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Abstract: It is important to detect and classify foreign fibers in cotton, especially white and transparent
foreign fibers, to produce subsequent yarn and textile quality. There are some problems in the
actual cotton foreign fiber removing process, such as some foreign fibers missing inspection, low
recognition accuracy of small foreign fibers, and low detection speed. A polarization imaging device
of cotton foreign fiber was constructed based on the difference in optical properties and polarization
characteristics between cotton fibers. An object detection and classification algorithm based on an
improved YOLOv5 was proposed to achieve small foreign fiber recognition and classification. The
methods were as follows: (1) The lightweight network Shufflenetv2 with the Hard-Swish activation
function was used as the backbone feature extraction network to improve the detection speed
and reduce the model volume. (2) The PANet network connection of YOLOv5 was modified to
obtain a fine-grained feature map to improve the detection accuracy for small targets. (3) A CA
attention module was added to the YOLOv5 network to increase the weight of the useful features
while suppressing the weight of invalid features to improve the detection accuracy of foreign fiber
targets. Moreover, we conducted ablation experiments on the improved strategy. The model volume,
mAP@0.5, mAP@0.5:0.95, and FPS of the improved YOLOv5 were up to 0.75 MB, 96.9%, 59.9%, and
385 f/s, respectively, compared to YOLOv5, and the improved YOLOv5 increased by 1.03%, 7.13%,
and 126.47%, respectively, which proves that the method can be applied to the vision system of an
actual production line for cotton foreign fiber detection.

Keywords: deep learning; foreign fiber detection; YOLOv5; polarization imaging; line laser

1. Introduction

Cotton is the largest natural fiber in the textile industry. During the processes of
cotton cultivation, harvesting, transportation, and processing, a large number of foreign
fibers is inevitably mixed in due to various factors, such as cotton hulls, leaves, mulch
films, chemical fibers, and paper pieces. These foreign fibers have adverse effects on the
textile products, not only reducing the spinning efficiency, but also causing fabric defects
and reducing product grade [1]. Therefore, the detection of foreign cotton fibers is an
important and necessary step before spinning. It is time-consuming and inefficient to rely
on workers to manually detect foreign fibers from cotton, and the detection accuracy of
foreign fibers is low [2,3]. In recent years, numerous detection methods for foreign fibers
have been developed, including photoelectric, ultrasonic, and optical detection, according
to the detection principle [4,5]. However, photoelectric detection technology can only detect
colored foreign fibers but not white transparent foreign fibers [6]. Ultrasonic detection
technology can only detect foreign fibers in a large area, and its speed is slower [7]. Presently,
foreign fiber detection mainly uses machine vision technology with high recognition
rate, high detection speed, and low cost. Machine vision technology can be divided into
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X-ray imaging technology, ultraviolet fluorescence imaging technology, infrared imaging
technology, line laser imaging technology, hyperspectral imaging technology, and polarized
light imaging technology [8]. Pai et al. [9] identified and classified three types of foreign
fibers in cotton using an X-ray microtomographic imaging system. However, the imaging
speed of the X-ray imaging method is slow, and the equipment cost is high. Luo et al. [10]
proposed a machine vision method combined with UV fluorescence to sort foreign fibers in
cotton. However, UV fluorescence imaging is less effective in detecting foreign fibers that
are similar to cotton in color and without a fluorescence effect. Cai et al. [11] imaged cotton
using 12 types of foreign fibers in the near-infrared band. The infrared imaging method
has a better detection effect for foreign fibers with a significant difference in the absorption
between the near-infrared band and cotton; however, the infrared spectrum camera is slow
and expensive, and the relevant technology is still in the laboratory research stage. Hua
et al. [12] proposed a method to identify foreign fibers based on line laser imaging; solid-
state lasers have been widely used in machine vision detection owing to their low cost, small
volume, and ease of operation. Mustafic et al. [13] employed hyperspectral fluorescence
imaging to identify foreign fiber in cotton; however, hyperspectral imaging technology
requires a high external environment, and the devices are expensive. Zhang et al. [14]
utilized polarization imaging technology to increase the detection rate of transparent films.

