summarizes information about several physical,
chemical, and biological parameters of water. It is a standardized and understandable
way to inform the public and guide water quality planning and management. There is no
consensus on the best index, which depends on the target (i.e., raw water for public supply,
agriculture, aquaculture, water pollution, etc.) and the economic conditions of the country.

In Brazil, ANA is the entity legally responsible for implementing the National System
for Water Resources Management System [8] and uses the Water Quality Index (WQI) de-
veloped by the National Sanitation Foundation for the United States of America. Although
the index has limitations, it is the primary one used in the country to infer water resource
quality. The WQI-ANA consists of nine parameters, namely: DO, thermotolerant coliforms,
the pH, Biological Oxygen Demand (BOD) at 20 ◦C after 5 days, temperature, total nitrogen
and phosphorus, turbidity and total solids [23]. These parameters are considered suffi-
cient to determine water quality and classify water bodies. However, other parameters
may help to conclude the characteristics of particular water resources, such as ORP and
metals concentration.

The parameters of WQI-ANA are measured in situ with a multiparametric device
and at the laboratory by taking water samples to analyze mainly BOD, coliforms, total
solids, and total nitrogen and phosphorus. There is the development of multiparameter
probes including BOD and coliform bacteria sensors [24–26], but there are yet challenges to
validate them. The common practice is to measure these parameters in the water samples
and, when feasible, also in other types of samples. Some most common basic parameters of
water quality are briefly described in the following.

� DO: The main methods for measuring DO are the titrimetric, the electrochemical or
the optical method [27]. The DO probes usually use optical and electrochemical (based
on the oxidation-reduction reactions). There are two types of electrochemical probes,
which can be polarographic or galvanic, while the optical probes are based on the
extinction of luminescence in the presence of oxygen and, more recently, developed
probes based on the fluorescence method. Wei et al. [27] mention in their review that
polarography is currently the most widely used electrochemical method, with a simple
structure, a wide range of applications, and mature technology. However, there are
some problems, and they pointed out that oxygen sensors based on the fluorescence
method could overcome these problems presented by electrochemical sensors. The
manufacturer Atlas Scientific, for example, offers galvanic probes (consisting of a
silicone membrane, an anode bathed in an electrolyte, and a cathode), while Vernier
offers an optical option (using luminescence technology) and recommends its use
for teaching.

� ORP: This parameter is a measure of the electrical potential (electron exchange) in the
semi-reactions of oxidation and reduction and indicates whether water (water with
other substances) is either oxidized or reduced. It indicates the ability of water bodies
to cleanse themselves, and, therefore, high values of ORP usually indicate high levels
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of oxygen in the water. The principle is electric, even considering the new alternative
technologies, and due to the importance of the measurement that helps to understand
the change of other parameters, ORP sensors are usually coupled in multiparameter
probes [28].

� pH: Parameters in commercially available multiparameter probes are measured using
electrodes with different operating principles and probes structures. pH probes
typically contain two electrodes (sensor and reference) that measure the potential of
hydrogen or hydrogen activity in a solution. Common pH probes are glass electrodes—
the membrane material that interacts with the sample that is pH sensitive—and use
Ag/AgCl reference electrodes. The body of the probes can be made of many materials
(glass, epoxy, polymer, etc.) with different resistance and durability. In addition, the
junctions, which are porous connection points between the reference electrode and the
sample, are another important sensitive feature of the pH probes, which gives them
durability and application under different working conditions. Moreover, there are
recent technologies (electrical and optical types) that use, for example, Ruthenium
(Ru) and Titanium Dioxide (TiO2) in the sensors [28].

� Temperature: Multiple processes occurring in the water are affected by temperature,
affecting the concentration of parameters such as DO, pH, and conductivity, among
others. Thus, the temperature sensor, like pH and conductivity, is a common sensor in
multiparametric sensors/probes. According to Silva et al., the most common low-cost
temperature measurement process is to use thermoelectric devices and/or resistive
sensors [28].

� Turbidity: Indicates the degree of attenuation experienced by a ray of light as it passes
through water. This attenuation is due to the absorption and scattering of light by
suspended matter (silt, sand, algae, soil residues, clay, etc.) and is, therefore, an optical
principle. The measurement is an important parameter for determining water quality
and in the operation of water treatment plants, as it affects the number of coagulants
needed in the treatment process. Silva et al. [28] pointed out that recently a low-cost
technology based on a nephelometric turbidity sensor has been developed to monitor
water quality continuously and mentioned some papers presenting the development
of turbidity sensors.

Finally, other important chemical parameters that are used to infer water quality are
nitrogen (i.e., ammonia, nitrate), phosphorus, total solid in suspension, and biological
parameters such as total coliforms, Escherichia coli, algae, and cyanobacteria. The multi-
parametric devices also provide other parameters (e.g., salinity, pressure, and conductivity)
measured by sensors or calculated from a combination of measurements and displayed by
the device.

2.2. Low-Cost Water Monitoring Sensors

The number of parameters measured, the robustness, accuracy, and sensitivity of the
sensors, and the characteristics of the device (material, software, cable length, display,
peripherals, etc.) are responsible for the cost. Low-cost sensors for water monitoring have
emerged as a solution to improve and expand the monitoring system, especially in low and
middle-income countries. There is no consensus or clear definition of low-cost water quality
sensors in the literature. Usually, only the cost or price is considered, which ranges from 10
to 200 USD, according to Section 4.1. The cost and price depend on the development stage of
the country and cannot be used exclusively as a reference. We believe that the definition of
low-cost sensors for water quality monitoring should be based on the characteristics of the
solution along with the cost. Open-source hardware and software, user-friendly interface,
and easy integration with microcontrollers like Arduino or single-board computers, for
instance, Raspberry Pi, are sure parameters that define a low-cost sensor.

In air quality monitoring, the criteria for defining low-cost sensors are more mature.
The definition or understanding is that they are lower price, smaller size, and lower
power sensors—a sensor class of non-regulatory technology that are generally easier to use
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and presented as turn-key, ready-to-deploy monitoring devices, making them attractive
to researchers, educators, and the general public alike [29–33]. Although there are no
performance standards for low-cost sensors set by the U.S. Environmental Protection
Agency (EPA) or industry, the sensors are being widely deployed, including by the United
Nations [34] in the Global Environment Monitoring System for Air, which is leading the
deployment of affordable air quality monitoring networks to assess urban air pollution
and is proactively exploring the feasibility of merging satellite and ground observations in
developing countries where air quality data gaps have existed for decades.

2.3. Related Work

Most of the review articles published in recent years on low-cost water quality sensors
and the Internet of Things (IoT) are related to IoT water monitoring systems, energy
optimization, information, and communication technology systems for water resource
monitoring, control, and management, implementation of smart and sustainable water
resource management technologies, and finally, other more general articles mainly focused
on water and air quality monitoring [19,20,22,35–37]. Moreover, not all of them have done
a systematic bibliographic review, and most of them focus on IoT-based water quality
monitoring systems without providing an overview of low-cost sensors for IoT water
quality monitoring, their evaluation under laboratory and environmental conditions, and
calibration protocols.

Akhter et al. [38] discusses the critical water parameters (temperature, pH, nitrate,
phosphate, calcium, magnesium, and DO) for fisheries and reviews the sensors available
to detect these parameters. The authors point out that most sensors are expensive, need
improvements in sensitivity, power requirements, and IoT compatibility, and must be
used continuously in the field. They propose a system called a low-cost system. They
used commercial and home-built sensors, which they found to be low-cost and most
effective for field applications in fisheries farming. They found that the performance of the
sensors degraded with long-term use and proposed developing an algorithm for automatic
calibration to solve this problem. However, they did not present results on accuracy (i.e.,
comparison to reference instruments) and did not address the other problems with the
system when used in the field.

Petkovski et al. [39] conducts an SLR of IoT-based systems for aquaculture. The
authors define five research questions to describe the types of sensors used, the types
of single-board computers, the protocols for data transport, the cloud-based platforms
used for aquaculture, and the benefits of IoT in aquaculture. They found seventeen types
of sensors. Temperature, pH, and DO are the three most commonly used sensor types.
Raspberry Pi, Arduino, and ESP are the most common single-board computers found.
Despite describing the sensor types, the authors do not address their manufacture, sensor
model, and sensor cost.

Ramírez-Moreno et al. [40] searched Scopus, Google Scholar, and IEEE Xplore databases
for a review of sensors for sustainable smart cities. They selected 193 articles related to
six categories related to smart cities (energy, health, mobility, security, water, and waste).
Among smart city deployments in the world, only two are in South America and none
in Africa, with most in Europe with recognized initiatives in Barcelona and Hong Kong.
For water quality monitoring, only one initiative, according to results obtained by authors,
should be increased in the last year. The paper did not provide an evaluation of com-
mercially available water quality sensors, nor did it discuss the problems of low-cost IoT
water quality monitoring in field applications. They recognized that future sensors need
to be improved in terms of cost and energy consumption and also called for an increase
in robustness.

Palermo et al. [41] presents an overview of smart technologies for water resource man-
agement, focusing on water management systems for conservation at the building level.
They provide an overview of the key components used in smart water level monitoring
systems, smart leak detection, and smart water consumption monitoring systems. At the
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same time, Manoj [42] presents a review of various Water Quality Monitoring Systems
(WQMS) for fish ponds using the IoT solutions and implements a water quality manage-
ment system using underwater sensors. The authors found fifteen papers (from the last
decade) presenting WQMS, most of which use IoT and pH and temperature sensors. The
cost of the sensors is not addressed, or they are considered low-cost and little information
is given about the sensors used. Regarding sensors, it is interesting to highlight the use of
nitrate (NO−

3 ) and ammonia (NH3, called AmmoLyt) sensors to measure concentrations
in freshwater, which together account for the largest fraction of total nitrogen. Hangan
et al. [35] published a summary of advanced techniques for monitoring and managing
urban water infrastructures and pointed to the growing body of work related to water and
information and communication technology systems.

Silva et al. [28] focus their review on advances in technological research for online and
in situ water quality monitoring. They presented a summary of studies on new alternative
technologies for monitoring color, temperature, DO, turbidity, chlorine, fluorine, metals,
nitrogen, pH, phosphorus, ORP, algae and cyanobacteria, total coliforms and Escherichia
coli parameters in water. They pointed out various works and technologies for measuring
water quality parameters and that most are based on optical or electrochemical sensors.
They recommended more robust analyses and assessments under real conditions due to
the recent development of these technologies.

The increase in publications on water-related topics can be attributed to the significant
rise in water demand, coupled with concerns about water quality, pollution, and population
growth. To address these challenges, the utilization of sensors and monitoring systems
has become essential for improving the monitoring of water resources in various domains.
Table 1 provides an overview of the literature reviews referenced or described in this SLR.
We describe 12 works, most of which were published in the last 2 years. Although we
identified 24 articles related to this field in our SLR, none of them comprehensively discuss
the utilization of low-cost sensors for water quality monitoring in the IoT context.

Table 1. Summary of literature reviews related with water quality and IoT.

Work Title Summary

Akhter et al. [38]
Recent Advancement of the Sensors for
Monitoring the Water Quality Parameters in Smart
Fisheries Farming

The research discusses the critical water
parameters for fisheries and reviews the existing
sensors to detect those parameters.

Hangan et al. [35]
Advanced Techniques for Monitoring and
Management of Urban Water Infrastructures—An
Overview

Conduct a review to show how emerging
technologies offer support for smart
administration of water infrastructures

Kesari Mary et al. [19]
Energy Optimization Techniques in Underwater
Internet of Things (UIoT): Issues, State-of-the-Art,
and Future Directions

Provides a survey on battery optimization issues
in UIoT.

