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Abstract: With the development of industrial automation, articulated robots have gradually replaced
labor in the field of bolt installation. Although the installation efficiency has been improved, installa-
tion defects may still occur. Bolt installation defects can considerably affect the mechanical properties
of structures and even lead to safety accidents. Therefore, in order to ensure the success rate of bolt
assembly, an efficient and timely detection method of incorrect or missing assembly is needed. At
present, the automatic detection of bolt installation defects mainly depends on a single type of sensor,
which is prone to mis-inspection. Visual sensors can identify the incorrect or missing installation of
bolts, but it cannot detect torque defects. Torque sensors can only be judged according to the torque
and angel information, but cannot accurately identify the incorrect or missing installation of bolts.
To solve this problem, a detection method of bolt installation defects based on multiple sensors is
proposed. The trained YOLO (You Only Look Once) v3 network is used to judge the images collected
by the visual sensor, and the recognition rate of visual detection is up to 99.75%, and the average con-
fidence of the output is 0.947. The detection speed is 48 FPS, which meets the real-time requirement.
At the same time, torque and angle sensors are used to judge the torque defects and whether bolts
have slipped. Combined with the multi-sensor judgment results, this method can effectively identify
defects such as missing bolts and sliding teeth. Finally, this paper carried out experiments to identify
bolt installation defects such as incorrect, missing torque defects, and bolt slips. At this time, the
traditional detection method based on a single type of sensor cannot be effectively identified, and the
detection method based on multiple sensors can be accurately identified.

Keywords: bolt installation; YOLO v3; defect detection; multi-sensor

1. Introduction

In recent years, the demand for the automatic installation detection of the defects of
bolts and other parts has increased significantly. Usually, railway and highway inspection
and power transmission line inspection require class detection [1-4], which involves fas-
tener condition detection and surface defect detection. At the same time, it also has some
applications in the field of the automatic assembly of parts. At present, automatic bolt
defect detection generally relies on a single type sensor, such as a torque sensor, vision
sensor and so on. Most sensors rely on the collected data to make direct judgments, while
visual sensors rely on the collected images to form judgments and output results through
trained neural networks, such as SSD, YOLO, and so on [5-11].

For the problem of bolt installation defect detection, manual detection is not applicable
in some extreme scenarios, except for the problems of low efficiency, high false detection
rates, and inadequate detection rates. In automatic detection, the most commonly used
sensors are torque sensors, range sensors, and visual sensors. However, each sensor can
only perceive limited information, so the application of a single type of sensor is also prone
to false detection or inadequate detection phenomena, as shown in Table 1.
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Table 1. Comparison of various types of sensors.

Contrast Term

Torque Sensor Range Sensor Visual Sensor

Detection content

Conditions of use
Robustness

Incorrect and missing Incorrect and missing

Missing installation

installation, torque defect installation
No harsh condition No harsh condition Needs steady light
Stronger Stronger Susceptible to light conditions

In this paper, in order to avoid the false and inadequate detection of a single type
of sensor, we propose a multi-sensor detection method. The torque and angle sensors
inside the screwdriver and the visual sensor described in this paper are used for the
comprehensive detection and judgment of bolt installation defects. Torque and angle
sensors can detect bolt torque defects and whether bolts have slipped, which visual sensors
cannot detect. However, vision sensors can detect the incorrect and missing installation
of bolts that the torque and angle sensors cannot detect. Finally, with the combination of
a variety of sensor judgment results, a comprehensive judgment can be achieved. This
method can avoid most of the false and inadequate detection caused by using a single type
of sensor.

The remainder of this paper is structured as follows: Section 2 reviews the research
status of automatic bolt installation defect detection and the main contributions of this
paper. Section 3 describes the detection methods and main processes involved. In Section 4,
the realization of visual detection and the results of neural network training are described.
Section 5 introduces the experiment of bolt installation defects using multiple sensors, and
expounds the importance of using multiple sensors for detection. Section 6 illustrates the
main conclusions of the experiment.