The foreign fiber detection algorithm is the core part of foreign fiber recognition and
classification and can be divided into traditional image algorithms and deep learning
image algorithms. Traditional image algorithms rely on the artificial design of foreign fiber
characteristics by the algorithm designer and utilize image preprocessing, feature extraction,
feature selection [15–17], image segmentation [18,19], and image classification [20–22] to
achieve foreign fiber detection. However, traditional image algorithms have limited ability
to recognize and classify multiple types of foreign fiber targets and cope with complex
scenes, whereas deep learning image algorithms have the ability to learn excellent complex
features. He et al. [23–25] achieved the recognition of foreign fibers in seed cotton images
based on a Faster-RCNN. Du et al. [26] and Dong et al. [27] used ResNet-50 and Inception-
ResNet-V2 instead of the original VGG16 of Faster-RCNN to extract the features of foreign
fibers, and the K-means++ algorithm was used to improve the size and number of candidate
boxes to achieve the classification and localization of multiscale foreign fibers. Wu et al. [28]
introduced the MobileNets network and constructed the MobileNets YOLOv3 model to
detect foreign fibers in cotton. Wei [29] implemented a real-time intelligent classifier for
foreign fiber images. On a dataset of 20,000 foreign fiber images, the classification accuracy
reached 95%. Wu et al. [30] combined traditional convolution with depth-wise separable
convolution and introduced a convolutional layer attention mechanism to establish a deep
learning model for recognizing foreign fibers in cotton. The recognition accuracy for five
types of foreign fibers, such as plastic ropes and human hairs, was 91.93% on the test
set. Zhang et al. [31] introduced the residual network as a feature extraction network and
combined it with the feature pyramid to propose an improved Faster R-CNN network for
the detection of six types of foreign fibers, such as feathers and waste paper. The accuracy
and recall rate of this network were 97.6% and 82.4%, respectively, which were higher than
those of the VGG16 and ResNet50 networks. Zhang et al. [32] utilized the YOLOv5 neural
network to perform classification and recognition of weeds, blackjack, and other foreign
fibers that were segmented from images. The content of various foreign fibers was also
measured, and the recognition accuracy reached 98%.

The actual production line of cotton requires an extremely high detection speed and a
lightweight network with a smaller volume and faster detection speed. Moreover, cotton
on the actual production line is carded through a carding machine, and foreign fibers mixed
in the cotton are broken into smaller foreign fibers. These methods fail to consider the
effective detection of foreign fibers in small targets. Therefore, this study is based on the
YOLOv5 algorithm, and improved methods of Shufflenetv2 and PANet are introduced
into YOLOv5. An improved YOLOv5 algorithm combined with an attention mechanism
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module (CA) network is proposed in this paper, which can realize the real-time detection
of foreign fibers of multiple types of small targets.

The following contributions are made by our work:

• A polarization imaging device of cotton foreign fiber was constructed using line laser
polarization imaging technology.

• In order to reduce the model volume and improve the detection speed, the lightweight
network Shufflenetv2 with Hard-Swish function was added as the backbone feature
extraction network.

• In order to increase the detection accuracy of foreign fibers in small targets, an im-
proved PANet was added to YOLOV5.

• The CA module was added before the Head of YOLOv5 to allocate the weight of
the channel features and spatial features to improve the accuracy of foreign fiber
recognition and classification.

In summary, the line laser polarization imaging approach proposed in this study
has an important guiding value for the online identification and classification of cotton
foreign fibers and the control of foreign fiber generation in cotton planting and picking.
Compared with other typical object detection algorithms, our proposed algorithm has a
higher detection speed, smaller model size, and higher detection accuracy and is more
suitable for foreign fiber detection tasks.

2. Materials and Methods
2.1. Experiment Materials

The cotton and foreign fiber samples used in the experiment were provided by the
Henan Fiber Inspection Bureau and originated from the Xinjiang Uygur Autonomous
Region, China. The experiment was conducted using 20 common types of foreign fibers in
cotton, as shown in Figure 1, and the sizes of foreign fibers were categorized as 0.5 mm2,
1 mm2, 1.5 mm2, 3 mm2, and 5 mm2. Group 1 comprised colored foreign fibers, and it was
easier to distinguish them in cotton, whereas Group 2 comprised white transparent foreign
fibers that were more difficult to detect because they are extremely similar to cotton fiber in
color and appearance.
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Figure 1. Foreign fiber and cotton samples. (1) Dead leaves; (2) cloth; (3) hemp rope; (4) bark;
(5) kraft paper; (6) stalk; (7) PVC; (8) yarn; (9) cottonseed; (10) stone; (11) hair; (12) leaf; (13) sponge;
(14) polypropylene; (15) white paper; (16) polyethylene; (17) feather; (18) foam; (19) chemical fiber;
(20) mulch film.
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2.2. Experiment Equipment

In actual detection, cotton containing foreign fibers was first made into a thin layer
with a width of approximately 10 cm and thickness of approximately 2 mm. The cotton thin
layer sample was irradiated by a uniform line laser, and the scattered light of cotton was
mist-like. Mulch film, plastic and paper pieces, and other white foreign fibers are mostly
dense materials, and the reflected light is approximately a mirror reflection [12].

