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Abstract: The growing number of connected objects has allowed the development of new applications
in different areas. In addition, the technologies that support these applications, such as cloud and fog
computing, face challenges in providing the necessary resources to process information for different
applications due to the highly dynamic nature of these networks and the many heterogeneous
devices involved. This article reviews the existing literature on one of these challenges: resource
allocation in the fog–cloud continuum, including approaches that consider different strategies and
network characteristics. We also discuss the factors influencing resource allocation decisions, such
as energy consumption, latency, monetary cost, or network usage. Finally, we identify the open
research challenges and highlight potential future directions. This survey article aims to serve as a
valuable reference for researchers and practitioners interested in the field of edge computing and
resource allocation.
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1. Introduction

According to the United Nations, in its review of global urbanization prospects,
by 2018, 55% of the population will reside in urban areas, and by 2050, this percentage will
grow to 68% [1]. In addition, Gartner [2] estimated that, by 2020, around twenty billion
connected devices would be deployed, from end-user equipment, such as phones, tablets,
and computers, to municipal systems for traffic management, climate, and health ser-
vices [3]. There is also an increasing number of smart city initiatives being promoted to ad-
dress urbanization challenges, including, for example, the European Commission’s Digital
Agenda that focuses on the deployment of energy-efficient cities [4], the i-Japan strategy [5],
Singapore’s Smart Nation 2015 plan [6], and the investment conducted by China and India
in the implementation of more than 300 smart cities [7]. These are all clear examples of the
interest of nations in not only the implementation but also in researching the deployment
of intelligent territories, with a large number of connected objects (IoT) and technologies
supporting applications that serve different actors. A key part of the operation of these solu-
tions is the data life cycle, which starts and ends in the layer of interconnected objects. This
requires the construction of a flexible architecture that allows data flow processing coming
from different sources with different characteristics and particular QoS requirements.

In order to provide suitable solutions to the different requirements of the applications,
new computing paradigms have been adopted in these architectures. Previously, sending
data to applications located in the cloud using the Internet was a standard scheme. How-
ever, new IoT applications and the increasing data generated by users have shown the
limitations of this alternative, especially when dealing with delay-sensitive applications [8].
Therefore, deploying computing resources closer to the sources could lead to achieving ade-
quate service levels for every application. In this way, new paradigms such as mobile edge
computing (MEC), mobile cloud computing (MCC), edge computing, cloudlets, and fog
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computing have shown that it is possible to reduce response time and bandwidth consump-
tion, improve privacy and security conditions, facilitate the deployment of location-based
services, and alleviate connectivity problems in environments that are hostile to connected
objects, compared to systems deployed in the cloud [8].

The scope of each of these paradigms can be seen in Figure 1, where, for example,
MEC tries to assign tasks to end devices, something that could be extended not only to
mobile phones but also to vehicles or IoT devices. Another common option is exploiting
resources on the first hop from the IoT layer in devices such as access points (APs) or access
gateways, which generally provide more stable connections and higher computational
resources. Some recent alternatives have implemented small servers near the cellular
base stations to deploy content delivery networks (CDNs) in order to provide multimedia
with lower latency to end users. Finally, there is a growing interest in deploying small
data centers closer to the IoT layer, known as cloudlets; several works have included real
implementations with commercial software where authors analyze the performance of
solutions that perform resource allocation in these environments [9,10]. In this work, we
will use the term fog for all the nodes that lay between the IoT layer and the cloud layer
(including IoT nodes).

Figure 1. Cloud and fog integration.

Due to the growing interest in developing solutions that include intermediate compu-
tation paradigms, this work devotes its attention to analyzing resource allocation problems
in architectures that have computational resources distributed between the cloud and
connected objects. Different articles [11–14] denominate these nodes as fog nodes (FNs)
and are associated with a hierarchical architecture known as fog computing, which serves
specific problems that cannot be solved using only traditional cloud-based solutions [15].
According to the Industrial Internet Consortium [16], these are nodes that have enough
computational and network capacity to run advanced services, represented in edge devices
such as connected vehicles, surveillance cameras, industrial controllers, switches, access
points, cellular network base stations, and specialized edge routers, among others.
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Fog computing does not replace the functions of cloud computing but complements
them, and both coexist and cooperate with each other. These interactions are of different
types since they can be between the same or different layers of the architecture or between
different operators [11], which also brings challenges towards the establishment of a
federation between both paradigms [12,14,17,18].

Integration between fog and cloud resources presents some challenges [15,18]:

• Scalability: The constant growth of geographically distributed devices represents a
large amount of data that needs to be processed and analyzed. In this case, when IoT
infrastructures exist, the distributed nature of fog computing is better suited than a
centralized scheme such as cloud computing.

• Interoperability: This aspect has two major challenges. The first is related to a large
number of protocols available in a heterogeneous IoT environment. The second
is associated with the existence of several fog and cloud computing operators and
their interaction. In this case, these computing paradigms are usually based on
virtualization techniques deployed on platforms designed to run different applications
in a homogeneous way, which can be an advantage when dealing with different
applications, information sources, and operators.

• Real-time response: Bringing the computational resources that process data closer to
the information sources is more crucial to carrying out activities that do not require
in-depth analysis or high computing resources thanimproving the response time.

• Security: The amount of connected objects increases the difficulty of ensuring infor-
mation security. In general terms, an integrated solution should aim to have general
standard solutions that avoid the need to implement particular security mechanisms
for each node.

• Environmental awareness: Many IoT applications rely on the capacity to know the
context where the sensors are deployed. This can be enhanced by using distributed
systems that are more aware of different environmental variables.

• Mobility: This is an essential requirement for the deployment of fog-computing-based
schemes due to the growth of connected mobile devices. This represents a challenge
in distributed systems since the solutions must maintain the required resources in a
dynamic topology.

• Reliability: A solution of this nature must guarantee devices that operate correctly,
keeping the communication and computing resources available and working.