Manoj et al. [42]
State of the Art Techniques for Water Quality
Monitoring Systems for Fish Ponds Using IoT and
Underwater Sensors: A Review

Provides a summary of existing systems including
technology, board and monitored water
parameters.

Olatinwo and
Joubert [20]

Energy Efficient Solutions in Wireless Sensor
Systems for Water Quality Monitoring: A Review

Presents energy-efficient solutions for wireless
sensor systems intended for the monitoring of
water quality at water stations.

Palermo et al. [41] Smart Technologies for Water Resource
Management: An Overview

This work reviews smart and sustainable
technologies for water resource management,
primarily for building-scale uses.
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Table 1. Cont.

Work Title Summary

Petkovski et al. [39] IoT-based Solutions in Aquaculture: A Systematic
Literature Review

This paper is a systematic literature review about
the IoT-based applications in aquaculture.

Ramírez-Moreno
et al. [40] Sensors for Sustainable Smart Cities: A Review

This review presents an analysis of different
sensors that are typically used in efforts toward
creating smart cities in the field of energy, health,
mobility, security, water, and waste management.

Silva et al. [28] Advances in Technological Research for Online
and In Situ Water Quality Monitoring—A Review

The paper review the development of modern
technologies aimed at monitoring water quality,
with the ability to reduce the costs of analysis and
accelerate the achievement of results for
management and decision-making.

Ubina and Cheng [36]
A Review of Unmanned System Technologies with
Its Application to Aquaculture Farm Monitoring
and Management

Conduct a review to provide an overview of the
capabilities of unmanned systems to monitor and
manage aquaculture farms that support precision
aquaculture using the IoT.

Ullo and Sinha [22] Advances in Smart Environment Monitoring
Systems Using IoT and Sensors

Review on Smart Environment Monitoring (SEM)
systems that involve monitoring of air quality,
water quality, radiation pollution, and agriculture
systems. The authors also describe the sensors
used, the machine-learning techniques involved,
and the classification methods found in each.

Zulkifli et al. [37] IoT-Based Water Monitoring Systems: A
Systematic Review

Search what kinds of data acquisition system
(DAS) are now employed to gather water samples
for testing and monitoring.

3. Methodology

A SLR is a study method that employs strategies to select, analyze, evaluate, and
summarize papers from a database of documents on the topic to obtain a consistent
investigation of the topic and even provide directions for future research. The research
protocol selected for this study is based on the work of Barbara Kitchenham [43]. A
summary of the protocol can be found in Figure 1. The SLR conducted in this work is based
on the selection of texts that address the following main research question:

� RQ: What low-cost sensors are being used for remote water quality monitoring?

The survey included only texts published in English between the years 2019 to 2022
and available in the databases ACM Digital Library, IEEE Digital Library, MDPI, Science
Direct, and Springer Link. Databases were selected based on the following criteria: (1)
online search engine; (2) advanced search engine; (3) recognized basis. The keywords fol-
low the search logic combination: “water quality” AND (“sensor” OR “sensors”) AND
((“low cost” OR “low-cost”) OR (“Internet of things” OR “IoT”)). During our
study, we found research works that do not use the term “low cost” or “low-cost” but do
use low-cost sensors to develop their applications according to the IoT concept. Therefore,
“IoT” is used as a synonym for “low cost” in our work. Table 2 shows the search result in
the selected databases. Initially, 3517 papers were found that contained the search string.
Considering the immense number of works found in the Springer Link database and the
impossibility of processing all of them manually, the selection process was automated. A
script was developed in the Python language that selects only works whose titles and ab-
stracts contain the previously defined string. After applying the script, a total of 127 works
from the Springer Link database were selected for analysis. The online tool Parsifal [44] was
used to select papers that met the research question of this systematic review. Parsifal is a
software tool specifically developed to aid researchers in conducting systematic literature
reviews. With its user-friendly interface, Parsifal offers many features and functions that
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streamline and automate the literature review process. It supports importing and export-
ing references from popular citation managers and fosters collaboration among multiple
reviewers, making it a valuable tool for conducting rigorous and efficient literature reviews.

Figure 1. Systematic review protocol.

From this point on, the methodology followed three classification phases: (1) appli-
cation of objective inclusion or exclusion criteria, (2) reading of titles and abstracts, and
(3) full reading of the works. In the first phase, works before 2019, reviews (reviews or
surveys), dissertations, theses, and speculative articles (towards new challenges, etc.), and
those not written in English were excluded. In the second phase, articles whose titles and
abstracts were related to the research question were selected. Finally, papers that used
low-cost sensors for remote water quality monitoring were selected. In the third phase,
the articles were read in full, and the 142 papers reported whether low-cost sensors were
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selected. Information on the total number of papers selected from each database of the
repositories used as sources can be found in Table 2.

Table 2. Overview of studies number considered in this SLR.

Source Initial Quantity Selected Accepted

ACM Digital Library 109 109 10
IEEE Digital Library 306 306 80
MDPI 77 77 15
Science Direct 97 97 27
Springer Link 2928 127 10

Based on the main research question, 10 additional research questions were elaborated
to obtain detailed information about the study area. We would like to know not only which
low-cost sensors were used to monitor water quality but also their cost, the environment
in which the sensor was used, the result obtained and whether the results were compared
with reference devices, the connection solution used, the country where the study was
conducted, etc. The following 10 questions were defined to guide this SLR:

� RQ1: What sensors were used, including their model, manufacturer brand, and cost?
� RQ2: What water quality parameters were monitored?
� RQ3: Did the sensors prove adequate considering their fields of application?
� RQ4: Were the results obtained through low-cost sensors compared with the results of

reference equipment (validation)?
� RQ5: The sensors analyzed what environments (e.g., rivers, lakes, etc.)?
� RQ6: Does the implemented solution have some connectivity to send data to the

Internet in real time?
� RQ7: In which country were the experiments realized?
� RQ8: Has the number of citations increased in the years considered?
� RQ9: What are the most cited studies?
� RQ10: What are the limitations of the considered studies and the directions for

future research?

4. Results

This section answers the research questions defined for this Systematic Literature
Review (SLR). The terms article, paper, study, and work are used interchangeably and refer
to the articles selected for analysis.

4.1. What Sensors Were Used?

Identifying low-cost sensors for water quality monitoring is one of the central issues of
this SLR. Based on this, it is possible to create an initial database including the major sensor
vendors, the technologies used to measure the physicochemical variables of interest, the
cost/performance factor, etc. The identification of sensors will also allow the development
of new works focused on analyzing the robustness, reliability, and durability of these
devices when installed in different environments.

Table 3 lists the low-cost sensors used to monitor water quality, as identified in the
selected articles. The majority of these sensors (46%) were manufactured by DFRobot,
followed by Atlas Scientific (8%) and Vernier (2%). Some papers mention other manu-
facturers such as Thermo Fisher Scientific, Hach Company, Istek, Mettler Toledo, Asmik,
Wilsen, Adafruit Industries, Daejin Instrument, Sensirion, HiLetGo, eKoPro, BHZY, Maxim
Integrated, and Bosch Sensortec. However, it is worth noting that several reviewed pa-
pers do not mention the sensors used for their measurements; they only describe the
measured parameters.

As reported by the manufacturer, Table 4 presents the cost, range, precision, and
accuracy of sensors from the three most cited manufacturers (DFRobot, Atlas Scientific,
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and Vernier). The DS18B20 temperature sensor and the SEN0205 level sensor are the least
expensive among the listed sensors, priced at US$6.90. Conversely, the ENV-50-DO sensor,
which measures Dissolved Oxygen (DO), is the most expensive at US$ 353.99.

Among the cited manufacturers of the sensor, DFRobot stands out as the most fre-
quently cited, as can be seen in Figure 2. The DFRobot sensors used in the reviewed
articles include the following models: DO SEN0237, Electrical Conductivity (EC) DFR0300,
Oxidation-Reduction Potential (ORP) SEN0165, potential of Hydrogen (pH) SEN0161 and
SEN0169, Total Dissolved Solids (TDS) SEN0244, temperature sensor DS18B20, turbidity
sensor SEN0189, and level/depth sensor SEN0205. These models are particularly notewor-
thy, given their frequency of use in the reviewed literature.

Table 3. Low-cost sensors used to monitor water quality parameters.

Supplier Sensor Articles

DFRobot

DO 7
electrical conductivity 7
ORP 3
pH 26
TDS 8
temperature 47
turbidity 30
water depth/level 1

Atlas Scientific

DO 8
electrical conductivity 5
ORP 2
pH 5
temperature 3

Vernier

DO 1
ORP 1
pH 1
electrical conductivity 1
salinity 1
water flow 1

Hach Company DO 1
BOD 1

Thermo Scientific suspended solids 1

Other manufacturers – 44

Not identified – 77

Although some works use only DFRobot sensors, as in the case of Concepcion et al. [45],
Billah et al. [46], Ang et al. [47], others, such as Billah et al. [48], Abbasi et al. [49], opt for their
association with sensors from other manufacturers. Following this strategy, Islam et al. [50]
use DFRobot sensors to measure pH, TDS, and temperature, in conjunction with DO and
BOD sensors from Hach Company and suspended solids sensors from Thermo Scientific.
The association of DFRobot sensors with Atlas Scientific sensors is presented by Fonseca-
Campos et al. [51]. Atlas Scientific manufactures environmental and electrochemical sensors
used in environmental monitoring. The company offers a dedicated product line for IoT,
which comprises three main models: env-20, env-40, and env-50. The env-20-DO is the
smallest model. This sensor has a measurement range of 0–50 mg/L, a price of around
US$135, and a life expectancy of 2.5 years. The env-40 model offers a higher measurement
range of 0–100 mg/L for DO and has a life expectancy of approximately 4 years. It is priced
at US$244 and is suitable for more demanding environmental monitoring applications. The
env-50 is the industrial version of the DO sensor and is designed for heavy-duty industrial
applications. It has a higher price point of around US$354, but it offers better performance
and durability. To facilitate the integration of their sensors with microcontrollers and
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single-board computers, Atlas Scientific offers two boards, Gravity and EZO, which use
analog, UART, and I2C communication protocols to interface with the sensors.

Table 4. Low-cost sensors from three main manufacturers. FS stands for Full-scale reading.