The experiment found that the characteristic information of cotton foreign fiber image
was the most prominent when the incident angle of the line laser was about 45◦. For
example, when the laser incident angle was 45◦, the average gray value (M(X)) of the
foreign fiber image was larger, and the contrast value (Var(x, y)) was the largest, as shown
in Table 1.

Table 1. Average gray value and contrast value of foreign fiber.

Parameter
Angle of Incidence

45◦ 60◦ 75◦ 90◦

M(X) 85.0056 87.1309 79.0224 96.0166
Var(x, y) 5866.0319 5287.1670 4263.1522 2042.0076

Because of the different polarization characteristics of different foreign fibers, the
reflected light waves have polarization information of the foreign fibers, and different types
of foreign fibers can be distinguished through polarization imaging [14].

A physical image of the cotton foreign fiber polarization imaging detection device is
shown in Figure 2. The sensor of the camera (MV-CH050-10UP, HIKROBOT) was equipped
with four-way (0, 45, 90, 135) pixel-level polarization filters with a resolution of 2448 × 2048
and a target surface size of 2/3” using USB power output. The light source was a 405 nm
line laser (SL-405-35-S-B-90-24V, OSELA) with a power of 35 mW.
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2.3. Dataset, Environment, and Parameters

The target detection dataset in this study was acquired using the image acquisition sys-
tem shown in Figure 2, containing a total of 3944 foreign fiber target images of 20 categories,
which were divided into training, validation, and test sets. The data were enhanced by
gaussian blur, affine transformation, brightness transformation, dropping pixel transforma-
tion, and flip transformation [33,34]. The enhanced dataset consisted of 21,381 images, and
the data format was JPG. Table 2 lists the statistical information of the dataset.

Table 2. Target statistics of the cotton foreign fiber.

Categories
Number of Targets

Training Set Validation Set Testing Set

Polypropylene 967 112 121
Cloth 966 132 126

Mulch film 551 56 59
Sponge 954 109 137

Chemical fiber 976 111 113
Stem 994 108 98

Dead leaves 1002 102 114
PVC 1005 88 113
Hair 499 59 72

Hemp rope 1025 91 120
Cotton seed 989 108 121
Kraft paper 429 54 51

Foam 972 113 139
Yarn 108 11 16
Stone 974 109 117
Bark 991 101 108
Leaf 968 105 127

Polyethylene 985 115 136
Feather 987 120 117
Paper 975 121 134
Total 17,317 1925 2139

The hardware environment and software versions of the experiments are listed
in Table 3.

Table 3. Experimental environment configuration.

Hardware and Software Configuration Parameter

Computer

Operating System: Windows10

CPU: Intel(R) Core (TM) i9-9900K CPU@3.60GHz

GPU: NVIDIA GeForce RTX 3090

RAM: 16 GB

Video memory: 24 GB

Software version Python3.9.12 + PyTorch1.9.1 + CUDA11.7 + cuDNN8.2.1 + Opencv4.5.5
+Visual Studio Code2022 (1.69.1)

In this study, the SGD (stochastic gradient descent) method was used to optimize
the learning rate, and the epochs were determined by comparing the loss functions of the
training set and validation set. The parameters of the training network are listed in Table 4.
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Table 4. Training network parameters.