2. Related Work and Contributions
2.1. State of the Art

To improve assembly efficiency, articulated robots have gradually replaced labor in
the field of bolt installation. The automatic bolt installation of the manipulator is usually
guided by sensors, such as multi-axial force sensors and vision sensors [12-14]. Although
the installation efficiency is improved, installation defects may still occur, so it is necessary
to carry out high reliability bolt installation defect detection. Although many researchers
have conducted research on bolt loosening and parameter identification [15-18], it is still
necessary to carry out the automatic identification of bolts. At present, the automatic
incorrect or missing installation/defect detection method realized by various sensors
has gradually become the mainstream. Zhu et al. [19] used laser-ranging sensors in the
production of parts of different vehicle models in the same line and at the same station to
avoid the phenomenon of missing or incorrect assembly. Yu et al. [20] invented a device to
prevent the absence of bolts in the assembly and manufacturing processes by using torque
sensors, which have the characteristics of low requirements for installation layout and a
low cost. With the development of visual inspection technology, this has gradually become
the mainstream method of bolt absence/defect detection. Liu [21] studied the detection
of truck stop keys, and used the gray level co-occurrence matrix of the target image and
a support vector machine (SVM) to complete the fault identification process. Feng [22]
proposed an automatic fastener fault identification method, and realized the detection
of fastener wear and loss by using a probabilistic topic model. Zhong [23] conducted a
more in-depth study on the defects of missing pins by constructing an optimized PVANET
structure, and the last level of recognition was changed to the detection of multiple local
areas. The visual information of multiple areas was integrated to judge the defects of cotter
pins, and good results were obtained.

Yang and Marino [24,25] realized the real-time detection of hook fasteners and hexag-
onal fasteners, respectively. On this basis, Ayteki et al. [26] established a real-time detection
system for railway fasteners by using a high-speed laser-ranging camera combined with
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pixel and histogram similarity analysis, which improved their robustness. Li [27] estab-
lished a real-time visual inspection system (VIS) for discrete surface defects. This system
has the characteristics of a fast running speed and high recognition rate. It can run on
a test train of 216 km/h in real time. Resendiz [28] developed a defect detection system
for track fasteners based on machine vision, which mainly detects the defects of wooden
fasteners and turnout parts through their texture and edges. Kang [29] used a semantic
segmentation model to realize the state detection of a railway catenary positioning ring.
Souku [30] improved the regularization method of a depth model based on the image data
obtained from multi-angle shooting, and obtained good detection results for rail surface
defects. Huynh et al. [31] proposed a method to identify the rotation angle of nuts using
the Hough transform algorithm and to detect whether the bolt was loose by comparing
the angle changes before and after. This method based on visual images can detect the nut
rotation angle with an accuracy of £2.6°.

At present, deep learning is widely used in the field of detection and defect classifica-
tion [32,33]. Liu et al. [34] proposed a bolt defect identification method that incorporates
an attention mechanism and wide residual networks, and the bolt recognition accuracy
of this method reached 94.57% compared with the value obtained before the inclusion of
the attention mechanism. Zhang et al. [35,36] used Faster R-CNN to train different screw
heights after bolt loosening, to determine whether the bolts were tight or loose, and the
recognition accuracy reached 95.03%. Sun et al. [37] proposed a bolt loosening detection
method based on YOLO v5, which realized bolt-loosening detection by detecting the angle
of the bolt relative to the nut.

Pal et al. [38] realized bolt loosening detection by using a convolutional neural network
(CNN) to extract recognition features from time—frequency scale images based on vibration.
Zhao et al. [39] used SSD to identify the numbers of bolt heads, and calculated the angle
between the center coordinates of the two prediction boxes. Pham et al. [40] used the
composite bolt images generated by a graphical model as the data set of neural network
training, which improved the efficiency of collecting high-quality training data. Qi et al. [41]
embedded a dual-attention mechanism in faster regions with a convolutional neural net-
work (Faster R-CNN), to analyze and enhance various visual features at different scales
and different locations, which effectively improved the bolt detection accuracy. Li et al. [42]
proposed a multi-bolt loosening identification method based on VAM and ResNet-50 CNN,
which can identify bolt loosening with reasonable accuracy, computational efficiency, and
robustness. CHEN [43] built a three-level defect detection structure based on the SSD and
YOLO networks. After positioning the support device, the fasteners were detected. Finally,
a separate deep neural network was built for defect identification, and the detection of
fastener defects on the catenary support device was completed.