Manufacturer Parameter Sensor Model Cost (US$) Range Precision/Accuracy

DFRobot

DO SEN0237 169.00 0∼20 mg/L –
EC DFR0300 69.90 0∼20 ms/cm ±5% FS
ORP SEN0165 89.00 −2 V∼2 V ±10 mv (25 ◦C)
pH SEN0161 29.50 0∼14 pH ±0.1 pH (25 ◦C)
pH SEN0169 56.90 0∼14 pH ±0.1 pH (25 ◦C)
TDS SEN0244 11.80 0∼1000 ppm ±10 % FS (25 ◦C)
temperature DS18B20 6.90 −55∼125 ◦C ±0.5 ◦C (−10∼85 ◦C)
turbidity SEN0189 9.90 – –
water depth/level SEN0205 6.90 – ±0.5 mm

Atlas Scientific

DO ENV-20-DOX 134.99 0∼50 mg/L ±0.2 mg/L
DO ENV-40-DOX 214.99 0∼100 mg/L ±0.05 mg/L
DO ENV-50-DO 353.99 0∼100 mg/L ±0.05 mg/L
EC ENV-20-EC-K1.0 123.99 5∼200,000 µS/cm ±2 %
EC ENV-40-EC-K1.0 157.99 5∼200,000 µS/cm ±2 %
EC ENV-50-EC-K1.0 274.99 5∼200,000 µS/cm ±2 %
ORP ENV-10-ORP 243.99 −2∼2 V ±1 mV
ORP ENV-20-ORP 83.99 −2∼2 V ±1 mV
ORP ENV-30-ORP 58.99 −1.1∼1.1 V ±1.1 mV
ORP ENV-40-ORP 128.99 −2∼2 V ±1 mV
ORP ENV-50-ORP 237.99 −2∼2 V ±1 mV
pH ENV-10-pH 237.99 0∼14 pH ±0.002 pH
pH ENV-20-pH 60.99 0∼14 pH ±0.002 pH
pH ENV-30-pH 48.99 2∼13 pH ±0.1 pH
pH ENV-40-pH 85.99 0∼14 pH ±0.002 pH
pH ENV-45-pH 139.99 0∼14 pH ±0.002 pH
pH ENV-50-pH 234.99 0∼14 pH ±0.002 pH
temperature ENV-10-TMP 64.99 −200∼200 ◦C ±(0.15 + 0.002 ×T)
temperature ENV-50-TMP 70.99 −55∼220 ◦C ±(0.15 + 0.002 ×T)

Vernier

DO DO-BTA – 0∼15 mg/L ±0.2 mg/L
DO ODO-BTA – 0∼20 mg/L ±0.2 mg/L
DO GDX-ODO – 0∼20 mg/L ±0.2 mg/L
EC GDX-CONPT – 0∼20,000 µS/cm ±10 µS/cm
EC GDX-CON – 0∼20,000 µS/cm ±1 % FS
ORP GDX-ORP – −1∼1 V ±20 mV
ORP ORP-BTA – −450∼1100 mV –
pH GDX-PH – 0∼14 pH ±0.2 pH
pH PH-BTA – 0∼14 pH ±0.2 pH
salinity SAL-BTA – 0∼50,000 ppm ±1 % FS
flow velocity FLO-BTA – 0∼4.0 m/s ±1 % FS

Madeo et al. [14] and Garuglieri et al. [52] use Vernier sensors and report accepted
performance in measuring pH, ORP, DO, salinity, and flow in water quality monitoring
in rivers, lakes, and coastal waters. The sensor models mentioned are PH-BTA, ORP-BTA,
SALT-BTA, DO-BTA, FLO-BTA, and LJ-A. The cost of such sensors starts at US$127.00 for
the pH sensor and increases to US$502.00 for the DO sensor. Arunplod [53], in turn, uses
only Atlas Scientific sensors to measure temperature, pH, DO, and EC in rivers and lakes
in the Philippines.
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Figure 2. Low-cost sensors from the two most frequently cited manufacturers.

Furthermore, we highlight the use of some sensors whose technology is not owned
by the previous manufacturers. This is the case with the DHT11, DHT12, DHT22, PT100,
and LM35 temperature sensors that have been reported in works such as Abbasi et al. [49],
Jayalakshmi and Hemalatha [54], Trevathan et al. [55]. Additionally, there are some sensors
used in the literature whose manufacturers could not be identified, such as pH sensors E201-
C, PH-4502C, DO D-6800, AR8210, and DOS-600, as well as turbidity sensors TSW-20M,
BL5419, and ST100. These sensors were utilized in studies such as Simitha and Raj [56],
Huan et al. [57], and AlMetwally et al. [58].

As for the processes required for reliable measurement results, all manufacturers
establish specific calibration protocols for each sensor based on the technology used and
the parameter measured. For instance, DFRobot offers calibration scripts based on the use
of standard solutions and linearization processes, while Atlas Scientific offers scripts for
calibrating its sensors using linearization processes with one to three points, depending on
the parameter being measured.

The manufacturer Vernier also provides calibration protocols for its sensors, with each
probe having its specific procedure. However, Vernier ties these protocols to the use of
data acquisition equipment and proprietary applications provided by the manufacturer
itself, such as LabQuest Mini, LabQuest 2 and 3, LoggerPro, and Graphical Analysis. This
requirement can complicate the calibration process if such tools are not available.

In addition, the manufacturers recommend regular maintenance of the sensors de-
pending on the characteristics of the water bodies under study. They point out that the
sensors must be kept free of dirt deposits, as these can affect the functioning of the sensors
and lead to measurement errors. It is also advisable to check the sealing systems to prevent
water from entering the dry areas of the sensors, thus, ensuring their proper functioning.
Section 4.3 will address whether the use of the low-cost sensors are considered adequate,
from the point of view of the authors of each work, for their respective monitoring objec-
tives. The various fields of application are comprehensively presented in Section 4.5, with a
particular emphasis on monitoring water bodies, including rivers, lakes, seas, and springs,
as well as aquaculture and fish farming applications.
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4.2. What Are the Water Quality Parameters Monitored?

As described in Section 2, there are several parameters associated with water quality
monitoring, the combination of which allows us to determine whether the water of a
particular water body is suitable for certain critical uses, such as human consumption,
animal consumption, agriculture, aquaculture, and so on.

Figure 3 shows the main parameters measured in the articles evaluated in this SLR.
Several articles measured more than one parameter, and the figure summarizes the total
number of articles by parameter. It can be observed that the parameter measured in a
larger number of articles was pH (90%), followed by temperature (80%), turbidity (59%),
DO (38%), and EC (36%). Of these parameters, only EC is considered a complementary
parameter in the definition of water quality, as it is closely related to salinity and allows
conclusions to be drawn about the content of dissolved salts in the water. Information on
salinity and EC is crucial in classifying water as salty, brackish, or fresh, which helps define
its use in regions with fresh and/or drinking water shortages.

Among the parameters shown in Figure 3, pH stands out clearly. This can be partly
explained by the fact that several papers on aquaculture/hydroponics [48,49,57,59–75] and
the pH is closely related to the metabolism of various aquatic species, so its monitoring and
control is essential in this activity. Moreover, together with temperature, this is the sensor
with more options of brands/models and technological maturity to do measurements in
the aqueous medium. On the other hand, the DO content in water, a crucial parameter
for maintaining aquatic life in a given water body, is less measured, which could be
related to the application field (most on aquaculture/hydroponics) and the difficulty of
performing reliable DO measurements in real conditions. Clean water generally has higher
dissolved oxygen concentrations, about 5 mg/L, due to photosynthesis by algae and
physical processes associated with water movement [8].

Finally, other parameters related to water quality were measured and mentioned
less frequently in the articles reviewed: TDS, ORP, BOD, Fluorescent Dissolved Organic
Matter (fDOM), suspended solids, total nitrogen, dissolved organic matter concentration,
ammonia, nitrate, nitrite, iron, and magnesium, among others. In addition, about 13% of
the studies mentioned parameters not directly related to water quality but to hydrological
characteristics (water resource morphology). These include water level/depth, pressure,
and flow.

Figure 3. Water quality parameters measured.
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4.3. Did the Sensors Prove Adequate Considering Their Fields of Application?

Most studies (111) considered that low-cost sensors were appropriate. Only 21 re-
ported inadequate results, and 10 reported inconclusive results. However, most studies
reported that they did not compare results with reference devices. See the next section for
more details.

Among the reasons the authors gave for the unsatisfactory performance, those related
to the need for maintenance and conservation stand out. In their work, Trevathan et al. [55]
report damage to sensors due to water penetration into their dry parts. Wong et al. [76]
report sensor malfunctions and measurement errors caused by the deposition of debris
or biological encrustations on the sensors. Tholen et al. [77] reports on the degradation of
electrical components by marine air. Technical problems are also mentioned, such as the
lack of precision and accuracy of the sensors or their rapid degradation due to exposure to
the environment in which they are installed [55,78–80].

In one recent paper, Xavier et al. [3] evaluated the DFRobot turbidity sensor SEN0189
compared to a reference device. The sensor withstood immersion and gave results close to
those of the reference sensor during the 8-h test period. After this period, the difference
between the response curves of the SEN0189 and the reference device increased continu-
ously. At the time when the water change takes place (18 h), the error increases significantly.
The sealing and the mechanical structure of the SEN0189 sensor are not prepared to be
submerged for a long period of time.

4.4. Were the Results Obtained through Low-Cost Sensors Compared with the Results of
Reference Equipment?

Although calibration with standard solutions is an important step to improve the
reliability of low-cost sensors, it is not sufficient to guarantee their accuracy. It is essential
to compare the results obtained from low-cost sensors with those of reference devices, such
as multiparameter probes, to ensure their validity. This not only demonstrates the low-cost
sensors’ proper operation but also helps to establish the accuracy and reliability of the
obtained results. This is the focus of RQ4. In this regard, only 18 studies performed the
expected comparison. On the other hand, 124 studies did not include reference instruments
or did not discuss validation. In general, this lack of validation makes the results obtained
with low-cost sensors less reliable.

Table 5 presents the works that bring a comparison of low-cost sensors with refer-
ence equipment. It is worth noting that the test periods in the reported studies were
relatively short. Only one study [81] lasted for six months, while most studies were limited
to a period of a few weeks or even a few hours. Among the papers comparing mea-
surements of low-cost sensors with reference probes, the papers by Wu and Khan [82],
Kinar and Brinkmann [83], Méndez-Barroso et al. [84], Bórquez López et al. [85] in which
multiparametric probes from Xylem (YSI EXO, YSI 551, YSI-556) and Hanna Instruments
(HI98128) are used as reference when testing pH, turbidity, TDS, DO, and temperature
sensors. Probes from Eutech Instruments (CON 450) and Horiba are used as references
by Weerasinghe et al. [86] and Demetillo et al. [15], respectively. In turn, other authors
present the use of laboratory equipment or other sensors already installed in the test areas
as reference sensors [51,57,65,87–90].

Wu and Khan [82] describe a novel seawater monitoring system that uses an un-
manned floating surface vehicle in the form of a catamaran. The system is equipped with
LoRaWAN transmitters, enabling remote data transmission and real-time monitoring of
water quality parameters in seawater. The USV carries a suite of sensors from DFRobot
to measure pH (SEN0169), turbidity (SEN0189), and temperature (DS18B20), as well as a
DO sensor from Atlas Scientific, model not identified. These sensors were calibrated in the
laboratory using the Labquest 2 instrument and Vernier sensors. In the field, the results
were validated by comparison with measurements made with the multiparametric probe
YSI EXO. Comparison data between the probe and the sensors are not described in the
paper, nor is the evaluation time of the sensors.
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To assess the water quality in coastal regions, estuaries, and tidal channels, Méndez-
Barroso et al. [84] developed a monitoring system capable of measuring several parameters
including water level, temperature, salinity, pH, EC, TDS, and DO in the water. The ENV40
sensors from Atlas Scientific were calibrated in the laboratory using standard solutions,
and the results were compared with those obtained from the multiparameter Ysi Exo
3 probe. Field tests were conducted for 45 days. The results were validated with the
Ysi Exo 3 probe and statistically evaluated using measures such as standard deviation,
coefficient of determination (R2), Root Mean Squared Error (RMSE), Pearson correlation
coefficient, and statistical bias. From the analyses carried out, the authors report good
performances of the low-cost sensors, emphasizing the accuracy and durability comparable
to first-class equipment.

Moreover, for monitoring water quality in lakes, Huan et al. [57] propose an additional
assessment of salinity by measuring the electrical conductivity of the water. In addition,
the authors implement a correction of the pH, DO, and EC values measured with DFRobot
sensors as a function of the temperature value [57]. Calibration laboratory procedures are
performed before and after the field tests to evaluate the reliability of the results in terms of
absolute error and mean square error over the 20 days of testing. The instruments used as a
reference for calibration are an RTD sensor for temperature, and a FOPTOD ODO sensor for
dissolved oxygen, while the pH and EC sensors were calibrated with standard solutions.

Table 5. Comparison of low-cost sensors with reference equipment. NSS stands for Non-identified
Standard Sensors.