Parameter Value

Batch size 64
Learning rate 0.01

Warm-up epochs 3
Number of iterations 120

Momentum parameter 0.937
Image size 640 × 640
Optimizer SGD

2.4. Loss Function and Model Evaluation Metrics

The loss function of YOLOv5 consists of three components, which are confidence loss,
bounding box regression loss, and classification loss. The expression of the YOLOv5 loss
function is shown below:

Losstotal = λ1Lobj + λ2Lbox + λ3Lcls (1)

Lobj, Lbox, and Lcls represent confidence loss, bounding box regression loss, and classi-
fication loss, respectively. λ1, λ2, and λ3 are weight coefficients for the three losses, and
changing these coefficients can adjust the emphasis on the three losses. In YOLOv5, Lbox is
calculated using LCIoU [35], which can improve both the speed and accuracy of bounding
box regression. The expression for LCIoU is shown below:

LCIoU = 1− IoU +
ρ2(b,bgt)

c2 + αv

IoU =
|b∩bgt|
|b∪bgt|

v = 4
π2

(
arctan wgt

hgt − arctan w
h

)2

(2)

In the above expression, b and bgt represent the predicted box and ground truth box,
respectively; wgt, hgt, w, and h represent the width and height of the ground truth box and
the predicted box, respectively; ρ represents the distance between the centers of the two
boxes; c represents the maximum distance between the boundaries of the two boxes; and α
is a weight coefficient. Both Lobj and Lcls use the BCEWithLogitsLoss, and their calculation
formula is shown below:

Loss = − 1
n∑[yn ln xn + (1− yn) ln(1− xn)] (3)

The BCEWithLogitsLoss function includes both the Sigmoid layer and the BCELoss
layer and is suitable for multi-label classification tasks; yn represents the ground truth label,
and xn represents the predicted label.

To verify the superior performance of the improved Yolov5 model, we measured the
mAP, FPS, model volume, etc. Some commonly used metrics of precision (P), recall (R),
average precision (AP), F1 Score (F1), and mean average precision (mAP) were selected to
evaluate the model performance [36], and the metrics were defined as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 =
2 · precision · recall
precision + recall

(6)
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AP =
∫ 1

0
p(r)dr (7)

mAP =
∑N

i=1 APi

N
(8)

TP denotes the positive samples predicted to be correct, FP denotes the negative
samples predicted to be incorrect, FN denotes the positive samples predicted to be incorrect,
and N denotes the number of sample categories.

2.5. Improvement of YOLOv5 Network Architecture
2.5.1. YOLOv5 Network Architecture

YOLOv5 combines the characteristics of YOLOv1, YOLOv2, YOLOv3, and YOLOv4.
YOLOv5 mainly contains four network models, namely, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, and the model size and parameters increase sequentially in the four network
structures. This study was based on the YOLOv5s network structure, as shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 26 
 

 

TP
precision

TP FP



 (4)

TP
recall

TP FN



 (5)

2
1

precision recall
F

precision recall

 



 (6)

 
1

0
AP p r dr   (7)

1

N

ii
AP

mAP
N
  (8)

TP denotes the positive samples predicted to be correct, FP denotes the negative sam-
ples predicted to be incorrect, FN denotes the positive samples predicted to be incorrect, 
and N denotes the number of sample categories. 

2.5. Improvement of YOLOv5 Network Architecture 
2.5.1. YOLOv5 Network Architecture 

YOLOv5 combines the characteristics of YOLOv1, YOLOv2, YOLOv3, and YOLOv4. 
YOLOv5 mainly contains four network models, namely, YOLOv5s, YOLOv5m, YOLOv5l, 
and YOLOv5x, and the model size and parameters increase sequentially in the four net-
work structures. This study was based on the YOLOv5s network structure, as shown in 
Figure 3. 

 
Figure 3. YOLOv5 network structure. 

The YOLOv5 network structure consists of a backbone, neck, and head, and the im-
age input first goes through the backbone for continuous feature extraction. The focus 
performs a slice operation on the input image; for example, if the input image size is 640 
× 640 × 3, the slice operation will take a value for every other pixel on the image, and the 
result will be stacked on the channel to obtain a feature layer of 320 × 320 × 12. It is com-
monly understood to expand the image channel and compress the image height and 
width. The focus-module structure is shown in Figure 4. 

Figure 3. YOLOv5 network structure.

The YOLOv5 network structure consists of a backbone, neck, and head, and the image
input first goes through the backbone for continuous feature extraction. The focus performs
a slice operation on the input image; for example, if the input image size is 640 × 640 × 3,
the slice operation will take a value for every other pixel on the image, and the result will
be stacked on the channel to obtain a feature layer of 320 × 320 × 12. It is commonly
understood to expand the image channel and compress the image height and width. The
focus-module structure is shown in Figure 4.
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The second layer of the backbone is the CBS module with a convolution kernel size
of 3 × 3, which performs convolution the calculation, batch standardization calculation,
and SiLU activation function on the input data, adds nonlinearity to the network, and
accelerates the convergence speed of the network. The third layer is the C3 module, which
is mainly composed of n bottleneck modules, three CBS modules, and two convolution
layers of size 1 × 1, it and is designed to better extract the deep features of the image. The
structures of the bottleneck and C3 modules are shown in Figures 5 and 6, respectively.
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Figure 6. C3 network structure.