2.2. Main Contributions

At present, the automatic detection of bolt installation defects mainly depends on
a single type of sensor, which is prone to mis-inspection. In this paper, aiming at the
problem of bolt installation defects detection, a detection method based on multiple sensors
is proposed. The main contributions of this method are composed of:

1. The torque and angle sensors inside the screwdriver and the visual sensor described
are used for the comprehensive detection and judgment of bolt installation defects.
Torque and angle sensors can detect bolt torque defects and whether bolts have
slipped. Vision sensors can detect the incorrect and missing installation of bolts.

2. Using the YOLO v3 network, the recognition rate of visual detection is up to 99.75%,
and the average confidence of the output is 0.947.

3. Simulation experiments are carried out for several single-type sensors which are prone
to mis-inspection. The results show that the detection method based on multiple
sensors can output accurate detection results in the case of bolt missing or incorrect
installation, torque defects and whether bolts have slipped, and has great advantages
over the detection method based on a single type of sensor.
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3. Overview of Detection Methods

The detection device used in this method is mainly composed of a screwdriver module
and a vision module, as shown in Figure 1. An angle sensor and torque sensor are built into
the automatic screwdriver. The accuracy of the torque sensor is 5/1000. The accuracy of
the angle sensor is +3°. The vision module is composed of a CCD camera, lens and coaxial
light source. The maximum resolution supported by the CCD camera is 2592 x 1944, the
minimum is 160 x 120, and the focal length is 25 mm. The resolution used for visual
inspection is 1280 x 800. The lens adopts an adjustable telecentric zoom lens. The two
modules are connected to the end of the articulated robot, and the device can detect the
bolt assembly at each position of the parts through the movement of the articulated robot.

Articulated robot

Torque and angle

F sensors inside the

screwdriver

Parts to be assembled

Figure 1. Schematic diagram of the detection device.

The main process of the detection method is shown in Figure 2. The sensor in the
automatic screwdriver module monitors the torque and angle. The vision module is
mainly responsible for identifying the incorrect or missing installation. Combined with the
judgment results of the two modules, the bolt assembly status is comprehensively judged.
The main judgment logic is as follows:

1.  When the inspection results of both modules are normal assembly, the final inspection
result is normal assembly of the bolts.

2. When the inspection result of the screwdriver module is a torque defect and the
inspection result of the visual module is normal assembly, the final inspection result
is that the bolt has a torque defect.

3. When the inspection result of the screwdriver module is normal assembly and the
inspection result of the visual module is incorrect installation, the final inspection
result is incorrect installation.

4. When the detection result of the screwdriver module is that the torque is too low, the
angle is too large and the time is out, and the detection result of the visual module is
that the bolt is missing installation, the final detection result is missing installation.

5. When the inspection result of the screwdriver module is too large and the inspection
result of the visual module is normal assembly, the final inspection result is the
bolt slip.
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YOLO v3 is a single-stage target detection algorithm, which only uses convolution
layers and is classified as a full convolution network (FCN). It mainly improves the net-
work structure, network characteristics and subsequent calculation, and improves the
detection accuracy, while ensuring real-time detection [11]. The main structure of the
network is shown in Figure 3. The YOLO v3 network absorbs advanced framework ideas,
such as feature fusion and residual networks, and proposes DarkNet-53, which contains
53 convolutional layers [11]. A large number of residual connections are used in the basic
network to enhance the ability of the model to converge. At the same time, it can output
feature maps of 13 x 13,26 x 26 and 52 x 52 scales, which is conducive to the detection of
multi-scale objects and small objects. DarkNet-53 eliminates the pooling layer, of which the
down-sampling is achieved by a convolution kernel with a step size of 2.