Work Standard Equipment Testing Period Statistical Analysis of Data

Adriman et al. [61] Refractometer Atago and PCS
Tester 35 Not informed Relative error

Bórquez López et al. [85] HANNA HI98128 and YSI 551
multiparameter probes 5 days R2, variance, mean, standard

deviation, etc.

Demetillo et al. [15] Horiba Water Checker Not informed R2 and absolute error

Goparaju et al. [91] HANNA HI 99300
multiparameter probe Not informed R2 and root mean squared

error (RMSE)

Hawari and Hazwan [65] NSS 13 h Standard deviation and
absolute error

Huan et al. [57] HASH COMPANY
MS5—Hydrolab Not informed relative error

Kinar and Brinkmann [83] YSI EXO2 multiparameter
probe Not informed None

Malissovas et al. [81] NSS 6 months Relative error and absolute
error

Martínez et al. [92] NSS 1 month R2, Relative error and
standard deviation

Méndez-Barroso et al. [84] YSI EXO3 multiparameter
probe 3 months

R2, RMSE, standard deviation,
Pearson correlation coefficient
and bias

Nandakumar et al. [88] NSS Not informed Relative error

Rezwan et al. [87] NSS 1 day None

Singh et al. [90] Systronics 802 pH meter Not informed None

Tsai et al. [93] NSS 20 days None

Wannee and Samanchuen [89] NSS 30 min Relative error
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Table 5. Cont.

Work Standard Equipment Testing Period Statistical Analysis of Data

Weerasinghe et al. [86] Thermo Scientific Eutech
CON 450 and other NSS Not informed RMSE

Wu and Khan [82] YSI EXO multiparameter
probe and Vernier sensors Not informed None

Xu et al. [94] CHI660E electrochemical
workstation Not informed R2 and relative error

Standard pH and DO solutions were also used in the calibration procedures for Atlas
Scientific sensors presented in Demethyllo et al. [15]. The results of the two-week tests,
conducted in two streams, were validated by comparing the measured pH and DO values
with those of a multiparametric probe from Horiba. The authors claim that the sensors
perform well and evaluate the mean absolute error and coefficient of determination R2

with values of 0.9792, 0.9731, and 0.9746 for DO, pH and temperature, respectively [15].
Bórquez López et al. [85] present a system for monitoring water quality in the con-

text of precision aquaculture. In a laboratory setting, they implement and evaluate the
performance of a low-cost open-source platform for measuring pH, DO, and temperature
using Atlas Scientific sensors. Validation of the measured parameters was performed using
Hanna HI98128 and ISY 155 multiparametric probes, obtaining coefficients of determina-
tion R2 of 0.81, 0.72, and 0.97 for DO, pH and temperature, respectively [85]. The authors
also evaluated the continuity of operation, reproducibility, and reliability. The continuity
of the operation was evaluated by continuous monitoring of parameters for 30 days, and
the results show proper system functioning. Reproducibility was confirmed by evaluating
three similar systems and comparing the results obtained. Reliability, on the other hand,
was confirmed by the survey or statistical analysis of the sensitivity, resolution, precision,
and accuracy of the measurements.

In their study, Malissovas et al. [81] present a monitoring system for temperature,
pH, and salinity (measured through EC) that is applied to rivers and water channels. The
pH sensor’s raw data is corrected for instantaneous temperature, while the EC values are
referenced to a temperature of 25 ◦C using a linear compensation method. After tempera-
ture corrections and compensations, an algorithm based on phase angle measurement of
impedance and voltage levels is used to analyze anomalous events, such as biofouling and
possible sensor failures, to identify maintenance needs, repositioning, or replacement of
the sensors. The authors evaluate the sensors’ performance for six months under adverse
environmental conditions and without any maintenance interventions. Using unidentified
reference sensors, they evaluate the low-cost sensors’ performance in terms of absolute and
relative error, reporting correlations of 80% and 95% for pH and EC, respectively.

4.5. The Sensors Analyzed What Environments?

Sensors have been evaluated in a broad range of environments. In some cases,
sensors are evaluated in strictly controlled laboratory settings (e.g., [51,95,96]), where
environmental conditions are tightly regulated to provide consistent and reliable test
conditions. In other papers, sensors are tested in more complex and dynamic envi-
ronments, such as aquaculture tanks (e.g., [49,57,59,63–65,85,97–99]), rivers and lakes
(e.g., [14,15,47,50,52,78,81,100–105]). These natural environments can present challenges
that are not present in controlled laboratory environments, such as temperature variations,
water currents, and the presence of contaminants. The intrinsic characteristics of the envi-
ronments where sensors are evaluated can have a significant impact on their performance.
For example, in natural aquatic environments, sensors may need to be designed to with-
stand biofouling, which is the accumulation of biological organisms on the sensor surface
that can interfere with its functionality. Similarly, in industrial environments, sensors may
need to be able to withstand exposure to harsh chemicals and extreme temperatures.
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Figure 4 provides an overview of the number of papers that analyze sensor data in
different environmental settings. The majority of the papers (56) focus on natural water
bodies, with a specific emphasis on rivers (23), lakes and ponds (18), oceans, estuaries, and
tidal channels (7), as well as aquifers and sources (8). Aquafarming applications (38) are
the second most common area of focus. It should be noted that 16 articles did not provide
information about the environmental context in which the sensors were tested.

Figure 4. Number of papers reviewed considering the environment analyzed by sensors.

4.6. Does the Implemented Solution Have Some Connectivity to Send Data to the Internet in
Real Time?

Data collection is a crucial step in predicting future trends for all environmental
indicators that define the conservation status of a given area. Therefore, connectivity is
fundamental because it transmits the obtained measurements, whether in real time or not.
However, having real-time information on water quality is essential for making decisions
to protect public health, such as knowing the physicochemical properties of water. The
connectivity solution to be chosen is directly related to the environment to be monitored.
For example, long-range networks such as LoRa/LoRaWAN [106] are ideal for monitoring
large geographic areas such as coastal regions, rivers, or lakes in both urban and rural
environments. On the other hand, short-range solutions like Wi-Fi or Bluetooth are better
suited for shorter distances within confined spaces.

Figure 5 summarizes the various connectivity solutions used in the studies. It is
important to mention that some studies use multiple connectivity solutions. The most
widely used connectivity solution is Wi-Fi/ IEEE 802.11, which accounts for almost 56% of
the studies. The second most common category (17.6%) uses connectivity solutions based on
mobile/cellular networks such as Global System for Mobile (GSM), 3G, 4G, General Packet
Radio Service (GPRS), etc. A third significant proportion of studies (16.1%) uses Low-Power
Wide-Area Network (LPWAN) connectivity, such as LoRa/LoRaWAN and Narrowband-
IoT (NB-IoT). Several remaining connectivity options include local connections (7.7%),
Bluetooth (6.3%), ZigBee (4.2%), and Radio Frequency (RF) (1%).
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Figure 5. Connectivity categories.

Figure 6 provides an overview of the platforms used in the studies. The most common
platform is Arduino and variants such as Arduino + ESP32, Arduino + Raspberry Pi, and
Arduino + ESP8266, which are used in 56% of the solutions. Arduino is used because it
can be connected to different types of sensors, such as analog, standard digital interfaces
(I2C, SPI), and custom digital interfaces. For Arduino solutions, connectivity is achieved
using shields or communication boards for Wi-Fi, LoRaWan, Bluetooth, and Zigbee or by
integrating the Arduino with the ESP8266 or ESP32. ESP32 alone is used in about 10%
projects and has built-in Wi-Fi and Bluetooth connectivity. The Raspberry Pi (7%) is mainly
used in solutions that require edge data processing. Platform solutions were not specified
in about 10% of the selected studies.

Figure 6. Most frequently cited platforms.

4.7. In Which Country Were the Experiments Realized?

Table 6 summarizes the geographical distribution of the research, answering the RQ7.
From this table, it can be observed that India, by far, corresponds to the highest number of
studies (33). Bangladesh and Malaysia have the second position (11), followed by China
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and Indonesia (9) and Taiwan (7). Figure 7 displays the top-5 countries based on the number
of studies.

The geographical distribution found, in part, reflects the higher demand for clean fresh
water, the degree of water pollution bodies, and the income level and climate conditions
of countries. For example, in 2017, 2 billion people worldwide did not have access to
basic sanitation facilities such as toilets or latrines [107]. Another important aspect is that
several articles analyzed fish farming and aquaculture environments, which are related to
population food habits and food demand (China and India have the highest size population).
Agriculture accounts for 70 percent of global water withdrawal according to the Food and
Agriculture Organization of the United [108].

Table 6. Geographic distribution of the studies.

Country Articles Country Articles Country Articles

India 33 Brunei 2 Morocco 1
Bangladesh 11 Canada 2 Netherlands 1
Malaysia 11 Cyprus 2 New Zealand 1
China 9 Egypt 2 Nigeria 1
Indonesia 9 Japan 2 Pakistan 1
Taiwan 7 Peru 2 Portugal 1
Philippines 6 Saudi Arabia 2 Russia 1
USA 5 South Africa 2 Senegal 1
Australia 4 Brazil 1 Sudan 1
Italy 4 Ecuador 1 United Kingdom 1
Mexico 3 Fiji 1
South Korea 3 Iraq 1
Spain 3 Jordan 1

Figure 7. Geographic distribution of the studies: Top-5 countries.

4.8. Has the Number of Papers Increased in the Period Considered?

The response to RQ8 is positive. During the time period considered in this SLR, it can
be observed from Figure 8 that there was a consistent increase in the number of papers.
Specifically, there were 19 articles in 2019, 25 in 2020, 34 in 2021, and a substantial rise
to 64 in 2022. This suggests an interest of the research community in the use of low-cost
sensors in water quality monitoring and control applications in different contexts. The
low-cost sensors technology emerged as an alternative to standard sensors or devices,
mainly because of cost and reduced size since there is an increased necessity to monitor
continuously parameters of water quality that support the water uses and to quantify the
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impacts of human activities in the water bodies. As already mentioned, there are expressive
inequalities in monitoring network systems among countries, and as pointed out by United
Nations [109] we only manage what we measure.

Figure 8. Number of articles published since 2019 selected to this SLR.

4.9. What Are the Most Cited Studies?

Two papers stand out in the number of citations: Pasika and Gandla [110] (cited by 87)
and Chowdury et al. [111] (cited by 83). However, most papers (112) have up to 5 citations,
with an overall average of 5.9 citations.

Pasika and Gandla [110] propose a system for measuring pH, turbidity, and water
level. In general, the contribution of the article is similar to the other reviewed works. It
is noteworthy that the article describes in detail, in the form of diagrams, the interface
algorithms between the sensors and the microcontroller devices for the acquisition and
initial processing of the data. Moreover, the paper was published on an open-access
platform, and the country in which it was developed was India, a country that accounts for
about 23% of the publications reviewed in this paper (Table 6).

Published as open-access, the work by Chowdury et al. [111] presents a remote data
collection platform for pH, temperature, turbidity, ORP, and electrical conductivity in rivers.
A unique feature of this work is integrating the remote platform with a Big Data analysis
system based on artificial neural network modeling. The measured parameters feed the
neural network that produces an output to classify the water quality as either “good” or
“bad”. Similarly to Pasika and Gandla’s work [110], Chowdury et al. [111] developed their
work in Bangladesh, a region where the interest in developing devices for water quality
analysis is quite significant.