The last layer of the backbone is the SPP module. First, the number of channels of
the input image is halved using the first CBS module, and then the feature map output
from the first CBS module is passed through three maximum pool layers of different sizes
(13 × 13, 9 × 9, and 5 × 5), and the residual edges constructed together with the output of
the first CBS module are connected in parallel. Finally, the number of channels is halved by
the second CBS module to ensure that the height and width of the feature map of different
size inputs can be kept consistent after pooling; the structure of the SPP module is shown
in Figure 7.
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The neck network constructs feature pyramids for enhanced feature extraction to
obtain more contextual information. Three feature maps are generated in the backbone
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network; the three feature layers are 80 × 80, 40 × 40, and 20 × 20 from shallow to deep.
After the three effective feature layers are obtained, the FPN feature pyramid structure is
constructed first, and the 20 × 20 feature layer is upsampled to obtain the 40 × 40 feature
layer and then stacked with the corresponding 40 × 40 feature layers in the backbone
network. A feature layer of 80 × 80 was obtained by upsampling twice in the FPN
structure, and strong semantic features were transferred. Subsequently, the PAN structure
was constructed to convey stronger localization features, and the 80 × 80 feature layer was
downsampled to obtain a 40 × 40 feature layer, which was stacked with a 40 × 40 feature
layer in the FPN network structure. The PAN network structure was downsampled twice,
and the final outputs were 80 × 80, 40 × 40, and 20 × 20 enhanced effective feature layers,
respectively. Finally, we used these three enhanced feature layers to input the Yolo Head to
obtain the regression prediction and classification prediction results.

2.5.2. Proposed Approach: YOLOv5-CFD

This study made corresponding improvements to the backbone, neck, and head of
YOLOv5. First, Shufflenetv2 was introduced as the backbone feature extraction network
under the premise of ensuring detection accuracy. The weight parameter and volume of the
network were reduced, and the lightweight design of the model was realized. Moreover,
because the foreign fibers were mostly small-sized targets, the FPN + PAN structure
was modified to obtain feature maps with more fine-grained information. Finally, the CA
attention module was added to the front of the Yolo Head to improve the detection accuracy.
The improved YOLOv5 (YOLOv5-CFD) network structure is illustrated in Figure 8.
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Figure 8. Network model of cotton foreign fiber detection.

Improvement of Backbone Network

ShufflenetV2 was proposed by Ma et al. [37] and was based on ShufflenetV1 and
four efficient network design principles. The ShufflenetV2 model excels in speed and
accuracy, making it an ideal lightweight network for deployment in mobile devices. First,
ShufflenetV2 divides the input of the feature channel into two branches by the “Channel
Split” operation. One branch has the same structure, and the other branch consists of
three convolutions with the same input and output channels. The two branches are
concatenated after convolution to keep the number of channels constant. Finally, the
“Channel Shuffle” operation is used to ensure the information exchange between the two
branches. ShufflenetV2 contains a basic unit and a unit for spatial downsampling (2×), as
shown in Figure 9.
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In this paper, ShufflenetV2 units with stride = 2 and stride = 1 were chosen to construct
a new backbone network, and the output of each stage in the new backbone was connected
to PANet. Moreover, we replaced the activation function in the ShufflenetV2 unit with the
H-swish activation function, as shown in Equation (9):

H-swish(x) =


0 x ≤ −3
x x ≥ 3

x · (x + 3)/6 −3 < x < 3
(9)

Improvement of PANet Network

Among the three effective features of the FPN + PAN structure output, the 20 × 20
and 40 × 40 feature maps were used to detect larger targets, whereas foreign fibers in
cotton are mostly small-sized targets. Moreover, the image size of our input network
was 2448 × 2048, and the grid pixels corresponding to the 20 × 20 and 40 × 40 feature
maps were 128 × 108 and 64 × 54, respectively, when performing the bounding box
regression. The k-means clustering statistics showed that nearly 75% of the foreign fiber
target pixels were below 60, as shown in Figure 10, with 20 × 20 and 40 × 40 feature maps
corresponding to anchors ([116, 90], [156, 198], [373, 326]) and ([30, 61], [62, 45], [59, 119]).
The anchors were larger, and many operations were useless when performing the bounding
box regression. The 20 × 20 and 40 × 40 feature maps and large target identification frames
were discarded, making the bounding box regression more accurate and minimizing the
model computational cost.