Different surveys that address several aspects of fog computing and its integration
with IoT and cloud computing have already been published. Surveys about the state
of the art and research challenges can be found in [17–21], where several issues about
fog computing are discussed, including architectural and security concerns and challenges.
However, these articles do not focus on particular topics about fog computing. Instead,
they include a review of several aspects related to these kinds of deployments, such as
different types of architectures and integration with other paradigms. In [14], the authors
considered the integration of fog-related technologies with smart cities; here, different
use case scenarios are reviewed. Other initiatives collected alternatives for fog–cloud
integration [22]. Further surveys [20] analyzed the implementation of new paradigms
such as software-defined networking and network functions virtualization on IoT, and fog
computing scenarios [23–25].

The resource allocation problem is a common challenge addressed in different fog
computing surveys. However, not many of them analyze this issue in depth. In [15],
the application placement problem was briefly described, and several options were clas-
sified according to the elected optimization metrics and the algorithms used to solve the
problems. In this survey, there is no particular interest in analyzing the characteristics of
each solution or the complexity of the considered architecture. In [26], the authors also
provided an overview of the application placement problem in a fog environment and
proposed a classification based on different scenarios and optimization strategies.
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The contribution of this paper is twofold: first, we give a general definition of the
application placement problem, focusing on the resource allocation aspect. We pay special
attention to the resolution strategies and technical formulation of the problem, incorporat-
ing recent works that are not added in other surveys. Second, two recent research directions
not covered in the reviewed works are included: the possibility of allocating resources in
mobile computational nodes (e.g., vehicles) and the consideration of a federation between
different fog operators and cloud operators.

This survey is structured as follows: Section 2 explains the methodology used to
elaborate this review. Section 3 introduces the resource allocation problem in fog and cloud
environments. Section 4 presents a taxonomy of different resource allocation alternatives
according to control strategies, optimization objectives, resolution strategies, mobility
support, and the inclusion of a federation between fog and cloud. Section 5 includes a
discussion about the found research directions and challenges.

2. Methodology

This review concentrates on surveying different allocation strategies for applications
deployed in nodes installed between the IoT and cloud layers, paying specific attention to
strategies that assign resources in an online manner over dynamic topologies. Following the
PRISMA guidelines, the methodology for building this report consists of three main phases:

2.1. Identification

We searched among the following databases: IEEE Xplore, ACM Digital Library,
ScienceDirect, MDPI, SpringerLink, Google Scholar, and other engineering journals. We
used the following keyword combination: (resource allocation or resource management)
AND (fog computing or edge computing). This action delivered 1135 articles. In this
phase, we removed 303 duplicated articles. The term “fog computing” was first coined
by Cisco in 2012 [27], and the search conducted in the elected databases did not provide
results focused on fog computing published earlier than the year 2016; articles before this
year were oriented to cloud computing environments, a concept that is closely related to
our research, but out of the scope of this survey. In this sense, articles published before
2016 were removed. We also removed articles that were written in languages different
from English.

2.2. Screening

In this phase, three different researchers read the abstract and conclusions of each
record. We excluded articles without experimental results and studies that did not evaluate
at least one strategy for resource allocation in fog environments. Finally, we only included
extended versions of the articles, removing, for example, conference papers that were
further explored in their journal versions. After these actions, we retrieved 356 articles,
obtaining 313 full texts to be read. At least two of the three reviewers read each article.
Here, the researchers considered two reasons for final exclusions: the first one related to the
characteristics of the strategy and the experimental scenario, and the second one associated
with the experimental procedures conducted in the research. We considered distributed
or centralized strategies that execute online resource allocation over dynamic topologies
in works with detailed descriptions of their experimental environment. This is further
explained in the following sections. Dissents were resolved by agreement.

2.3. Inclusion

A total of 94 articles were classified according to the defined criteria and included in
the survey. The methodology is summarized in Figure 2.
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Figure 2. Methodology.

3. Resource Allocation in Fog/Cloud Environments

There are different problems related to the resource allocation problem in fog envi-
ronments that are considered in the literature. They are usually known as the service
or application placement problem [10,15,26]. This problem is quite similar to the prob-
lem related to virtual network functions embedding and can be described following the
representation in [28].

The terminology used in the following section is better described in Table 1. Let
PR = (V, E) be a set of available physical resources where V represents the computational
nodes and E the links between those nodes, and let ARi = (Vi

a , Ei
a) be an application in a

set of n application requests, where Vi
a represents the set of functions of the application i,

consuming computational capacity, and Ei
a the flow of information between those functions,

that consumes bandwidth. Let Ṙ = ∏m
j=1 Rj be a set of resource vectors, and let cap :

V ∪ E→ Ṙ be a function that assigns available resources to elements of the physical nodes.
Ultimately, let reqi : Vi

a ∪ Ei
a → Ṙ be a function that assigns requests to elements of all

application requests. Then, an application placement consists of two functions fi : Vi
a → V

and gi : Ei
a → PR′ ⊆ PR for each ARi such that ∀vi ∈ Vi

a : reqi(vi) ≤ cap( fi(vi)) and
∀ei ∈ Ei

a : ∀e ∈ gi(ei) : reqi(ei) ≤ cap(e). PR′ is a subset of PR that represents a path
inside the graph. Finally, we can define the residual physical resources, RR = (Vr, Er),
that contain the available resources that are left after placing the set of applications ARi in
PR. RR satisfies the following conditions: ∀v /∈ ( fi : Vi

a → V) : cap(v) = cap(vr), vr ∈ RR
and ∀e /∈ gi : Ei

a → PR′ ⊆ PR : cap(e) = cap(er), er ∈ RR. This means that the residual
resources represent the remaining resources after application requests are placed. If RR has
enough resources, then another application can be placed, repeating this process until no
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physical resources are left. Taking this into account is desirable to maximize the number
of applications that are placed. In a more explicit way, the resource allocation problem
consists in finding a representation of AR in PR in the presence of the defined constraints,
as shown in Figure 3.

Table 1. Terminology.

Term Description

PR = (V, E) PR is a set of V nodes and E links that hold the physical resources,
representing the computational resources and connectivity between nodes.

ARi = (Vi
a , Ei

a)

AR is the ith application request consisting of Vi
a functions that take part

in the information processing of the application (that consume
computational capacity, e.g., RAM memory, CPU, or storage), and Ei

a
represents the flow of the information (in bits per second, for example).

RR = (Vr, Er)
Represents the nodes that hold residual resources after placing the
application requests in the available physical resources.