In a paper published in 2020 in the journal Sensors (cited in 43 other works), Carminati
et al. [112] proposed a novel approach for monitoring water quality parameters in the
water distribution system of the city of Romagna, Italy. The authors combined off-the-shelf
sensors with custom-built sensors to measure various parameters such as pH, temperature,
flow rate, pressure, electrical conductivity, and thickness of the deposited biofilm on the
inner walls of the pipes. The commercial sensors used in the study included the Sensorex
S272CD for pH and temperature measurements, Digiten FL-808 for flow rate measurements,
and Elco 3525VG1 for pressure measurements. The custom-built sensors were designed and
implemented by the authors to measure the electrical conductivity and biofilm thickness
deposited on the inner walls of the pipes. The performance of the slime film thickness
measurement sensor, which is the authors’ main focus and a differential compared to
other reviewed works, was tested in the laboratory, indicating a resolution of 10 µm in the
measurement range of 10 to 300 µm. The performance of the measurement system was
evaluated in terms of sensor resolution in continuous tests over two months. From the
results, the authors report agreement with the state of the art and affirm that the apparatus
exhibits satisfactory robustness.
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4.10. What Are the Limitations of the Considered Studies and the Directions for Future Research?

Vernier, Atlas Scientific, and DFRobot are the main sensor suppliers for the validated
studies. Vernier focuses on the education market, and some of their sensors have an in-
tegrated data transmission function. Atlas and DFRobot have focused their market on
selling water-friendly sensors for the IoT concept. Atlas’ sensors have a modular design
that allows for easy customization and integration with other devices, and their indus-
trial version has similar features to DFRobot’s, highlighting its durability and longevity.
DFRobot’s sensors have a compact size and low power consumption, making them ideal
for remote monitoring applications. Both DFRobot and Atlas have versions for laboratory
and industrial use, and their sensors have been used in a wide range of applications, such
as water quality monitoring in aquaculture, hydroponics, and environmental monitoring.

In the evaluated studies, it is noticeable that sensors intended for laboratory use (e.g.,
Env-20 or SEN0161 for pH) are used when the sensor must be submerged for an extended
period. Laboratory sensors are more fragile and not as well sealed as industrial sensors,
which indicates that they are used in controlled environments and for sporadic readings.
Industrial sensors are more expensive than laboratory sensors, although they still cost less
than professional probes.

In any case, the evaluation made in most of the analyzed works is not about the lifetime
of the sensor or the quality of the data obtained (e.g., accuracy, precision, sensitivity),
whether in the laboratory or industry. SEN0169 is the most robust version of DFRobot for
pH measurement, with SEN0169-v2 being its industrial version. The SEN0169 sensor is
only used in three works, and none of them uses SEN0169-V2. The works that use SEN0169,
like most other works, are about developing a system, an autonomous vehicle, evaluating
the transmission medium, etc., but not about the sensor itself. In this sense, a significant
limitation identified in this systematic review is the lack of evaluations of the sensor itself
to confirm the quality assurance of the measurement results in a real environment. This
becomes clear when considering that only 18 papers deal with evaluating their solution
together with reference probes. There is also a gap in the procedures used and the statistical
techniques applied.

We believe that progress in this area can only be achieved through studies that catalog
low-cost sensors considering various characteristics such as measurement range, resolu-
tion, accuracy, precision, response time, reliability, lifetime, measurement method, and IoT
solution. This should also take into account the potential sources of error or interference
that could affect the performance of the sensor, such as cross-sensitivity to other analytes
or environmental factors such as temperature, humidity, or pressure. Moreover, studies
on a protocol for proper calibration, maintenance, and handling of low-cost sensors. Fi-
nally, studies that provide a robust comparison of low-cost sensors to certified sensors
under various environmental conditions and perform quality assurance of low-cost sensor
measurements. Although low-cost sensors could still be characterized for laboratory and
industrial use, standardization of their properties concerning the reading environment
could promote their widespread adoption.

To guarantee the optimal performance of a low-cost sensor, proper calibration, main-
tenance, and handling are also crucial. This may involve regular calibration against a
reference instrument, careful storage and transportation, and periodic cleaning or replace-
ment of components as needed. Users should also be aware of any software or firmware
updates that may be necessary to ensure the sensor is functioning properly and providing
accurate data. Overall, while low-cost sensors can be a valuable tool for many applications,
users must take a thoughtful and thorough approach to sensor selection and maintenance
to ensure the highest quality of data possible.

The turbidity sensor, which is present in 60% of the articles, can only be found in the
laboratory version of DFRobot. This means that without modifications to the sensor to
make it more robust and resistant to water penetration into the electronic parts, it would not
be possible to obtain long-term real-time measurements for this parameter. This highlights
the need for further research to develop reliable low-cost sensors. There is certainly much
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work to be done both in the search for materials and in the search for principles that will
allow sensors to be improved and their cost reduced without sacrificing reliability. From a
computational point of view, it is also possible to invest in computational algorithms and
techniques for failure detection and error correction, as in the work of [81], and calibration
algorithms such as those based on machine learning [113]. There are also water quality
parameters for which there are no low-cost commercially available sensors on the market,
as in the case of organic pollutants.

Another problem is the methodology used in the reviewed studies: few of them
describe the sensor used, the software used to read it, and the calibration performed.
Additionally, the test duration is relatively short. As mentioned earlier, this is because
most of the studies do not focus on sensor evaluation. With this in mind, although the IoT
concept makes it possible to measure water quality in previously unimaginable locations,
efforts still need to be made to increase the robustness of low-cost sensors.

5. Conclusions

This SLR provides an overview of scientific papers dealing with low-cost sensors for
water quality monitoring. Information is lacking on the accuracy, precision, durability,
calibration procedure, and reliability of low-cost sensors needed for specific applications.
Most of the work uses commercial sensors such as those from Atlas Scientific, Vernier, and
DfRobot, which manufacturers claim are suitable for laboratory, educational, industrial, and
residential purposes. However, only some works have made comparisons with reference
devices. Therefore, it is important for users to thoroughly evaluate the capabilities and
limitations of the sensor to ensure that it meets the data quality requirements for the
intended application. This is because although low-cost sensors can be an attractive option
due to their low price, they do not always provide the accuracy, precision, and reliability
required for specific applications.

In this sense, our recommendations for future work are (i) long-term studies for
multiple comparisons of low-cost sensors; (ii) experimental studies for field use with
low-cost sensors and reference instruments; (iii) studies that support the development
of a protocol for calibration of low-cost water sensors that archives requirements for
environmental applications; (iv) new development of low-cost sensors, especially for
turbidity due to the limited number of branches found in this SLR, and also for other
important water quality parameters such as BOD, metals, and organic chloride; (v) Further
studies under real conditions with remote and continuous water quality monitoring.

Finally, although a systematic review of the leading research databases was undertaken
in this paper, the likelihood that some articles may not have been recorded by the authors
during the selection phase cannot be ruled out. Another limitation is that this SLR doesn’t
include articles in languages other than English.

Author Contributions: Conceptualization, E.T.d.C., F.A.S. and L.D.M.; methodology, E.T.d.C., F.A.S.,
J.S.S. and L.D.M.; software, F.A.S. and M.V.R.d.S.; validation, E.T.d.C., C.A.L., F.A.S., F.R.C., F.W.D.P.,
L.D.M., M.S.O., and M.V.R.d.S.; data curation, E.T.d.C., F.A.S., J.S.S., J.P., L.D.M., and M.V.R.d.S.;
writing—original draft preparation, E.T.d.C., F.A.S., J.S.S. and L.D.M.; writing—editing, E.T.d.C.,
F.A.S. and J.S.S.; review, A.V.d.L.L., C.A.L., F.R.C., F.W.D.P. and M.S.O.; funding acquisition, E.T.d.C.
and L.D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded both by the Research Foundation of São Paulo (FAPESP), grant num-
ber 2020/05135-5, and the Araucária Foundation and The Sanitation Company of Paraná (SANEPAR)
through the Public Call 17/2021—Paraná Research Program in Environmental Sanitation—PPPS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sensors 2023, 23, 4424 23 of 27

Acknowledgments: The authors would like to thank the Sanitation Company of Paraná (SANEPAR)
and CNPq (National Council for Scientific and Technological Development), process 310907/2021-7.
This article and the research behind it directly contribute to the Klimapolis Laboratory [114].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IoTAnalytics. State of IoT 2022: Number of Connected IoT Devices Growing 18% to 14.4 Billion Globally. 2023. Available online:

https://iot-analytics.com/number-connected-iot-devices/ (accessed on 15 February 2023).
2. Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review

of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [CrossRef]
3. Xavier, F.; Martins, L.; Oyamada, M.; Spanhol, F.; Coutinho, F.; Pfrimer, F.; de Camargo, E. Evaluation of low-cost sensors for

real-time water quality monitoring. In Extended Proceedings of the XII Brazilian Symposium on Computer Systems Engineering
(SBESC), Fortaleza, Brazil, 21–24 November 2022; pp. 56–61. [CrossRef]

4. Khanna, A.; Kaur, S. Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wirel. Pers. Commun.
2020, 114, 1–76. [CrossRef]

5. Miller, M.; Kisiel, A.; Cembrowska-Lech, D.; Durlik, I.; Miller, T. IoT in Water Quality Monitoring—Are We Really Here? Sensors
2023, 23, 960. [CrossRef] [PubMed]

6. United Nations. The Sustainable Development Goals Report 2022. 2023. Available online: https://unstats.un.org/sdgs/report/
2022/ (accessed on 15 February 2023).

7. United Nations Environment Programme. Global Water Quality Monitoring—GEMS/Water: A 50 Year History. June 2022.
Available online: https://wedocs.unep.org/20.500.11822/40286 ( accessed on 15 February 2023).

8. ANA. National Water Agency (ANA). 2023. Available online: https://www.gov.br/ana/en/ (accessed on 15 February 2023).
9. da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Al-Muhtadi, J.; Korotaev, V.V.; de Albuquerque, V.H.C. A Reference Model for Internet of

Things Middleware. IEEE Internet Things J. 2018, 5, 871–883. [CrossRef]
10. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
11. Instruments, H. Multiparameter (pH/ISE/EC/DO/Turbidity) Probe for HI9829. 2023. Available online: https://www.hannainst.

com/multiparameter-ph-ise-ec-do-turbidity-probe-for-hi9829-hi7609829.html (accessed on 15 February 2023).
12. Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Jayasundera, K.P.; Mukhopadhyay, S.C. An IoT-Enabled Portable Water Quality

Monitoring System With MWCNT/PDMS Multifunctional Sensor for Agricultural Applications. IEEE Internet Things J. 2022,
9, 14307–14316. [CrossRef]

13. Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Internet of things for water quality monitoring and assessment: A comprehensive review.
In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications; Springer International Publishing:
Cham, Switzerland, 2021; pp. 245–259.

14. Madeo, D.; Pozzebon, A.; Mocenni, C.; Bertoni, D. A low-cost unmanned surface vehicle for pervasive water quality monitoring.
IEEE Trans. Instrum. Meas. 2020, 69, 1433–1444. [CrossRef]

15. Demetillo, A.T.; Japitana, M.V.; Taboada, E.B. A system for monitoring water quality in a large aquatic area using wireless sensor
network technology. Sustain. Environ. Res. 2019, 29, 12. [CrossRef]

16. Kelley, C.D.; Krolick, A.; Brunner, L.; Burklund, A.; Kahn, D.; Ball, W.P.; Weber-Shirk, M. An affordable open-source turbidimeter.
Sensors 2014, 14, 7142–7155. [CrossRef]

17. Krichen, M.; Lahami, M.; Cheikhrouhou, O.; Alroobaea, R.; Maâlej, A.J. Security Testing of Internet of Things for Smart City
Applications: A Formal Approach. In Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies; Mehmood,
R., See, S., Katib, I., Chlamtac, I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 629–653. [CrossRef]

18. Keerthi, K.; Roy, I.; Hazra, A.; Rebeiro, C., Formal Verification for Security in IoT Devices. In Security and Fault Tolerance in
Internet of Things; Chakraborty, R.S., Mathew, J., Vasilakos, A.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 179–200. [CrossRef]

19. Kesari Mary, D.R.; Ko, E.; Yoon, D.J.; Shin, S.Y.; Park, S.H. Energy Optimization Techniques in Underwater Internet of Things:
Issues, State-of-the-Art, and Future Directions. Water 2022, 14, 3240. [CrossRef]

20. Olatinwo, S.O.; Joubert, T.H. Energy Efficient Solutions in Wireless Sensor Systems for Water Quality Monitoring: A Review.
IEEE Sens. J. 2019, 19, 1596–1625. [CrossRef]

21. Lowe, M.; Qin, R.; Mao, X. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and
Monitoring. Water 2022, 14, 1384. [CrossRef]

22. Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113.
[CrossRef] [PubMed]

23. Agência Nacional de Águas (Brasil). Panorama da Qualidade das Águas Superficiais do Brasil. (Brazilian Portuguese); ANA: Brasília,
Brazil, 2012; p. 264.