To solve the problem of an excessive number of small targets, the PANet network
connection was improved to obtain a feature map with fine-grained information. A new
160 × 160 feature map was generated by upsampling the output of the backbone network
twice and fusing it with the feature map of the corresponding size of the backbone. Because
the improved backbone network generated three layers of feature mapping of 320 × 320,
160 × 160, and 80 × 80, the FPN did not require secondary upsampling; hence, the final
YOLO detection heads were 160 × 160 and 80 × 80; Figure 11 shows the PANet network
improvement schematic diagram of YOLOv5.
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CA Module Design

Hou et al. [38] proposed a novel attention mechanism for mobile networks called
“Coordinate Attention” by embedding location information into channel attention in 2021,
as shown in Figure 12.
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Figure 12. Coordinate Attention network structure.

Coordinate Attention focuses on the image width and height and encodes precise
position information. First, the input feature map was divided into the width and height
directions for global averaging pooling to obtain the feature maps in the width and height
directions. The output of the c-th channel with the height and width is expressed as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (10)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (11)

The above equation integrates the features from different directions and outputs a pair
of feature maps with known directions. The module can capture long distance relationships
in one direction while retaining spatial information in the other, helping the network locate
targets more accurately.

Stitching together the feature maps in the width and height directions of the obtained
global perceptual field, the channel is compressed to the original C/r using a 1 × 1 convolu-
tion. Subsequently, the BatchNorm and H-swish activation functions are used for encoding,
followed by a 1 × 1 convolution to adjust the channels of the feature map to be equal to
the number of channels of the input feature map. The attention weights gh and gw of the
feature map on the height and width, respectively, are obtained after the sigmoid function,
as shown below:

gh = σ
(

Fh

(
f h
))

(12)

gw = σ(Fw( f w)) (13)

Finally, a weighted fusion is performed on the original feature map to obtain the final
feature map with attention weights in the height and width directions, as shown in the
following equation:

yc(i, j) = xc(i, j) · gh
c (i) · gw

c (j) (14)

Based on the characteristics of multiple types and small targets with different fibers,
this study added a CA module at the front end of each of the two detection heads of the
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Yolo Head to improve the performance of the network at a low cost, thus improving the
overall accuracy of target detection.

The flow chart of the foreign fiber detection method used in this study is shown in
Figure 13.
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3. Results and Discussion

Figure 14 shows the loss reduction curves of the YOLOv5-CFD model for the training
and validation sets of foreign fiber images. As can be observed from the loss curve, the loss
value dropped to a relatively small value when the number of training rounds was 20, and
the network stabilized when the number of training rounds was 120.

The confusion matrix of the YOLOv5-CFD model is shown in Figure 15. It can be
observed from the figure that most of the targets of different fiber types were correctly
predicted with a low target miss rate, indicating that the model exhibited good performance.

Figure 16 shows the PR curve of YOLOv5-CFD test set and shows the change curve
of the accuracy and recall of the detection results of twenty kinds of foreign fiber targets.
According to statistics, the overall detection result mAP@0.5 was 96.9%.

3.1. Ablation Experiment

The effect of the improved method on the model performance was analyzed by ablation
experiments. For comparison purposes, the experiment was divided into five groups. The
first group was the original YOLOv5 network. In the second group, the ShufflenetV2 mod-
ule was introduced into the backbone feature extraction network module of the YOLOv5.
The third group modified the PANet network connection method using YOLOv5. In the
fourth group, a CA module was added to the front of each of the two detection heads of
YOLOv5. The last set of experiments was the result of the model used in this study. The
experimental results are listed in Table 5.