» DBL | conv | v1 |

]
1]
]
i
]
High/low : | 5
torque :
Torque and ]
screwdriver : ‘:D inspection |
rotation angel
inspection :
]
Timeout not |
completed :
]
Figure 2. Main process of the detection method.
4. Visual Monitoring Based on YOLO v3
4.1. Algorithm Overview
: DarkNet-53 1 DBLx5
> 1
ll DBL I resl I res2 I res8 |—>I res8 I—PI res4 |—:—>I DBL }
1

- T T T T T

DBL

DarkNetconv2D_BN_Leaky

13x13,256

DBLx5

Upsampling CONECT {—{ DBL [—{ DBL [ conv [—{ v2 |
| 26x26,256
Upsampling CONECT {—{ DBL [—{ DBL [ conv |—{ v3 |
3 BBLx> 52x52,256
_____________________ T
: : Sl 1 Resblock_body :
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L?eallij : : - — -DBL -DBL : : RESN | = Pazc?crici)ng DBL :
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I
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Figure 3. YOLO v3 network structure.

YOLO v3 follows the anchor mechanism. The feature maps of the three scales cor-
respond to three priori boxes, as shown in Table 2. The K-means algorithm is used for
clustering to obtain the nine priori boxes shown in the table, and they are then allocated.

In addjition, in order to realize a multi-category prediction, YOLO v3 uses the logistic
function instead of the Softmax function. Logistic classification is mainly composed of
linear summation, sigmoid function activation, calculation errors and correction parameters.
The first two parts are used for judgment, and the last two parts are used for correction.
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Logistic classifiers can realize the decoupling between categories to ensure the multi-label
classification of the target.

Table 2. Allocation of prior frames on feature maps.

Characteristic Map Size Receptive Field Anchor Box
13 x 13 Large (116 x 90) (156 x 198) (373 x 326)
26 x 26 Medium (30 x 61) (62 x 45) (59 x 119)
52 x 52 Small (10 x 13) (16 x 30) (33 x 23)

After obtaining the anchor box, the coordinates ty, ty, tw, t, predicted by YOLO v3
are offsets rather than real coordinates, while the center coordinates bx and by width, and
height by, and by, of the prediction box are obtained by Equation (1). The o in the formula is
the Sigmoid function, which is used to constrain tx and ty in the range of (0, 1) to prevent an
excessive offset of the prediction box, cx and ¢y are the coordinates of the upper left corner
of the grid, and p. and py, are the width and height of the prior box.

by = 0(tx) +cx

by=0(ty) +c

y y) Toy 1
bw:Pwetw M)
b = pye’

The loss function of YOLO v3 is shown in Equation (2). Its loss function consists of
three parts: center coordinate and the width—height error, confidence error and category
error. Compared with the loss function of v2, the difference of v3 is that the confidence loss
and category loss are changed to binary cross entropy. For example, in Equation (3), y; is a
binary label value 0 or 1, and p(y;) is the probability of belonging to the y; label value. In
Equation (2), the first two behaviors are the center coordinates and width-height errors, the
third and fourth behaviors are the confidence errors, and the last behavior category error, s2,
represents the number of grids. B represents the number of prediction boxes, A¢orq is the
weight of positioning 10ss, Angopj is the weight of negative sample loss, and Il-]-"bj represents
that on the ith grid, the jth prediction box has a target, and its value is 1, otherwise it is
0. Iij“"bj means that in the i grid, the /™ prediction box has no target and its value is 1;

otherwise, it is 0. C{ and Pij , respectively, represent the confidence predicted value and
probability belonging to a certain category of the i" grid and the jt prediction box.