24. Gunter, H.; Bradley, C.; Hannah, D.M.; Manaseki-Holland, S.; Stevens, R.; Khamis, K. Advances in quantifying microbial
contamination in potable water: Potential of fluorescence-based sensor technology. WIREs Water 2023, 10, e1622. [CrossRef]

https://iot-analytics.com/number-connected-iot-devices/
http://doi.org/10.1016/j.compag.2017.09.015
http://dx.doi.org/10.5753/sbesc_estendido.2022.228152
http://dx.doi.org/10.1007/s11277-020-07446-4
http://dx.doi.org/10.3390/s23020960
http://www.ncbi.nlm.nih.gov/pubmed/36679757
https://unstats.un.org/sdgs/report/2022/
https://unstats.un.org/sdgs/report/2022/
https://wedocs.unep.org/20.500.11822/40286
https://www.gov.br/ana/en/
http://dx.doi.org/10.1109/JIOT.2018.2796561
http://dx.doi.org/10.1109/COMST.2015.2444095
https://www.hannainst.com/multiparameter-ph-ise-ec-do-turbidity-probe-for-hi9829-hi7609829.html
https://www.hannainst.com/multiparameter-ph-ise-ec-do-turbidity-probe-for-hi9829-hi7609829.html
http://dx.doi.org/10.1109/JIOT.2021.3069894
http://dx.doi.org/10.1109/TIM.2019.2963515
http://dx.doi.org/10.1186/s42834-019-0009-4
http://dx.doi.org/10.3390/s140407142
http://dx.doi.org/10.1007/978-3-030-13705-2_26
http://dx.doi.org/10.1007/978-3-030-02807-7_9
http://dx.doi.org/10.3390/w14203240
http://dx.doi.org/10.1109/JSEN.2018.2882424
http://dx.doi.org/10.3390/w14091384
http://dx.doi.org/10.3390/s20113113
http://www.ncbi.nlm.nih.gov/pubmed/32486411
http://dx.doi.org/10.1002/wat2.1622


Sensors 2023, 23, 4424 24 of 27

25. Hui, Y.; Huang, Z.; Alahi, M.E.E.; Nag, A.; Feng, S.; Mukhopadhyay, S.C. Recent Advancements in Electrochemical Biosensors for
Monitoring the Water Quality. Biosensors 2022, 12, 551. [CrossRef]

26. Khamis, K.; Bradley, C.; Gunter, H.J.; Basevi, G.; Stevens, R.; Hannah, D.M. Calibration of an in-situ fluorescence-based sensor
platform for reliable BOD5 measurement in wastewater. Water Sci. Technol. 2021, 83, 3075–3091. [CrossRef]

27. Wei, Y.; Jiao, Y.; An, D.; Li, D.; Li, W.; Wei, Q. Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to
Online Intelligent Detection. Sensors 2019, 19, 3995. [CrossRef]

28. Silva, G.M.e.; Campos, D.F.; Brasil, J.A.T.; Tremblay, M.; Mendiondo, E.M.; Ghiglieno, F. Advances in Technological Research for
Online and In Situ Water Quality Monitoring—A Review. Sustainability 2022, 14, 5059. [CrossRef]

29. United States Environmental Protect Agency. Low–Cost Air Pollution Monitors and Indoor Air Quality. 2023. Available online:
https://www.epa.gov/indoor-air-quality-iaq/low-cost-air-pollution-monitors-and-indoor-air-quality (accessed on 15 February
2023).

30. Idaho Department of Environmental Quality. Low-Cost Air Sensors—FAQs. 2023. Available online: https://www2.deq.idaho.
gov/admin/LEIA/api/document/download/4697 (accessed on 15 February 2023).

31. UK Department for Environment Food & Rural Affairs. ‘Low-Cost’ Pollution Sensors—Understanding the Uncertainties. 2023.
Available online: https://uk-air.defra.gov.uk/research/aqeg/pollution-sensors/understanding-uncertainties.php (accessed on
15 February 2023).

32. United States Environmental Protect Agency. The Enhanced Air Sensor Guidebook. 2023. Available online: https://cfpub.epa.
gov/si/si_public_record_Report.cfm?dirEntryId=356426&Lab=CEMM (accessed on 15 February 2023).

33. Yatkin, S.; Gerboles, M.; Borowiak, A.; Signorini, M.. Guidance on Low-Cost Air Quality Sensor Deployment for Non-Experts
Based on the AirSensEUR Experience; Technical Report KJ-NA-31-274-EN-N (Online); Publications Office of the European Union:
Luxembourg, 2022. [CrossRef]

34. UN Environment Programme. Why Low-Cost Sensors? Opportunities and Challenges. 2023. Available online: https:
//www.unep.org/explore-topics/air/what-we-do/monitoring-air-quality/why-low-cost-sensors-opportunities-and/ (accessed
on 15 February 2023).

35. Hangan, A.; Chiru, C.G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced
Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water 2022, 14, 2174. [CrossRef]

36. Ubina, N.A.; Cheng, S.C. A Review of Unmanned System Technologies with Its Application to Aquaculture Farm Monitoring
and Management. Drones 2022, 6, 12. [CrossRef]

37. Zulkifli, C.Z.; Garfan, S.; Talal, M.; Alamoodi, A.H.; Alamleh, A.; Ahmaro, I.Y.Y.; Sulaiman, S.; Ibrahim, A.B.; Zaidan, B.B.; Ismail,
A.R.; et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water 2022, 14, 3621. [CrossRef]

38. Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water
Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [CrossRef]

39. Petkovski, A.; Ajdari, J.; Zenuni, X. IoT-based Solutions in Aquaculture: A Systematic Literature Review. In Proceedings of the
2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27
September–1 October 2021; pp. 1358–1363. [CrossRef]

40. Ramírez-Moreno, M.A.; Keshtkar, S.; Padilla-Reyes, D.A.; Ramos-López, E.; García-Martínez, M.; Hernández-Luna, M.C.; Mogro,
A.E.; Mahlknecht, J.; Huertas, J.I.; Peimbert-García, R.E.; et al. Sensors for Sustainable Smart Cities: A Review. Appl. Sci. 2021, 11,
8198. [CrossRef]

41. Palermo, S.A.; Maiolo, M.; Brusco, A.C.; Turco, M.; Pirouz, B.; Greco, E.; Spezzano, G.; Piro, P. Smart Technologies for Water
Resource Management: An Overview. Sensors 2022, 22, 6225. [CrossRef]

42. Manoj, M.; Dhilip Kumar, V.; Arif, M.; Bulai, E.R.; Bulai, P.; Geman, O. State of the Art Techniques for Water Quality Monitoring
Systems for Fish Ponds Using IoT and Underwater Sensors: A Review. Sensors 2022, 22, 2088. [CrossRef]

43. Kitchenham, B. Procedures for Performing Systematic Reviews; Keele Keele University: Keele, UK, 2004; Volume 33, pp. 1–26.
44. Parsifal. Parsifal - Perform Systematic Literature Reviews. 2022. Available online: https://parsif.al/ (accessed on 22 September

2022).
45. Concepcion, R.; Lauguico, S.; Alejandrino, J.; Dadios, E.; Sybingco, E.; Bandala, A. Aquaphotomics determination of nutrient

biomarker for spectrophotometric parameterization of crop growth primary macronutrients using genetic programming. Inf.
Process. Agric. 2022, 9, 497–513. [CrossRef]

46. Billah, M.M.; Yusof, Z.M.; Kadir, K.; Ali, A.M.M.; Ahmad, I. Real-time Monitoring of Water Quality in Animal Farm: An IoT
Application. In Proceedings of the 2019 IEEE International Conference on Smart Instrumentation, Measurement and Application
(ICSIMA), Kuala Lumpur, Malaysia, 27–29 August 2019; pp. 1–6. [CrossRef]

47. Ang, Y.T.; Ng, W.K.; Chong, Y.W.; Wan, J.; Chee, S.Y.; Firth, L.B. An Autonomous Sailboat for Environment Monitoring. In
Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8
July 2022; pp. 242–246. [CrossRef]

48. Billah, M.M.; Yusof, Z.M.; Kadir, K.; Ali, A.M.M.; Ahmad, I. Quality Maintenance of Fish Farm: Development of Real-time Water
Quality Monitoring System. In Proceedings of the 2019 IEEE International Conference on Smart Instrumentation, Measurement
and Application (ICSIMA), Kuala Lumpur, Malaysia, 27–29 August 2019; pp. 1–4. [CrossRef]

http://dx.doi.org/10.3390/bios12070551
http://dx.doi.org/10.2166/wst.2021.197
http://dx.doi.org/10.3390/s19183995
http://dx.doi.org/10.3390/su14095059
https://www.epa.gov/indoor-air-quality-iaq/low-cost-air-pollution-monitors-and-indoor-air-quality
https://www2.deq.idaho.gov/admin/LEIA/api/document/download/4697
https://www2.deq.idaho.gov/admin/LEIA/api/document/download/4697
https://uk-air.defra.gov.uk/research/aqeg/pollution-sensors/understanding-uncertainties.php
https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=356426&Lab=CEMM
https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=356426&Lab=CEMM
http://dx.doi.org/10.2760/180094
https://www.unep.org/explore-topics/air/what-we-do/monitoring-air-quality/why-low-cost-sensors-opportunities-and/
https://www.unep.org/explore-topics/air/what-we-do/monitoring-air-quality/why-low-cost-sensors-opportunities-and/
http://dx.doi.org/10.3390/w14142174
http://dx.doi.org/10.3390/drones6010012
http://dx.doi.org/10.3390/w14223621
http://dx.doi.org/10.3390/computers10030026
http://dx.doi.org/10.23919/MIPRO52101.2021.9597005
http://dx.doi.org/10.3390/app11178198
http://dx.doi.org/10.3390/s22166225
http://dx.doi.org/10.3390/s22062088
https://parsif.al/
http://dx.doi.org/10.1016/j.inpa.2021.12.007
http://dx.doi.org/10.1109/ICSIMA47653.2019.9057320
http://dx.doi.org/10.1109/ICUFN55119.2022.9829573
http://dx.doi.org/10.1109/ICSIMA47653.2019.9057294


Sensors 2023, 23, 4424 25 of 27

49. Abbasi, R.; Martinez, P.; Ahmad, R. Data Acquisition and Monitoring Dashboard for IoT Enabled Aquaponics Facility. In
Proceedings of the 2022 10th International Conference on Control, Mechatronics and Automation (ICCMA), Belval, Luxembourg,
9–12 November 2022; pp. 168–172. [CrossRef]

50. Islam, M.A.; Khan, R.H.; Syeed, M. A Smart and Integrated Surface Water Monitor System Architecture: Bangladesh Perspective.
In Proceedings of the International Conference on Computing Advancements, ICCA 2020, Dhaka, Bangladesh, 10–12 January
2020; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

51. Fonseca-Campos, J.; Reyes-Ramirez, I.; Guzman-Vargas, L.; Fonseca-Ruiz, L.; Mendoza-Perez, J.A.; Rodriguez-Espinosa, P.F.
Multiparametric System for Measuring Physicochemical Variables Associated to Water Quality Based on the Arduino Platform.
IEEE Access 2022, 10, 69700–69713. [CrossRef]

52. Garuglieri, S.; Madeo, D.; Pozzebon, A.; Zingone, R.; Mocenni, C.; Bertoni, D. An Integrated System for Real-Time Water
Monitoring Based on Low Cost Unmanned Surface Vehicles. In Proceedings of the 2019 IEEE Sensors Applications Symposium
(SAS), Sophia Antipolis, France, 11–13 March 2019; pp. 1–6. [CrossRef]

53. Arunplod, C. A Spider Monitoring Platform for Water Quality Using the Internet of Things and Mesh Technology. In Proceedings
of the 2020 The 9th International Conference on Informatics, Environment, Energy and Applications, IEEA 2020, Amsterdam, The
Netherlands, 13–16 March 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 121–124. [CrossRef]

54. Jayalakshmi, S.; Hemalatha, P. Measuring the water quality in bore well using sensors and alerting system. In Proceedings of the
2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30
March 2019; pp. 1–4.