Ṙ = ∏m
j=1 Rj Ṙ contains the resource vectors for all resources (physical and logical).

cap : V ∪ E→ Ṙ The function cap assigns a capacity to an element of the physical
resources (node or link).

reqi : Vi
a ∪ Ei

a → Ṙ The function reqi assigns an application request to an element of ARi

(node or link).

fi : Vi
a → V fi is a function that maps a part of the ith application to a physical node.

gi : Ei
a → PR′ ⊆ PR gi is a function that maps a link of the application request to a path of PR.

1 2

4 5

3

Physical resources

Services / Applications 

Figure 3. Resource allocationfor an application.

Virtual network functions embedding includes the joint placement of virtual services
and traffic flows and has been thoroughly examined. Placing applications in the fog differs
from VNF embedding since the latter assumes the possibility of programming network
flows from a centralized controller. A fog application deployment can span through
different providers that may not support centralized network management [15,29].

Some strategies concentrate on the distribution of resources in a single layer of the
architecture [30,31]; however, in this work, we address strategies that consider resources



Sensors 2023, 23, 4413 7 of 25

in fog and cloud layers, including nodes with different characteristics, from those with
low computing capacity up to micro data centers. The resource allocation strategies for
the location of an application in an infrastructure can be classified according to the criteria
used in [26]:

• Centralized (C) or distributed control (Di).
• Online (On) or offline resource assignment (Off).
• Static (S) or dynamic topology (Dy).
• Mobility supported (M) or mobility not supported (nM) (of fog or end nodes).

Strategies that are centralized rely on one entity that holds information about the
whole topology. In contrast, distributed strategies consider that the decisions could be
made by different controllers that manage groups of physical resources (see Figure 4).
Another criterion is to consider that the decisions can be made with prior knowledge of
the applications that must be deployed (offline) or the services will be provisioned as
soon as they are demanded (online) as shown in Figure 5; the second alternative is far
more difficult to implement and will sometimes lead to suboptimal solutions. In addition,
the introduction of mobility of fog nodes (e.g., vehicles that act as fog nodes) or end users
(e.g., information collected on smartphones) suppose that some physical resources would
not always be available, creating a dynamic topology, forcing the controller to reassign the
application to a new resource in order to maintain the service (see Figure 6, a representation
of a dynamic topology).

Figure 4. Distributed control.

Figure 5. Offline or online provisioning.
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Figure 6. Static or dynamic topologies.

In this survey, we concentrate on solutions of type [C|Di]/On/Dy/M and pay par-
ticular attention to multiobjective optimization strategies since they constitute a closer
representation of a real deployment that includes an IoT/fog/cloud environment, where
you can find online requirements of several applications that can be allocated in mobile
fog nodes, showing a dynamic topology that can be affected when a node ends up without
network coverage.

4. Taxonomy of Resource Allocation Strategies in Fog/Cloud Environments

This survey classifies the resource allocation strategies according to different criteria.
As was stated before, we concentrate on strategies that consider online resource assignments
on dynamic topologies. From this, we address different alternatives and analyze how each
one of them assigns resources when placing applications.

4.1. Control Strategies

One of the first issues to address is the mapping coordination strategies. Two op-
tions are the most common along the different alternatives: centralized or distributed
(see Figure 4). A centralized mapping requires the concentration of the global information
in one point of the architecture and also the communications infrastructure to disseminate
the decisions made by this entity. It could lead to finding a globally optimal solution.
However, there could be issues related to scalability and computational complexity due
to the amount of information that is exchanged. Most of the reviewed alternatives rely
on centralized strategies. For example, the authors in [32] propose a unique entity that
manages the fog and cloud resources in order to find the optimal distribution of the VM
that will execute a part of a distributed application. This centralized entity implements a
genetic algorithm in order to solve a multiobjective optimization problem, minimizing cost
and latency and maximizing the number of applications deployed.

On the other side, a distributed control strategy allows multiple entities to control
service mapping. These entities make decisions based on local information and use compu-
tational resources in their vicinity. These kinds of solutions are more flexible and probably
more suitable to fog computing environments since they could be resilient to local changes
and also can increase the system’s scalability. Still, they would probably lack information on
the global system. These kinds of alternatives are often used in MEC environments [33–35],
since particular devices make decisions related to computational tasks offloading in the
architecture. As shown in Table 2, most of the reviewed papers implement centralized
solutions. Still, in some works [36,37], the fog layer deals with tasks related to real-time
processing and intermediate control entities that redirect the applications to the cloud (as
shown in Figure 4). They propose a heuristic that takes local decisions and migrates the
less requested services to cloud devices in the shortest path. An important thing to take
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into account when deploying a distributed control strategy is the communication protocol
used for the information exchange between the fog controllers and, for example, a main
controller in the cloud.

Table 2. Classification according to control strategies.

Control Strategies References

Centralized control [15,19,30,32,35,38–76]

Distributed control [33,34,36,37,53,77–88]

4.2. Optimization Objectives

The service placement problem is normally addressed from different optimization
objectives, using different types of formulations and a variety of solving algorithms. Most
of the papers in this survey try to optimize only one metric, while few alternatives propose
simultaneously optimizing a group of metrics. Normally, when more than one metric must
be optimized, the most adopted option is to include the other objectives as constraints.
The most common optimization metrics are cost and latency, both desirable to minimize in
most fog contexts used for real-time applications, where particular fog or cloud operators
will compete to host IoT applications. In addition, it is common to find that latency is
included as a constraint [60] since critical applications expose a time limit for completing
a task.

Other habitual objectives are to minimize the computational resource utilization [60]
while deploying the maximum number of services over the fog nodes; also reducing
the monetary cost (for end users or for service providers), [36,51] associated with the
data transmission or the computational consumption of the fog nodes and also to the
deployment of a node; and even minimizing the energy consumption [40,80], which is
one of the main concerns in IoT systems. The optimization objectives are summarized in
Table 3. The resource allocation problem is normally formalized using integer programming
(and its variants: integer linear programming, integer nonlinear programming, mixed-
integer programming, and mixed-integer quadratic programming) or general constraint
programming. Recently, novel approaches have considered formulations related to game
theory, Markov decision processes, and reinforcement learning, an issue that is analyzed in
the following section.

Table 3. Classification according to optimization objectives.