As seen in Table 5, the use of the ShufflenetV2 module in the back-bone feature
extraction network reduced mAP@0.5 and mAP@0.5:0.95 by 1.95% and 2.73%, respectively,
but the model volume decreased by 5.89 MB, and the detection speed increased by 200 f/s.
The introduction of the ShufflenetV2 module played an important role in reducing the
model volume and improving the detection speed. The improvement of the PANet network
reduced the model volume by 3.3 MB, increased the mAP@0.5 and mAP@0.5:0.95 by 0.27%
and 4.63%, respectively, and increased the detection speed by 153 f/s. The introduction of
the CA attention module improved the detection accuracy of the model and verified the
effectiveness of the improved PANet and CA modules. In summary, the improved strategy
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based on YOLOv5 proposed in this study is important for facilitating the identification and
detection of cotton foreign fibers in an actual production line.
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Table 5. Ablation experiments.

ShuffleNet V2 PANet CA H-Swish Model Volume
(MB)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

FPS
(f/s)

× × × × 13.82 95.87 52.77 170√
× × × 7.93 93.92 50.04 370

×
√

× × 10.52 96.14 57.40 323
× ×

√
× 13.90 95.98 55.08 180√ √ √ √

0.75 96.90 59.90 385

3.2. Comparison of Different Models

To verify the superiority of the YOLOv5-CFD model in cotton foreign fiber detection,
we compared it with the most advanced foreign fiber detection models, YOLOv5, YOLOv4,
SSD, and Faster-RCNN. The relevant parameters of the experiments were also strictly
controlled using a uniform image size as the input and a uniform training and test set for
experimental testing.

Comparing the overall test results of Faster-RCNN, SSD, YOLOv4, YOLOv5, and
YOLOv5-CFD with mAP@0.5, as shown in Figure 17, it can be seen that YOLOv5-CFD
model had better performance.
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Figure 17. P–R curves of different detection models.

The pictures used in the comparative experiment in Figure 18 are from the test set of
this paper [39]. Each experiment was conducted in the same environment. Figure 18 shows
the detection effects of different models in different cases. The images contain complex
light environments, small target foreign fibers, and multiple types of foreign fibers, so the
problems of multiple types of small target foreign fibers in a complex light environment
are fully considered, providing a convenient way to fully demonstrate the robustness and
generalization ability of the model.
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From the image detection results, it could be observed that for large foreign fibers, most
of the five models were recognized, and YOLOv5-CFD had the highest correct classification
rate. For small foreign fibers, YOLOv5-CFD had the highest recognition rate and correct
classification rate. For the first image, YOLOv5-CFD was identified and classified correctly.
In the second image, YOLOv5-CFD had the highest recognition rate with only one missed
target, and YOLOv5 and Faster-RCNN had the highest correct classification rate. For
the last image, YOLOv5-CFD, YOLOv5, and Faster-RCNN were all identified correctly,
and only YOLOv5-CFD and SSD were classified correctly; however, the SSD model had
multiple overlapping detection frames in the detection. In summary, the YOLOv5-CFD
model outperformed the other four models in terms of the test results.

As shown in Table 6, the model volume, mAP@0.5, mAP@0.5:0.95, and FPS of the
YOLOv5-CFD were up to 0.75 MB, 96.9%, 59.9%, and 385 f/s, respectively, which were
better than the values of YOLOv5 (13.82 MB, 95.87%, 52.77%, and 170 f/s, respectively),
followed by YOLOv4 (244.78 MB, 93.59%, 50.50%, and 88 f/s, respectively), and SSD (100.29
MB, 83.07%, 39.06%, and 128 f/s, respectively). Furthermore, the results of Faster-RCNN
(108.91 MB, 75.68%, 33.60%, and 9 f/s, respectively) were worse. The results showed that
the overall performance of the proposed YOLOv5-CFD was the best [40].

Table 6. Experimental results of different algorithms.

Model Parameters Model Volume (MB) mAP@0.5
(%)

mAP@0.5:0.95
(%)

FPS
(f/s)

YOLOv5-CFD 2.97 × 105 0.75 96.90 59.90 385
YOLOv5 7.28 × 106 13.82 95.87 52.77 170
YOLOv4 6.39 × 107 244.78 93.59 50.50 88

SSD 2.41 × 107 100.29 83.07 39.06 128
Faster-RCNN 2.84 × 107 108.91 75.68 33.60 9

The main improvement of the YOLOv5-CFD model is the volume size of the model
and the detection speed; these enhancements meet the high requirements of the actual
production line detection of cotton foreign fibers, and the detection accuracy of YOLOv5-
CFD for small target foreign fibers is also the highest. Based on the above analysis, the
YOLOv5-CFD object detection algorithm proposed in this study improves the detection
speed and accuracy of foreign fiber targets and significantly reduces the model size.