55. Trevathan, J.; Schmidtke, S.; Read, W.; Sharp, T.; Sattar, A. An IoT general-purpose sensor board for enabling remote aquatic
environmental monitoring. Internet Things 2021, 16, 100429. [CrossRef]

56. Simitha, K.; Raj, S. IoT and WSN based water quality monitoring system. In Proceedings of the 2019 3rd International conference
on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 205–210.

57. Huan, J.; Li, H.; Wu, F.; Cao, W. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquac. Eng.
2020, 90, 102088. [CrossRef]

58. AlMetwally, S.A.H.; Hassan, M.K.; Mourad, M.H. Real Time Internet of Things (IoT) Based Water Quality Management System.
Procedia CIRP 2020, 91, 478–485. [CrossRef]

59. Abinaya, T.; Ishwarya, J.; Maheswari, M. A Novel Methodology for Monitoring and Controlling of Water Quality in Aquaculture
using Internet of Things (IoT). In Proceedings of the 2019 International Conference on Computer Communication and Informatics
(ICCCI), Coimbatore, India, 23–25 January 2019; pp. 1–4. [CrossRef]

60. Adiono, T.; Toha, A.M.; Pamungkas, S.; Sutisna, N.; Sumiarsih, E. Internet of Things for Marine Aquaculture. In Proceedings of the
2021 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 29–30 June 2021; pp. 1–5. [CrossRef]

61. Adriman, R.; Fitria, M.; Afdhal, A.; Fernanda, A.Y. An IoT-Based System for Water Quality Monitoring and Notification System of
Aquaculture Prawn Pond. In Proceedings of the 2022 IEEE International Conference on Communication, Networks and Satellite
(COMNETSAT), Solo, Indonesia, 3–5 November 2022; pp. 356–360. [CrossRef]

62. Agossou, B.E.; Toshiro, T. IoT & AI Based System for Fish Farming: Case Study of Benin. In Proceedings of the Conference on
Information Technology for Social Good, GoodIT ’21, Roma, Italy, 9–11 September 2021; Association for Computing Machinery:
New York, NY, USA, 2021; pp. 259–264. [CrossRef]

63. Arafat, A.I.; Akter, T.; Ahammed, M.F.; Ali, M.Y.; Nahid, A.A. A dataset for internet of things based fish farm monitoring and
notification system. Data Brief 2020, 33, 106457. [CrossRef] [PubMed]

64. Blancaflor, E.; Baccay, M. Design of a Solar Powered IoT (Internet of Things) Remote Water Quality Management System for a
Biofloc Aquaculture Technology. In Proceedings of the 2021 3rd Blockchain and Internet of Things Conference, BIOTC’21, Ho Chi
Minh City, Vietnam, 8–10 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 24–31. [CrossRef]

65. Hawari, H.F.; Hazwan, M.A. Development of Iot Monitoring System For Aquaculture Application. In Proceedings of the 2022
International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia, 26–28
October 2022; pp. 330–334. [CrossRef]

66. Khaoula, T.; Abdelouahid, R.A.; Ezzahoui, I.; Marzak, A. Architecture design of monitoring and controlling of IoT-based
aquaponics system powered by solar energy. Procedia Comput. Sci. 2021, 191, 493–498. [CrossRef]

67. Lee, C.; Wang, Y.J. Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics. Aquac.
Eng. 2020, 90, 102067. [CrossRef]

68. Mahmuda; Barkatullah; Haque, E.; Al Noman, A.; Ahmed, F. Image Processing Based Water Quality Monitoring System for
Biofloc Fish Farming. In Proceedings of the 2021 Emerging Technology in Computing, Communication and Electronics (ETCCE),
Dhaka, Bangladesh, 21–23 December 2021; pp. 1–6. [CrossRef]

69. Ngom, B.; Diallo, M.; Gueye, B.; Marilleau, N. LoRa-based Measurement Station for Water Quality Monitoring: Case of Botanical
Garden Pool. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 11–13 March
2019; pp. 1–4. [CrossRef]

70. Rohan, K.K.; Roria, O.; Raghavendra, C.; Awanti, S.S.; Shruthishree, C.; Chakravorty, S. Determining Water Quality for
Productivity in Aquaculture using Information and Communication Technologies. In Proceedings of the 2022 IEEE International
Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballari, India, 23–24 April 2022; pp. 1–5.
[CrossRef]

http://dx.doi.org/10.1109/ICCMA56665.2022.10011594
http://dx.doi.org/10.1145/3377049.3377103
http://dx.doi.org/10.1109/ACCESS.2022.3187422
http://dx.doi.org/10.1109/SAS.2019.8706040
http://dx.doi.org/10.1145/3386762.3386766
http://dx.doi.org/10.1016/j.iot.2021.100429
http://dx.doi.org/10.1016/j.aquaeng.2020.102088
http://dx.doi.org/10.1016/j.procir.2020.03.107
http://dx.doi.org/10.1109/ICCCI.2019.8821988
http://dx.doi.org/10.1109/ISESD53023.2021.9501663
http://dx.doi.org/10.1109/COMNETSAT56033.2022.9994388
http://dx.doi.org/10.1145/3462203.3475873
http://dx.doi.org/10.1016/j.dib.2020.106457
http://www.ncbi.nlm.nih.gov/pubmed/33195775
http://dx.doi.org/10.1145/3475992.3475996
http://dx.doi.org/10.1109/GECOST55694.2022.10010661
http://dx.doi.org/10.1016/j.procs.2021.07.063
http://dx.doi.org/10.1016/j.aquaeng.2020.102067
http://dx.doi.org/10.1109/ETCCE54784.2021.9689904.
http://dx.doi.org/10.1109/SAS.2019.8705986
http://dx.doi.org/10.1109/ICDCECE53908.2022.9792874


Sensors 2023, 23, 4424 26 of 27

71. Rostam, N.A.P.; Hassain Malim, N.H.A.; Abdullah, R. Development of a Low-Cost Solar Powered & Real-Time Water Quality
Monitoring System for Malaysia Seawater Aquaculture: Application & Challenges. In Proceedings of the 2020 4th International
Conference on Cloud and Big Data Computing, ICCBDC ’20, Virtual, UK, 26–28 August 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 86–91. [CrossRef]

72. Singh, M.; Sahoo, K.S.; Nayyar, A. Sustainable IoT Solution for Freshwater Aquaculture Management. IEEE Sens. J. 2022,
22, 16563–16572. [CrossRef]

73. Tatas, K.; Al-Zoubi, A.; Antoniou, A.; Zolotareva, D. iPONICS: IoT Monitoring and Control for Hydroponics. In Proceedings of
the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July
2021; pp. 1–5. [CrossRef]

74. Madhusudan, S.; Adhitya, R.; Dinesh, B.; Rajini; Hari, K.A.P.; Tamilselvi, S. Automatic Fish Feeding and Water Quality
Management System using Internet of Things. In Proceedings of the 2022 IEEE 2nd Mysore Sub Section International Conference
(MysuruCon), Mysuru, India, 16–17 October 2022; pp. 1–5. [CrossRef]

75. Mohamad Yusof, Y.W.; Kassim, M.; Noor Azlan, N.A. Design and Analysis of IoT-based Aquarium Monitoring System for
Guppy Fish Habitats. In Proceedings of the 2022 12th International Conference on System Engineering and Technology (ICSET),
Bandung, Indonesia, 3–4 October 2022; pp. 95–100. [CrossRef]

76. Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Muhammad Rashid, I.Z.; Nik Sulaiman, N.M. Toward industrial
revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod.
2021, 324, 129230. [CrossRef]

77. Tholen, C.; Rofallski, R.; Nolle, L.; El-Mihoub, T.A.; Parnum, I.; Zielinski, O. On the localization of artificial submarine
groundwater discharge sites using a low-cost multi-sensor-platform. In Proceedings of the Global Oceans 2020: Singapore—U.S.
Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–8. [CrossRef]

78. Hong, W.J.; Shamsuddin, N.; Abas, E.; Apong, R.A.; Masri, Z.; Suhaimi, H.; Gödeke, S.H.; Noh, M.N.A. Water quality monitoring
with arduino based sensors. Environments 2021, 8, 6. [CrossRef]

79. Shareef, Z.; Reddy, S. Design and development of IoT-based framework for indian aquaculture. In Proceedings of the Intelligent
Communication, Control and Devices: Proceedings of ICICCD 2018, Dehradun, India, 21-22 December 2018; Springer: Singapore,
2020; pp. 195–201.