Optimization Objective References

Cost [15,19,30,32–36,38,41,43,44,49,53,56,57,60,63,67,71,73,75,76,78]

Latency [19,32,34,45,48,51–53,55,59,62,64,70,74,79,81,84,88]

Link utilization—throughput [30,38,42,43,60,85,87,89–91]

Hops—distance [37,51,54,61]

Energy consumption [39,40,42,46,47,50,66,68,72,80,84,86]

Usage of fog
resources—application
placements

[33,60,61,65,77,81,85,88]

Other [15,60,66,69,72,82]

4.3. Resolution Strategies

Optimal resource allocation in fog environments is an NP-hard problem [26]. There are
many issues that entangle this task; first, the heterogeneous nature and limited capacities
of fog nodes, and also the dynamicity of the environment since the resources could appear
or disappear instantly, and the sparse distribution of the fog nodes makes the resource
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allocation problem in fog networks a challenging task. In order to solve this problem,
different types of solutions have been implemented, and five main approaches to solving
the optimization problem are identified [26]:

• Exact solutions.
• Approximations.
• Heuristics.
• Metaheuristics (bio-inspired).
• Other alternatives: machine learning (DRL), game theory.

Exact solutions are the least common and focus primarily on small instances of the
problem [36,68].

Because of the size and the various aspects related to fog infrastructures, heuristics
and metaheuristics are often used; in works such as [19], a metaheuristic-based on Tabu
Search was used in order to avoid suboptimal placements when minimizing the makespan
and the communication cost. Several solutions implement genetic algorithms in order to
define the best solution regarding a particular metric. For example, in [77], the authors
compared the performance of a greedy first fit heuristic against a genetic algorithm where
the chromosomes are vectors that represent a service placement plan containing the total
number of services of all applications; they also contrasted scenarios where different
combinations of resources (only fog, only cloud or fog, and cloud) are used, finding smaller
delays when using the genetic algorithm.

Some recent papers include the implementation of machine learning and deep learn-
ing algorithms, such as in [45], where deep reinforcement learning (DRL) was used to
adaptively allocate resources in order to reduce the average service time under an MEC
environment that includes an SDN controller that runs the DRL agent. Here, the authors
compared the performance of the DRL algorithm against a typical open shortest path first
alternative, with different amounts of fog entities and applications to place. The DRL
strategy obtained smaller service times and load distribution. A summary of the used
resolution strategies can be found in Table 4.

Table 4. Classification according to resolution strategies.

Resolution Strategy References

Heuristic [15,36,37,39,41–44,47–51,55,56,59,63–65,67,69–
72,74,77,79,80,82,83]

Metaheuristic [19,66,88]

Game theory [30,34,38,73,75,76,78,86]

Genetic algorithms
(metaheuristic) [32,40,46,60–62,66,77]

RL-DRL [33,45,57,74,81,84,85,87,91]

MDP—Lyapunov optimization [52,53,58]

4.4. Mobility Support

Mobility management is a major issue in fog computing. Solutions that consider the
mobility of end users are usually related to MEC environments. However, the mobility
of fog nodes is not commonplace among the reviewed papers and is normally related to
vehicular fog networks. Frequent changes in the position of fog nodes (see Figure 7) could
lead to an excessive delay or packet loss or even service outages for an end user. In those
situations, the orchestrator must be able to migrate the application to a new fog device.
Some strategies consider the mobility of end users, but few authors tackle the issue of
mobile fog nodes. In this case, considering mobile fog nodes implies that the physical
topology where the applications are deployed is dynamic since, in some situations, some
service (fog) nodes will be out of coverage. In [55], the authors introduce the concept of
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foglets, a programming infrastructure that provides an API for managing the application
components deployed in the fog nodes. In this case, they consider geodistributed fog
resources that can be managed by a centralized entity in charge of allocating resources
according to a particular QoS requirement. The alternatives that explicitly state the use of
mobile fog nodes in their implementations can be found in Table 5.

Figure 7. Mobility of fog nodes or end users.

Table 5. Mobility support of reviewed alternatives.

Mobility Support Related Work

Fog nodes [19,34,44,66,73,74,84,87,88]

End nodes [19,33,35,36,45,47,52,53,55,57,58,68–72,75,76,81,85,86]

4.5. Federation between Fog and Cloud

The different needs held by heterogeneous applications could be fulfilled by a combi-
nation of resources in the fog and the cloud. For example, an application that needs more
computational resources could be redirected to the cloud environment, whilst a routine
that must be executed in a shorter time can experiment with better results if it is assigned
entirely to fog nodes. Here, several configurations can be considered where, for instance,
different operators on the cloud or the fog infrastructure, and even, in some cases, different
service providers could manage their own fog infrastructure.

In every case, there is a challenge if the interaction between operators is needed. Fed-
eration among cloud operators is already a well-investigated issue [92,93], and usually
presents problems related (and not limited) to the lack of formalization, to the deployment
of architectures that can act in real-time and dynamic, online and distributed schedul-
ing [94], topics that are already highlighted in this survey. Not many alternatives consider
a federation between fog operators. However, in [32], the authors proposed an architecture
that includes three different layers (cloud, federation, and application management) where a
multiobjective optimization task was made, trying to minimize the cost, latency, and user’s
footprint. Monetary cost is the most common metric to minimize in this kind of alternative
since it is important to choose a provider that fulfills the application requirements at a
minimal cost [38,48].

A summary of selected reviewed works is included in Table 6. They are classified
according to their resolution and control strategies. All of them implement schemes of
the type [C|Di]/On/Dy/M. The mobility parameter includes strategies that consider either
mobile end users or mobile nodes. However, as seen before, few alternatives consider the
latter. Most of them consider only one metric to be optimized, and initiatives that consider
several optimization objectives usually choose one in the objective function and include the
remaining metrics in the constraints of the problem. Many solution strategies are heuristics,
and few authors have considered alternatives such as game theory or machine learning
techniques. In addition, few authors have tackled the problem where multiple cloud or fog
operators can host the same application.
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Table 6. Reviewed works on resource allocation.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

Dynamic application
deployment in federations of

clouds and edge resources
using a multiobjective

optimization AI algorithm [32]

Cost, latency,
users C Genetic

algorithm X
Presented a resource allocation on
a federated architecture based on

a genetic algorithm.