bj 12 2

Loss —Acoordzz OZ]B 0 1(;] [(xi_x) + ‘_yi)
\2

-+

(=)’
w0 (ol - )+ (i )
= too [cflog(cf>+< ~Segli-c)) 7
o EEo 1 [Cla() + (1) b1~ )
-, Zb] ):ceclassesqpf log(P{) + (1 - P[) log(l - pJ)D

n
BCELoss = — Y [y log p(y1) + (1~ ) -Tog(1 — p(y:)] ©
i=1

Figure 4 shows the complete process for the visual recognition of the incorrect and
missing installation of bolts. First, sample images with labels are created and input into the
network for training. After obtaining the ideal model, the target image is input into the
ideal model, which adjusts the target image to the default size (416 x 416) for detection.
Non-maximum suppression (NMS) is used to classify and output the category, confidence,
and output box. If no label is detected (that is, no label is output) or the labels are incorrectly
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assigned to the output bolt, manual detection is performed. If the labels are assigned to the

output bolt, the next step is performed.

Sample image with train

label information

Image to be
detected

YOLO v3

Trained YOLO v3

Run the
natwork to
detect image

output

input Resize the

Figure 4. Visual identification of the bolt incorrect and missing installation processes.

image to
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|

|

|

|

|
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| :
| input
|

|

1

|

|

|

|

|

!

Normal
installlation

Incorrect
installation

Missing
installation

Y

Missing
detection

4.2. Network Training
4.2.1. Experimental Data Preparation

A CCD camera and coaxial light source were used to collect images of bolts assembled
or not assembled at each part after the parts that were set to be assembled were placed in the
frame, and the blurred and repeated invalid samples were removed. In total, 1400 images
(resolution 1280 x 800) were obtained, as shown in Figure 5, among which 515 bolt
normal assembly images (label: Yes), 267 flat-head bolt missing installation images (label:
No), 234 stud bolt missing installation images (label: Nop), 177 flat-head incorrect bolt
installation images (label: zcp), and 207 stud incorrect bolt installation images (label: pcz).
The obtained images were randomly assigned to the training set, verification set and test
set, with the corresponding ratio of 9:1:4.

Figure 5. Partial sample example.

Since the label file input in the YOLO v3 network is XML, labeling in Anaconda
was used to annotate the image and generate an XML file with label-type and location
information, as shown in Figure 6.



Sensors 2023, 23, 4386

8 of 18

¥l labellmg 7

|zexl

Figure 6. Label interface.

4.2.2. Model Training and Experimental Environments

The computer environment used in the experiment was the Unbuntu 64 bit system,
which used the pythoch 1.7.0 deep learning framework to build the YOLO v3 neural
network, and the CUDA version used was 11.0, cuDnn 8.0.5 and NVIDIA GeForce RTX3090.
The main parameters of the model training are shown in Table 3. The Weight_decay
parameter for the training phase was 0.0005, the Batch_ Size was 8, Nms_ Iou was 0.3,
confidence was 0.5, and the learning rate was 0.0001.

Table 3. Main training parameters of the model.

Parameter Numerical Value
Weight_decay 0.0005

Batch_ Size 8

Nms_ Iou 0.3

Confidence 0.5
Learning rate 0.0001

4.2.3. Analysis Results

In the experiment, 100-600 iterations of training were carried out. After the training,
the model was verified with the test set image and the recognition effect was observed, as
shown in Figure 7.

Considering the actual application scenario, the main evaluation indicators of this
experiment are the recognition rate (i.e., whether the image information can be output),
recognition accuracy (i.e., whether the output image information is correct), and average
confidence. The change in the recognition rate with the number of iterations is shown
in Figure 8. It can be observed that with the increase in the number of iterations, the
recognition rate curve first grows and then tends to be stable, especially after 400 iterations,
whereas the recognition rate minimally changes, and the recognition accuracy is more
than 99% at this time. The average confidence of the output changes with the number of
iterations, as shown in Figure 9. As the number of iterations increases, the confidence curve
keeps rising. After comprehensive consideration, the training model with 600 iterations is
selected. At this time, the recognition rate is 99.75%, the recognition accuracy is 99.5%, and
the average confidence of the output is 0.947. The detection speed is 48 FPS, which meets
the real-time requirement.
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Figure 7. Image recognition effect of some test sets: (a) normal assembly image. The recognition
result is “Yes”. (b) Flat-head bolt missing installation image. The recognition result is “No”. (c) Stud
incorrect bolt installation image. The recognition result is “pcz”. (d) Stud bolt missing installation
image. The recognition result is “Nop”. (e) Flat-head incorrect bolt installation image. The recognition
result is “zcp”.