3.3. YOLOv5-CFD Test Results

In order to test the robustness and anti-interference of the YOLOv5-CFD model, this
paper repeatedly tested the miss-recognition rate, misjudgment rate, precision, recall, and
F1 score of the model under different illumination, different incident angles, different
cotton foreign fiber samples, different foreign fiber positions, different foreign fiber sizes,
and different environments. Combined with the sampling frequency of the camera, the
speed of the conveyor belt was set to 4 m/min. The misrecognition rate is the rate of
failure to identify the presence of foreign fibers, and the misjudgment rate is the rate of
judging the position where there is no foreign fiber as the presence rate. For each test
condition, the precision and recall values for each category are first calculated, and then the
averages of the precision and recall values for each category are taken. The test results of
the YOLOv5-CFD model are shown in Table 7.

The experiments of foreign fibers (including mulch film, foam, feather, white paper,
polyethylene, polypropylene, and chemical fiber) detection and classification were made.
The results showed that the environmental light intensity changes had some influence on
the foreign fiber classification, but little effect on the detection. The interference of strong
light such as sunlight caused an increase in the misrecognition rate. The classification
performance of the model was the best under dark conditions and the worst under sunlight
conditions. Foreign fibers were difficult to identify with a small or large incidence angle
such as 15◦ or 90◦. When the incident angle was around 45◦, the detection and classification
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of foreign fibers were optimal. For the different variety of samples, the YOLOv5-CFD
model could generally detect foreign fibers well, and the average F1 score of the three
numbered samples was about 0.69. Under the condition of different positions of foreign
fibers, there were no omissions and misjudgments, and the classification results were the
same. Under the condition of different sizes of foreign fibers, the minimum size of foreign
fibers detected by the YOLOv5-CFD model was 0.5 mm2. Smoke and dust almost had no
interference of linear laser polarization imaging. In summary, the proposed method has
good robustness and anti-interference, meets the basic detection of cotton foreign fibers on
the actual production line, and has practical application value.

Table 7. YOLOv5-CFD model test results.

Different Conditions
Identification Classification

Misrecognition
Rate

Misjudgment
Rate Precision Recall F1

Illumination
dark 0 0 90.07% 97.03% 0.93

lamplight 0 0 84.42% 92.35% 0.88
sunlight 7.30% 0 72.20% 87.72% 0.79

Incidence angle
15◦ 100% 13.64% 0 0 0
45◦ 0 0 90.07% 97.03% 0.93
90◦ 3.93% 22.07% 67.85% 76.20% 0.72

Different varieties samples
115,549 0 5.54% 73.66% 66.23% 0.69
114,835 0 7.92% 75.39% 70.03% 0.73
114,712 12.87% 0 68.55% 60.34% 0.64

Different positions
upper edge 0 0 90.07% 97.03% 0.93

middle 0 0 90.07% 97.03% 0.93
lower edge 0 0 90.07% 97.03% 0.93

Foreign fiber size

1.5 mm2 0 0 70.79% 77.05% 0.74
1 mm2 0 0 66.54% 78.21% 0.72

0.5 mm2 16.05% 0 60.10% 71.78% 0.65
<0.5 mm2 100% 0 0 0 0

Environment
smog 0 0 90.07% 97.03% 0.93
dust 0 0 90.07% 97.03% 0.93

4. Conclusions

To address the problem of foreign fiber detection in cotton, a polarization imaging
device of cotton foreign fiber was constructed using the difference in optical properties
and polarization characteristics between cotton fibers and foreign fibers. Moreover, an
object detection algorithm for cotton foreign fiber based on the improved YOLOv5 was
proposed, which consisted of three key steps: The lightweight network Shufflenetv2
with the Hard-Swish activation function was used as the backbone feature extraction
network, an improved PANet was added to YOLOV5, and a CA module was added before
the Head of YOLOv5. The robustness and anti-interference of the improved YOLOv5
model under various conditions were also tested. Compared with the YOLOv5 foreign
fiber detection model, the improved YOLOv5 foreign fiber detection model had better
performance in mAP@0.5, mAP@0.5:0.95, and FPS, which increased by 1.03%, 7.13%, and
126.47%, respectively. The improved model is capable of performing online identification
and classification of small foreign fiber targets of various types in cotton transportation.
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