80. Tayo, C.; Perez, N.D.; Villaverde, J. Design and Development of a WSN for Water Quality Monitoring System of Shrimp
Aquaculture. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET),
Prague, Czech Republic, 20–22 July 2022; pp. 1–6. [CrossRef]

81. Malissovas, A.; Narayan, N.; Boonen, T.; Patki, S. A Scalable, Low-Maintenance, Smart Water Quality Monitoring System. In
Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022; pp. 1–4. [CrossRef]

82. Wu, N.; Khan, M. LoRa-based Internet-of-Things: A Water Quality Monitoring System. In Proceedings of the 2019 SoutheastCon,
Huntsville, AL, USA, 11–14 April 2019; pp. 1–4. [CrossRef]

83. Kinar, N.J.; Brinkmann, M. Development of a sensor and measurement platform for water quality observations: Design, sensor
integration, 3D printing, and open-source hardware. Environ. Monit. Assess. 2022, 194, 207. [CrossRef]

84. Méndez-Barroso, L.; Rivas-Márquez, J.; Sosa-Tinoco, I.; Robles-Morúa, A. Design and implementation of a low-cost multiparame-
ter probe to evaluate the temporal variations of water quality conditions on an estuarine lagoon system. Environ. Monit. Assess.
2020, 192, 710. [CrossRef]

85. Bórquez López, R.A.; Martinez Cordova, L.R.; Gil Nuñez, J.C.; Gonzalez Galaviz, J.R.; Ibarra Gamez, J.C.; Casillas Hernandez,
R. Implementation and evaluation of open-source hardware to monitor water quality in precision aquaculture. Sensors 2020,
20, 6112. [CrossRef]

86. Weerasinghe, C.; Padhye, L.P.; Nanayakkaraac, S. Design and Evaluation of a Mobile Sensing Platform for Water Conductivity.
In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022; pp. 1–4. [CrossRef]

87. Rezwan, S.; Ishtiak, T.; Rahman, R.; Rahman, H.A.; Akter, M.; Ratul, H.A.; Hosain, M.S.; Jakariya, M. A Minimalist Model of
IoT based Sensor System for Sewage Treatment Plant Monitoring. In Proceedings of the 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019;
pp. 0939–0945. [CrossRef]

88. Nandakumar, L.; Sangeeth, M.; Anna Mariya Thomson, M.; Tommy, A.; Kiran, M.P.; Raji, P. Real Time Water Contamination
Monitor using Cloud, IoT and Embedded Platforms. In Proceedings of the 2020 International Conference on Smart Electronics
and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 854–858. [CrossRef]

89. Wannee, N.; Samanchuen, T. A Flexible Water Monitoring System for Pond Aquaculture. In Proceedings of the 2022 International
Conference on Digital Government Technology and Innovation (DGTi-CON), Bangkok, Thailand, 24–25 March 2022; pp. 91–95.
[CrossRef]

90. Singh, R.; Baz, M.; Gehlot, A.; Rashid, M.; Khurana, M.; Akram, S.V.; Alshamrani, S.S.; AlGhamdi, A.S. Water quality monitoring
and management of building water tank using industrial internet of things. Sustainability 2021, 13, 8452. [CrossRef]

91. Goparaju, S.U.N.; Vaddhiparthy, S.S.S.; Pradeep, C.; Vattem, A.; Gangadharan, D. Design of an IoT System for Machine Learning
Calibrated TDS Measurement in Smart Campus. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT),
New Orleans, LA, USA, 14 June–31 July 2021; pp. 877–882. [CrossRef]

http://dx.doi.org/10.1145/3416921.3416928
http://dx.doi.org/10.1109/JSEN.2022.3188639
http://dx.doi.org/10.1109/MOCAST52088.2021.9493387
http://dx.doi.org/10.1109/MysuruCon55714.2022.9972432
http://dx.doi.org/10.1109/ICSET57543.2022.10010912
http://dx.doi.org/10.1016/j.jclepro.2021.129230
http://dx.doi.org/10.1109/IEEECONF38699.2020.9389450
http://dx.doi.org/10.3390/environments8010006
http://dx.doi.org/10.1109/ICECET55527.2022.9872980
http://dx.doi.org/10.1109/SENSORS52175.2022.9967336
http://dx.doi.org/10.1109/SoutheastCon42311.2019.9020583
http://dx.doi.org/10.1007/s10661-022-09825-9
http://dx.doi.org/10.1007/s10661-020-08677-5
http://dx.doi.org/10.3390/s20216112
http://dx.doi.org/10.1109/SENSORS52175.2022.9967052
http://dx.doi.org/10.1109/IEMCON.2019.8936182
http://dx.doi.org/10.1109/ICOSEC49089.2020.9215276
http://dx.doi.org/10.1109/DGTi-CON53875.2022.9849186
http://dx.doi.org/10.3390/su13158452
http://dx.doi.org/10.1109/WF-IoT51360.2021.9595057


Sensors 2023, 23, 4424 27 of 27

92. Martínez, R.; Vela, N.; El Aatik, A.; Murray, E.; Roche, P.; Navarro, J.M. On the use of an IoT integrated system for water quality
monitoring and management in wastewater treatment plants. Water 2020, 12, 1096. [CrossRef]

93. Tsai, H.L.; Lin, J.Y.; Lyu, W.H. Design and Evaluation of Wireless Multi-Sensor IoT System for Monitoring Water Quality of
Freshwater Aquaculture. In Proceedings of the 2021 International Automatic Control Conference (CACS), IEEE, Chiayi, Taiwan,
3–6 November 2021; pp. 1–6. [CrossRef]

94. Xu, K.; Chen, Q.; Zhao, Y.; Ge, C.; Lin, S.; Liao, J. Cost-effective, wireless, and portable smartphone-based electrochemical system
for on-site monitoring and spatial mapping of the nitrite contamination in water. Sens. Actuators Chem. 2020, 319, 128221. [CrossRef]

95. Ali, A.S.; Abdelmoez, M.N.; Heshmat, M.; Ibrahim, K. A solution for water management and leakage detection problems using
IoTs based approach. Internet Things 2022, 18, 100504. [CrossRef]

96. Chauke, M.; Olwal, T.; Migabo, E. A Geography of Things (GoT)-Based Groundwater Quality Management System. In
Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech
Republic, 20–22 July 2022; pp. 1–6. [CrossRef]

97. Cordova-Rozas, M.; Aucapuri-Lecarnaque, J.; Shiguihara-Juárez, P. A Cloud Monitoring System for Aquaculture using IoT.
In Proceedings of the 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON), Lima, Peru, 13–15
November 2019; pp. 1–4. [CrossRef]

98. Jayadi, A.; Samsugi, S.; Ardilles, E.K.; Adhinata, F.D. Monitoring Water Quality for Catfish Ponds Using Fuzzy Mamdani Method
with Internet of Things. In Proceedings of the 2022 International Conference on Information Technology Research and Innovation
(ICITRI), Jakarta, Indonesia, 10 November 2022; pp. 77–82. [CrossRef]

99. Kamruzzaman, S.M.; Sakib, Md, F.S.; Rahman, L.M.; Ahmed, T.; Alam, M.S.; Shakir, M.B.; Pavel, M.I. Sense-IT: An Aquaculture-
Specific Autonomous Data Acquisition and Monitoring System. In Proceedings of the 2022 International Electronics Symposium
(IES), Surabaya, Indonesia, 9–11 August 2022; pp. 404–409. [CrossRef]

100. Aswin Kumer, S.V.; Kanakaraja, P.; Mounika, V.; Abhishek, D.; Praneeth Reddy, B. Environment water quality monitoring system.
Mater. Today: Proc. 2021, 46, 4137–4141. [CrossRef]

101. Baghel, L.K.; Gautam, S.; Malav, V.K.; Kumar, S. TEMPSENSE: LoRa Enabled Integrated Sensing and Localization Solution for
Water Quality Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 3000311. [CrossRef]

102. Bresnahan, P.; Cyronak, T.; Robert J, W, B.; Andersson, A.; Wirth, T.; Martz, T.; Courtney, T.; Hui, N.; Kastner, R.; Stern, A.; et al. A
high-tech, low-cost, Internet of Things surfboard fin for coastal citizen science, outreach, and education. Cont. Shelf Res. 2022,
242, 104748. [CrossRef]

103. Das, N.; Kumar, V.; Tewari, A.; Agnihotri, A.K.; Shivam.; Gaur, S.; Ohri, A. Periodic Monitoring of Rivers Using Portable
Sensor System. In Proceedings of the 2019 8th International Conference System Modeling and Advancement in Research Trends
(SMART), Moradabad, India, 22–23 November 2019; pp. 110–114. [CrossRef]

104. Dhumvad, A.; Prabhu, S.; Da’ Silva, S.F.; Simu, S.; Padiyar, P.; Turkar, V.; Salgaonkar, V. Water Pollution Monitoring and Decision
Support System. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India,
27–29 May 2022; pp. 1–6. [CrossRef]

105. Islam Khan, M.A.; Hoque, M.A.; Ahmed, S. IoT-based System for Real-time Water Pollution Monitoring of Rivers. In Proceedings
of the 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Khulna, Bangladesh,
14–16 September 2021; pp. 1–5. [CrossRef]

106. Sendra, S.; Parra, L.; Jimenez, J.M.; Garcia, L.; Lloret, J. LoRa-based Network for Water Quality Monitoring in Coastal Areas. Mob.
Netw. Appl. 2022. [CrossRef]

107. United Nations. Global Issues—Water. fUN-GI:2023. 2023. Available online: https://www.un.org/en/global-issues/water
(accessed on 15 February 2023).

108. Food and Agriculture Organization (FAO). AQUASTAT—FAO’s Global Information System on Water and Agriculture. 2023.
Available online: https://www.fao.org/aquastat/en/overview/methodology/water-use (accessed on 15 February 2023).

109. UN-Water. UN-Water, 2021: Summary Progress Update 2021—SDG 6—Water and Sanitation for All. 2021. Available
online: https://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-
July-2021a.pdf (accessed on 18 February 2023).

110. Pasika, S.; Gandla, S.T. Smart water quality monitoring system with cost-effective using IoT. Heliyon 2020, 6, e04096. [CrossRef]
111. Chowdury, M.S.U.; Emran, T.B.; Ghosh, S.; Pathak, A.; Alam, M.M.; Absar, N.; Andersson, K.; Hossain, M.S. IoT Based Real-time

River Water Quality Monitoring System. Procedia Comput. Sci. 2019, 155, 161–168. [CrossRef]
112. Carminati, M.; Turolla, A.; Mezzera, L.; Di Mauro, M.; Tizzoni, M.; Pani, G.; Zanetto, F.; Foschi, J.; Antonelli, M. A Self-Powered

Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems.
Sensors 2020, 20, 1125. [CrossRef]

113. Dias, R.L.S.; da Silva, D.D.; Fernandes-Filho, E.I.; do Amaral, C.H.; dos Santos, E.P.; Marques, J.F.; Veloso, G.V. Machine learning
models applied to TSS estimation in a reservoir using multispectral sensor onboard to RPA. Ecol. Inform. 2021, 65, 101414. [CrossRef]

114. Klimapolis Laboratory. 2023. Available online: https://www.klimapolis.net/ (accessed on 10 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/w12041096
http://dx.doi.org/10.1109/CACS52606.2021.9639041
http://dx.doi.org/10.1016/j.snb.2020.128221
http://dx.doi.org/10.1016/j.iot.2022.100504
http://dx.doi.org/10.1109/ICECET55527.2022.9872733
http://dx.doi.org/10.1109/SHIRCON48091.2019.9024849
http://dx.doi.org/10.1109/ICITRI56423.2022.9970242
http://dx.doi.org/10.1109/IES55876.2022.9888275
http://dx.doi.org/10.1016/j.matpr.2021.02.674
http://dx.doi.org/10.1109/TIM.2022.3175059
http://dx.doi.org/10.1016/j.csr.2022.104748
http://dx.doi.org/10.1109/SMART46866.2019.9117555
http://dx.doi.org/10.1109/INCET54531.2022.9824110
http://dx.doi.org/10.1109/ICECIT54077.2021.9641483
http://dx.doi.org/10.1007/s11036-022-01994-8
https://www.un.org/en/global-issues/water
https://www.fao.org/aquastat/en/overview/methodology/water-use
https://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf
https://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf
http://dx.doi.org/10.1016/j.heliyon.2020.e04096
http://dx.doi.org/10.1016/j.procs.2019.08.025
http://dx.doi.org/10.3390/s20041125
http://dx.doi.org/10.1016/j.ecoinf.2021.101414
https://www.klimapolis.net/

	Introduction
	Background
	Water Quality Index
	Low-Cost Water Monitoring Sensors
	Related Work

	Methodology
	Results
	What Sensors Were Used?
	What Are the Water Quality Parameters Monitored?
	Did the Sensors Prove Adequate Considering Their Fields of Application?
	Were the Results Obtained through Low-Cost Sensors Compared with the Results of Reference Equipment?
	The Sensors Analyzed What Environments?
	Does the Implemented Solution Have Some Connectivity to Send Data to the Internet in Real Time?
	In Which Country Were the Experiments Realized?
	Has the Number of Papers Increased in the Period Considered?
	What Are the Most Cited Studies?
	What Are the Limitations of the Considered Studies and the Directions for Future Research?

	Conclusions
	References