99.00% 99.00% 99.25%
. 100.00% .
Recognition rate ’ 95.25% 96.25%

95.00%
90.00%
85.00%
80.00%
75.00%

70.00%

65.00%
60.00%
55.00%

50.00%

Epoch

Figure 8. Recognition rate change curve.
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Confidence

0.947

0.95 0.921 0.928

0.893
0.9

0.85 0.821

0.8
0.743

0.75

0.7

0.65

0.6

Epoch

Figure 9. Confidence change curve.

5. Multiple-Type Sensor Detection Experiment

Various types of sensors can effectively detect some assembly defects, as visual sensors
can determine the incorrect or missing assembly of different parts, and torque and angle
sensors can determine torque and angle defects, as shown in Figure 10. However, through
experiments, we know that in some cases, it is difficult to correctly judge the bolt assembly
defects by only relying on a single type of sensor. The detection method based on multiple
sensors can combine the advantages of various sensors, so that more kinds of assembly
defects can be accurately detected.

Detection result

Normal assembly

Abnormal tightening

Screwdriver »| Timeout not
po complete
SssEmbly inspection

Angel exceeding
maximum value

» High/low torque

I
I
I
|
I
I
I
I
I
|
|
I
sensor +
I
I
I
I
I
I
I
|
I
I
I
I

Figure 10. Judgment logic of a torque and angle sensor.

5.1. Detection Subject

This experiment uses the box assembly shown in Figure 11 for testing, which is
composed of an external frame and an internal box, and the two are connected by bolts.
This assembly has high reliability requirements for bolt assembly, and assembly defects
need to be detected in time, or it will affect the next assembly process.

In the experiment, we use the bolt assembly defect detection method based on multiple
types of sensors to detect the incorrect installation, missing installation, torque defects, and
the bolts slipped that are prone to false detection by a single type of sensor. The experiment
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involves the assembly and inspection of flat-head bolts and stud bolts. The rated torque is
4500 £ 100 mN. m, the rated maximum angle is 1200°, and the rated maximum assembly
time is 3500 ms.

Internal box

Bolt connection

|

External frame

Figure 11. Box-type assembly.

5.2. Experimentation
5.2.1. Normal Bolt Installation

The torque and angle data of the bolt during normal installation are shown in Figure 12,
and the result of visual inspection is normal installation. The torque curve rises slowly
when the bolt is just engaged. After the bolt is buckled, the torque rises rapidly. Since the
automatic screwdriver adopts a precise tightening strategy, when the torque is close to the
rated torque, the speed becomes slower, and the torque curve will first stabilize and then
rise to the rated torque. The comprehensive judgment logic is shown in Figure 13, that is,
the bolt installation is considered successful only when the visual detection results and the
detection results of the screwdriver sensor are normal installation.

Torque: Angel:832 ° Time: 2137 ms

Torque/
mN.m

4531.0
4077.9

3624.7

31717

27184

2265.5

18126

1359.3

906.2
453.1

0.0 | 1 |
Os 1s 25 3s Timefs

(a)

Figure 12. Cont.
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(b)

Figure 12. (a) Torque and angle data for normal installation. (b) Visual judgment result.

Multiple sensors detection

Screwdriver sensor

Visual inspection

) |-

Normal
installation

=

Comprehensive
judgement

Normal installation

Figure 13. Comprehensive decision logic in the case of normal installation.