A Dynamic Service-Migration
Mechanism in Edge Cognitive

Computing [57]
Cost C X

Reinforcement
learning

Proposed a dynamic service
migration and deployed over a

physical scenario and solved the
service placement using RL.

A proximal algorithm for joint
resource allocation and

minimizing carbon footprint
in geodistributed fog

computing [80]

Energy
consumption D Heuristic

Considered the problem of joint
resource allocation and

minimizing carbon footprint
problem for video streaming

service in fog computing.
Developed a distributed algorithm
based on the proximal algorithm
and alternating direction method

of multipliers (ADMM).

Towards dynamic resource
provisioning for IoT

application services in smart
cities [95]

Users,
bandwidth,

hops
C Exact

methods

Developed a resource discovery
service to exchange resource

allocation information between
the fog and the cloud layer.

Efficient Placement of
Multicomponent Applications

in Edge Computing
Systems [56]

Cost C Heuristic

Addressed the problem of
placement of multicomponent

applications in MEC,
and developed a heuristic

algorithm based on an interactive
matching process.

MigCEP: Operator Migration
for Mobility-Driven

Distributed Complex Event
Processing [36]

Cost Di X Heuristic X

Presented a method to reduce cost
in a federated environment

(multiple fog operators), where
the migrations are planned ahead

of time.

Incremental Deployment and
Migration of Geo-Distributed

Situation Awareness
Applications in the Fog [55]

Latency C X Heuristic

They propose foglets, which are
APIs for storing and retrieving

data on the local nodes
and enabling communication

among the resources in the fog
and cloud.

Service placement for latency
reduction in the Internet of

Things [54]
Hops C Heuristic

Proposed a service placement
architecture for the Internet

of Things.

A Fog-based Architecture and
Programming Model for IoT

Applications in the Smart
Grid [79]

Latency C Heuristic

Introduced fog computing
coordinator, which manages

computing nodes of IoT
applications in the smart grid.

Follow Me at the Edge:
Mobility-Aware Dynamic

Service Placement for Mobile
Edge Computing [53]

Cost, latency C, Di X
MDP—

Lyapunov
opt.

Applied Lyapunov optimization
to decompose the long-term

optimization problem into a series
of real-time optimization

problems to handle user mobility.



Sensors 2023, 23, 4413 13 of 25

Table 6. Cont.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

Dynamic service migration
and workload scheduling in

edge–clouds [52]
Latency C X

MDP -
Lyapunov

opt.

Applied a new approach to
solving constrained MDP to a

dynamic service migration and
workload scheduling in

edge–clouds environments.

Elastic urban video
surveillance system using

edge computing [50]

Distance,
latency C Heuristic

Designed a three-tier edge
computing system NFV-SDN

architecture to elastically adjust
computing capacity and

dynamically route data to proper
edge servers for the real-time

surveillance applications.

Optimal Workload Allocation
in Fog–Cloud Computing

Toward Balanced Delay and
Power Consumption [51]

Energy
consumption C Heuristic

Tackled a workload allocation
problem by decomposing the

primal problem into three
subproblems.

Joint Optimization for Task
Offloading in Edge

Computing: An Evolutionary
Game Approach [78]

Latency, cost C Game
theory

Proposed a resource-allocation
strategy based on evolutionary
game theory to deal with task

offloading to multiple
heterogeneous edge nodes and

central clouds among multi-users.

Optimized Provisioning of
Edge Computing Resources

With Heterogeneous Workload
in IoT Networks [49]

Cost, latency C Heuristic

Formulated the problem of
resource provisioning and

workload assignment for IoT
services to jointly decide on the
number and the location of edge

servers and applications to deploy,
using a decomposition approach

to divide the original problem into
two subproblems.

Optimal Placement of
Cloudlets for Access Delay

Minimization in SDN-Based
Internet of Things

Networks [48]

Latency C Heuristic

Investigated the optimal
placement of cloudlets using SDN

to minimize the average
access delay.

UCAA: User-Centric User
Association and Resource

Allocation in Fog Computing
Networks [47]

Latency, energy
consumption C X Heuristic

Presented a user-centric resource
allocation scheme, trying to

minimize a utility function that
depends on several parameters.

Optimizing QoS-Assurance,
Resource Usage and Cost of

Fog Application
Deployments [15]

Latency, cost,
QoS C Heuristic

Developed a prototype that runs a
multiobjective optimization
framework to determine the

deployments of the application
that provide the best tradeoff

among optimization objectives.

Task-Driven Resource
Assignment in Mobile Edge

Computing Exploiting
Evolutionary

Computation [46]

Latency, energy
consumption C Genetic

algorithms

Proposed a joint optimization
problem for task-driven resource
assignment based on evolutionary

computation over three typical
task-driven cases.
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Table 6. Cont.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

A lightweight decentralized
service placement policy for
performance optimization in

fog computing [37]

Hops Di Heuristic

Proposed a decentralized
optimization policy for service

placement in fog computing
addressed to place the most

popular services as close to the
users as possible.

Smart Resource Allocation for
Mobile Edge Computing: A

Deep Reinforcement Learning
Approach [45]

Service time C Reinforcement
learning

Proposed a deep reinforcement
learning-based resource allocation
scheme, to allocate computing and

network resources adaptively.

Fog Vehicular Computing:
Augmentation of Fog

Computing Using Vehicular
Cloud Computing [89]

Latency C X -

Proposed fog vehicular computing
(FVC) to augment the

computation and storage power of
fog computing. In addition,
designed a comprehensive

architecture for FVC.

A cost- and
performance-effective

approach for task scheduling
based on collaboration
between cloud and fog

computing [43]

Cost C Heuristic X

Proposed a scheduling algorithm
to achieve the balance between the

performance of application
execution and the mandatory cost

for the use of cloud resources.

Energy and time efficient task
offloading and resource
allocation on the generic

IoT–fog–cloud
architecture [42]

Energy
consumption C Heuristic X

Proposed a general IoT–fog–cloud
architecture, and resource

allocation was formulated into the
energy and time cost

minimization problem.

Application Component
Placement in NFV-Based

Hybrid Cloud/Fog Systems
With Mobile Fog Nodes [19]

Latency, cost C X Metaheuristic X

Used the random waypoint
mobility model for fog nodes and

proposed a Tabu-Search-based
component placement (TSCP)
algorithm to find suboptimal

resource placements.