5.2.2. Incorrect Bolt Installation

When two bolts with similar calibration torques are incorrectly installed, the torque
and angle sensors alone cannot be effectively detected, and the incorrect judgment results
of the normal installation will be generated. The torque curve is similar to that of normal
installation. The visual sensor will correctly identify the incorrect bolt installation through
the YOLO V3 network, as shown in Figure 14. Comprehensive judgment logic is also

shown in Figure 15.

Torque:

Torque/
mN.m

Angel:672 °

Time:2182 ms

4453.0

4007.7
35624

31171
26718

22265

1781.2

13359

890.4
445.3

0.0 ]

Os 1s

Figure 14. Cont.

2s

(@)

3s

Time/s
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Figure 14. (a) Torque and angle data for incorrect installation. (b) Visual judgment result.

Single type sensor detection

Screwdriver sensor Wrong judgment
: : Normal assembly

Bolt incorrect
installation

Multiple sensors detection

Screwdriver sensor Right judgment

Visual inepection
:D Incorrect E> Incorrect
installation installation

Figure 15. Comprehensive decision logic in case of incorrect installation.

5.2.3. Missing Bolt Installation

A screwdriver head will idle in the hole when the screwdriver does not reach the bolt
or the bolt falls during the movement. The inadequate installation of the bolts cannot be
determined by the torque and angle data alone. At this time, the torque will always be low
and the angle data will be too large, as shown in Figure 16. Since there is no bolt screwed in,
the torque curve oscillates back and forth in a low torque interval. The data at this time are
similar to the data obtained when the bolt does not fall, but the tightening time increases,
and it will be wrongly judged as exceeding the tightening time rather than detecting the
inadequate installation of the bolt. The visual sensor can correctly identify the missing
state of the bolt, as shown in Figure 16. Comprehensive judgment logic is also shown in
Figure 17.

5.2.4. Torque Defects and Bolt Slips

However, when only visual inspection is used, because it cannot identify torque and
angle information, it appears as if the bolt has been assembled, resulting in a false judgment
when the bolt has slipped (i.e., the angle is too large) or the torque is too high/low. The
torque curve in Figure 18a is similar to that in normal installation on the whole, but in the
end, it exceeds the rated torque. The first half of the torque curve in Figure 18b is similar
to that of normal installation, but the second half of the torque curve drops rapidly and
oscillates back and forth in the low torque interval due to a bolt slip. At this time, the torque
and angle sensors can directly detect the two situations, so the visual detection results still
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need to be corrected by combining torque and angle data. Comprehensive judgment logic
is shown in Figure 19.

Torque: Angel:4582 ° Time: 10024 ms
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Figure 16. (a) Torque and angle data of the screwdriver head idling in the bolt hole. (b) Visual
judgment result.
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Figure 17. Comprehensive decision logic in case of missing installation.
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Figure 18. (a) Torque and angle data when the torque is too high. (b) Torque and angle data when

bolt is stripped. (c) Visual judgment result.
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Figure 19. (a) Comprehensive decision logic in case of high/low torque. (b) Comprehensive decision

=
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logic in case of bolt slips.

6. Conclusions

In order to solve the problem of the low efficiency and high false detection rate of
bolt installation, this paper proposes a method of bolt installation defect detection based
on the composite monitoring of multiple types of sensors, which avoids the problem
of misjudgment when only a single type of sensor for detection is used. In this paper,
the torque and angle sensors inside the screwdriver and the CCD camera are used for a
comprehensive detection and judgment.

Vision sensors can detect the incorrect and missing installation of the bolts that the
torque and angle sensors cannot detect. Based on YOLO v3, the recognition rate of visual
detection is as high as 99.75%, and the average confidence of the output is 0.947. At the
same time, torque and angle sensors can detect bolt torque defects and whether bolts have
slipped, which visual sensors cannot detect. Through the comprehensive judgment of
the detection results of multiple sensors, more accurate judgment results can be obtained,
avoiding the misjudgment of a single-type sensor. In short, this method can further improve
the reliability and efficiency of detection, meet the real-time requirements, and avoid a
series of problems during manual detection.
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