A hybrid approach to
scheduling real-time IoT

workflows in fog and cloud
environments [41]

Cost C Heuristic X

Proposed a hybrid fog- and
cloud-aware heuristic for the

dynamic scheduling of multiple
real-time Internet of Things (IoT)

workflows in a
three-tiered architecture.

Workload Allocation in
IoT–Fog–Cloud Architecture

Using a Multiobjective Genetic
Algorithm [90]

Latency, energy
consumption C Genetic

algorithms X

Formulated an alternative to
maintain a trade-off between

energy consumption and delay in
processing workloads in fog.

Energy-efficient task allocation
and energy scheduling in

green energy powered edge
computing [90]

Energy
consumption C Heuristic X

Investigated the energy cost
minimization problem with joint
consideration of VM migration,

task allocation, and green energy
scheduling and proved its

NP-hardness.
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Table 6. Cont.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

Migration Modeling and
Learning Algorithms for

Containers in Fog
Computing [91]

Energy
consumption,

latency
C X

Reinforcement
learning

Proposed container migration
algorithms and architecture to

support mobility tasks with
various application requirements.
Modeled such container migration
strategy as multiple dimensional

Markov decision process
(MDP) spaces.

Computing Resource
Allocation in Three-Tier IoT

Fog Networks: A Joint
Optimization Approach

Combining Stackelberg Game
and Matching [38]

Cost C Game
theory X

Proposed a joint optimization
framework for fog nodes, service
providers, and users to achieve
the optimal resource allocation

schemes in a distributed fashion.

A Hierarchical Game
Framework for Resource

Management in Fog
Computing [30]

Cost, latency C Game
theory X

Proposed a three-layer
hierarchical game framework to
solve the problem related to the

resource allocation in the
virtualized network,

the asymmetric information
problem, and the resource

matching in the physical network.

Trust-Oriented IoT Service
Placement for Smart Cities in

Edge Computing [60]

Resource
utilization, load

balancing,
variance, cost

C Genetic
algorithm

Proposed a modification of Pareto
evolutionary algorithm to

improve the edge
node performance.

Dynamic On-Demand Fog
Formation Offering On-the-Fly
IoT Service Deployment [61]

Service
deployed, QoS,

Availability,
hops, distance

C Genetic
algorithm

Proposed an evolutionary
memetic algorithm to solve a

multiobjective container
placement optimization problem.

Optimized Placement of
Scalable IoT Services in Edge

Computing [62]
Latency C Genetic

algorithm

Jointly treated the load
distribution and placement of

scalable IoT services, to minimize
the potential violation of their QoS

requirements due to the
limitations of edge

computing resources.

Topology-Aware Resource
Allocation for IoT Services in

Clouds [83]
Link utilization C Heuristic

Investigated the VM placement
problem for balanced network

utilization by avoiding
network congestion.

Placement and Chaining for
Run-Time IoT Service

Deployment in
Edge-Cloud [96]

Cost Di X Heuristic X

Presented an NFV-based
high-level architecture for a

system that enables the
deployment of IoT services across

multiple edges and clouds.

Towards Network-Aware
Resource Provisioning in

Kubernetes for Fog
Computing Applications [64]

Latency C Heuristic

Studied the VNF optimal
placement problem in NFV-based

edge cloud systems with IoT
nodes. Considered IoT service
chains composed of multiple

VNFs deployed on edge clouds.
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Table 6. Cont.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

IoT Application Placement
Algorithm Based on

Multidimensional QoE
Prioritization Model in Fog

Computing Environment [82]

QoE Di Heuristic

Presented a 2-phase IoT
application placement algorithm
based on the multidimensional

QoE (MD-QoE).

Optimization of Service
Placement with Fairness [65]

Node usage,
fairness C Heuristic

Presented an architecture
composed by a fog and a cloud

layer, where the fog contains a set
of independent clusters. Proposed
a heuristic to maximize fog usage

and fairness.

Optimized IoT Service
Placement in the Fog [77]

Number of app
placements C X

Genetic
algorithm

Presented a conceptual fog
computing framework,

and modeled the resource
allocation problem considering

the heterogeneity of applications
and resources.

When Deep Reinforcement
Learning Meets Federated

Learning: Intelligent
Multitimescale Resource

Management for Multiaccess
Edge Computing in 5G Ultra

Dense Network [81]

Latency,
network usage Di X

Reinforcement
learning

Presented a 2-timescale DRL
approach to jointly optimize
execution time and network

resource usage in an ultradense
edge computing environment.

Virtual Service Placement for
Edge Computing Under Finite
Memory and Bandwidth [58]

Throughput C X
Lyapunov
optimiza-

tion

Jointly optimized the service
placement, data admission, and
resource allocation of an edge

server to maximize the
time-average service throughput

of the server.

Near Real-Time Optimization
of fog Services placement for

responsive Edge
computing [59]

Latency C Heuristic

Presented a service scheduling
algorithm for fog and edge

networks containing hundreds of
thousands of devices, which is

capable of incorporating changes
in network conditions and

connected devices.

Resource Allocation in 5G IoV
Architecture Based on SDN

and Fog–Cloud
Computing [59]

Delay, stability,
energy

consumption,
load balancing

C X
Genetic

algorithm X

Proposed a multiobjective
optimization problem solved via a
modified GA in order to improve
resource allocation in a vehicular

network combined with
cloud resources.

A Micro-Level
Compensation-Based Cost

Model for Resource Allocation
in a Fog Environment [59]

Cost C Heuristic

Proposed a heuristic for resource
allocation trying to minimize the
cost of placing applications and

compared its performance against
the best-fit algorithm, obtaining

better results in terms of cost,
successful placements and delay.
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Table 6. Cont.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

Blockchain-Based Edge
Computing Resource

Allocation in IoT: A Deep
Reinforcement Learning

Approach [33]

Cost, number of
app placements Di X

Reinforcement
Learning,
Markov
decision
process

Presented a general framework for
blockchain-based edge computing
scenarios. Used a reinforcement

learning algorithm (AC3) to solve
the resource (contract) assignation

problem that is formulated as
an SMDP.

Computation Offloading and
Resource Allocation For Cloud

Assisted Mobile Edge
Computing in Vehicular

Networks [34]

Delay, cost Di X
Game
theory

Presented a distributed strategy
for computation offloading and
resource allocation in vehicular

networks, based on game
theoretic approach.

Computation Offloading and
Resource Allocation in

Wireless Cellular Networks
With Mobile Edge

Computing [35]

Cost C X
Exact

methods

Presented an ADMM
decentralized algorithm for

computation offloading, resource
allocation, and content caching,

in order to maximize the revenue
of an MEC operator.

Contract-Based Computing
Resource Management via

Deep Reinforcement Learning
in Vehicular Fog
Computing [84]

Latency, energy
consumption Di X

Deep rein-
forcement
learning

Presented a resource management
scheme based on contract theory

and used a DRL method to
implement the strategy.

Cooperative Computation
Offloading and Resource

Allocation for
Blockchain-Enabled

Mobile-Edge Computing: A
Deep Reinforcement Learning

Approach [85]

Computation
rate,

throughput
D X

MDP, Deep
reinforce-

ment
learning

Proposed a blockchain MEC
system, where the offloading and

resource allocation problem is
jointly solved.

Decentralized Computation
Offloading and Resource

Allocation for Mobile-Edge
Computing: A Matching

Game Approach [86]

Energy
consumption D Game

theory

Proposed a strategy to jointly
determine computation offloading,

transmit power, and resource
allocation, in a HetNet scenario,

using a matching
game formulation.

Deep Reinforcement Learning
for Offloading and Resource
Allocation in Vehicle Edge

Computing and Networks [87]

Network
utilization Di X

Deep rein-
forcement
learning

Proposed a resource assignation
and offloading strategy in an MEC

environment with vehicles as
intermediate edge servers.

Green Large-Scale Fog
Computing Resource

Allocation Using Joint Benders
Decomposition, Dinkelbach

Algorithm, ADMM,
and Branch-and-Bound [68]

Energy
consumption C Exact

methods

Proposed a large-scale MINLP
problem and solved it by dividing
it into two subproblems. Tried to
maximize a utility function based

on energy consumption.

Fog Computing for 5G Tactile
Industrial Internet of Things:

QoE-Aware Resource
Allocation Model [69]

Blocking
probability C Heuristic

Proposed a QoS-aware model for
resource allocation in a

fog environment.
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Table 6. Cont.

Resource Assignation in Fog–Cloud Environments

Related Work Objective Control Mob. Strategy Fed Contribution

Joint Task Assignment,
Transmission, and Computing

Resource Allocation in
Multilayer Mobile Edge
Computing Systems [70]

Latency C Heuristic

Proposed a multilayered dataflow
processing system, where the

resource allocation problem was
solved using a heuristic.

MOERA: Mobility-Agnostic
Online Resource Allocation for

Edge Computing [71]
Cost C X Heuristic

Proposed an online resource
allocation model in a mobile edge

environment, validating it with
real and synthetic data.

Joint communication and
computing resource allocation

in vehicular edge
computing [88]

Latency,
completed tasks Di X Metaheuristic

Introduced MEC technology to
VANET, providing resources from

vehicles in the road.

PORA: Predictive Offloading
and Resource Allocation in
Dynamic Fog Computing

Systems [72]

Energy
consumption,
queue length

C X Heuristic

Proposed a predictive offloading
scheme in fog computing

environments for
resource assignation.

Multiattribute-Based Double
Auction Toward Resource

Allocation in Vehicular Fog
Computing [73]

Cost C X
Game
theory

Proposed an auction mechanism
for resource allocation in a vehicle

fog computing network.

Resource Allocation for
Vehicular Fog Computing

Using Reinforcement Learning
Combined With Heuristic

Information [74]

Latency C X

Deep rein-
forcement
learning,
heuristic

Proposed a combined strategy
(DRL + heuristic) to solve the

resource allocation problem in a
vehicular fog network.

Three Dynamic Pricing
Schemes for Resource

Allocation of Edge Computing
for IoT Environment [75]

Cost C X
Game
theory

Proposed different dynamic
pricing schemes in an MEC

environment, in order to assign
offloading

computational resources.

Wireless and Computing
Resource Allocation for Selfish

Computation Offloading in
Edge Computing [76]

Cost C X
Game
theory

Proposed a joint allocation of
wireless and computing resources,

with devices that decide by
themselves whether to offload

their computing tasks.

4.6. Resilience in Fog and Cloud Environments

Resilience can be defined as the ability of a system (network) to provide and maintain
an acceptable level of service in the presence of failures and different challenges during
operation. Two principal fields concentrate the research on resilient networks: the first
one tries to deal with how to design systems that, in the presence of problems, can keep
the provision of a service, and the second one is related to guaranteeing that a system
will behave as expected, taking into account measurable properties of the network (trust-
worthiness) [97]. Normally, cloud-based environments offer properties such as elasticity,
virtualization, scalability, and geodistributed services that are often troublesome when
trying to implement standard resilience alternatives [98]. In [99], some key aspects on
which the resilience of fog computing systems depends were remarked upon. In our case,
we concentrate on those points that relate to the resource allocation problem:

• Complexity: When network complexity increases, there is a higher probability of
experimenting with unexpected failures. In fog computing systems, complex envi-
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ronments are common due to the number of devices and the heterogeneity of the
hardware and functionalities. In addition, the chosen topology of a particular solu-
tion can lead to situations that are prone to random errors or security vulnerabilities.
Therefore, the alternatives used for assigning resources in this kind of environment
must consider how the architecture’s complexity can affect the availability of physical
resources. In [100], the authors considered the existence of dependencies in complex
systems and tried to characterize these relationships in order to reduce the level of
intricacy of the network.

• Redundant resources: When assigning resources in fog computing systems, installing
more nodes and reserving additional capacity to maintain the service in case of failure
(without violating delay constraints) could increase the resilience of the network. In
[101], the authors worked on a scenario of a vehicular network trying to minimize
energy consumption. For this, they separated the fog nodes into clusters and enhanced
energy saving by considering some collaboration between vehicular nodes.

• Deploying of agents: Distributed systems that implement different controllers can
carry out actions to enforce problem mitigation. It also can improve system scalability
in situations of high demand. In [102], a large-scale IoT network was managed by a
distributed controller enhancing the recovery mechanism from a failure, supported by
a distributed decision algorithm that rerouted the traffic to available nodes.

5. Research Directions and Challenges

This survey paper explored the existing literature on resource allocation in fog com-
puting, including its various techniques and challenges. In this discussion section, we
summarize our findings and offer insights into the current state of research and future
directions in this field.

The proposed taxonomy classified resource allocation strategy according to different
categories. We found that fewer solutions explore strategies based on distributed control
and rely primarily on assigning this task to a central node. In addition, there is a growing
interest in exploring scenarios of distributed applications over mobile fog nodes (similar
to problems explored in vehicular networks). In terms of resolution strategies, tools such
as ML and DL are paving the way toward becoming reliable alternatives for solving
multiobjective optimization problems or working in more complex topologies; however,
data gathering is still an issue to be attended to. Finally, there is still room for exploring
resource allocation problems in environments with different operators. We will try to
elaborate in a more detailed way on these aforementioned points.

Exploration of different control strategies: There is a lack of solutions that address the
resource allocation problems in cloud/fog environments in a distributed way, relying on a
single central node. This is mainly related to the fact that distributed algorithms are difficult
to construct and implement due to the complexity of communication and synchronization.
A distributed resource management strategy would need the implementation of a commu-
nication protocol between the control nodes [103]. Distributed control could be a well-fitted
option to overcome issues related to scalability and reliability. For example, in SDN there is
still a lot of research on designing efficient distributed control platforms since the structure
of the control plane and the number and placement of multiple controllers critically impact
the performance of a system [104].

Mobility of fog nodes: Due to the high mobility of end users and fog devices, the solu-
tions must ensure the continuity of the service and consistent performance of the infrastruc-
ture, for example, by migrating in an appropriate way the allocated application to another
chosen resource. This situation could become problematic when the researchers consider
distributed applications instead of monolithic ones since the migration must consider
communication between the parts of the application and latency between the components.
In these cases, an approach with a predictive model for the users’ mobility could present
advantages. Several studies propose models to predict the mobility of wireless sensor
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nodes [105]. In [106], a hidden Markov model is used to forecast the movement of the IoT
devices in order to improve the handoff process and energy consumption.

Federation and multiple operators: Few alternatives consider the federation between
fog and cloud or the possibility of having different fog operators, a situation that could
increase the operational cost of the solution. This could be a common scenario since
different actors could provide fog services; in this case, a solution that considers the
monetary costs combined within a tolerable latency for a particular service is necessary.
As stated before, there are several studies where a mesh of different cloud operators is
considered. For example, one cloud operator that needs additional resources sends a
request to foreign operators to enlarge its infrastructure elastically [107]. This is also an
issue considered in the VNF placement problem, similar to in [108], where the authors
implemented a multidomain orchestrator that manages resources in multiple operators.
In [109], a deep reinforcement learning alternative was implemented in order to find an
adequate VNF embedding in a noncooperative domain, where the network operators hid
their infrastructure from other competing counterparts. In this sense, researchers could
explore strategies that have proven their effectiveness in similar distributed problems such
as VNF resource allocation.

Resilience in fog environments: Most of the reviewed alternatives do not consider
failure protection in the proposed strategies. Most of them are related to architectures
where vehicular networks are part of the edge and fog layers [66]. This is a crucial issue
to be addressed due to the characteristics of fog nodes, which are typically energy- and
availability-constrained. Resilient and survivable networks are points that have been
exhaustively explored in NFV resource allocation problems and, in conjunction with SDN,
are important alternatives to implement solutions that work in favor of the resilience of a
fog computing system.

Finally, we found issues related to the experimentation and the formulation of the
resource allocation problem, for which improvement could lead to a better understanding
and tackling of the problem. Most of the reviewed papers are oriented to address the
problem in a specific context and to be evaluated on different platforms, ending in the
formulation of solutions that could not be compared. The configuration of nodes (number of
fog nodes, cloud nodes, IoT devices) and characteristics of the deployment seem somewhat
arbitrary. They could range from a few devices up to thousands of them. In addition,
a variety of tools are used in a simulation of fog environments, where iFogSim [110] is
probably the most common. Other simulators developed in common computational tools,
such as Python or Matlab are also used. There is still room for working on a baseline in
order to facilitate comparisons of different alternatives. Few alternatives implemented
their solutions on real testbeds in order to analyze their execution and behavior. There are
some efforts in implementing, for example, resource allocation strategies on commercial
software such as Apache Spark or Hadoop [10], but in controlled environments with
specific solutions. We also found that there is a lack of generality in formulating the
resource allocation problem. Some papers, the majority found on MEC environments,
consider monolithic applications, whilst the most elaborated alternatives represent the
deployment of an application or a service as a directed acyclic graph, where the nodes
are functions that take part in the processing of the information or can also be sources or
destinations of the data. Edges represent the flow of information between nodes. The latter
representation could be a better method of representing the problem.

6. Conclusions

This paper focuses on the resource allocation problem in the IoT and cloud layers
continuum, an issue with open challenges and discussions. This paper collected several
works on this topic, proposing a taxonomy to classify the different alternatives according
to the control strategies, optimization objectives, resolution strategies, mobility support,
and federation between fog and cloud paradigms. This article focuses on strategies that
implement online resource allocation on dynamic topologies.
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There are several approaches to resource allocation, including centralized or dis-
tributed control and online or offline resource assignation, and even strategies that seek to
improve resilience on the network. In addition, different environmental assumptions could
be considered, such as dynamic topologies that include mobile nodes or scenarios that
pose integration between fog and cloud operators. These resource allocation problems are
usually solved using exact methods in smaller scenarios or heuristics and metaheuristics on
larger layouts. Recent works have focused on proving the effectiveness of game-theoretic
models or deep reinforcement learning alternatives.

Despite significant progress in resource allocation research, many challenges and
open research questions still need to be addressed. For example, one crucial issue we seek
to address in the future is evaluating different algorithms in the scenarios considered in
this research.

This paper also formally defines the resource allocation problem in these environments.
In conjunction with the assembled taxonomy, we aim to ease access to works developed in
this specific context and to identify the challenges in this topic.
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