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Abstract: Most of the buildings that exist today were built based on 2D drawings. Building informa-
tion models that represent design-stage product information have become prevalent in the second
decade of the 21st century. Still, it will take many decades before such models become the norm for
all existing buildings. In the meantime, the building industry lacks the tools to leverage the benefits
of digital information management for construction, operation, and renovation. To this end, this
paper reviews the state-of-the-art practice and research for constructing (generating) and maintaining
(updating) geometric digital twins. This paper also highlights the key limitations preventing current
research from being adopted in practice and derives a new geometry-based object class hierarchy that
mainly focuses on the geometric properties of building objects, in contrast to widely used existing
object categorisations that are mainly function-oriented. We argue that this new class hierarchy can
serve as the main building block for prioritising the automation of the most frequently used object
classes for geometric digital twin construction and maintenance. We also draw novel insights into
the limitations of current methods and uncover further research directions to tackle these problems.
Specifically, we believe that adapting deep learning methods can increase the robustness of object
detection and segmentation of various types; involving design intents can achieve a high resolution
of model construction and maintenance; using images as a complementary input can help to detect
transparent and specular objects; and combining synthetic data for algorithm training can overcome
the lack of real labelled datasets.

Keywords: digital twins; geometric digital twins; building information modelling; object
detection; object segmentation; scan-to-BIM; scan-vs-BIM; deep learning; construction of digital
twins; maintenance of digital twins

1. Introduction

This paper provides a comprehensive review of the methods for constructing and
maintaining the as-is geometry of a building digital twin (DT). A building refers to the
structure comprised of connected object instances (e.g., walls, roofs, beams, columns,
windows, doors, etc.) along with mechanical, electrical and plumbing (MEP) systems
(e.g., piping and duct systems, fire protection systems, etc.). Geometry refers to three-
dimensional (3D) objects and their relationships. A DT serves as a product and process
information repository for storing and sharing physical and functional properties of a
building over time with architectural, engineering, construction, and operation (AECO)
stakeholders throughout its lifecycle [1]. The construction of as-is geometric digital twins
(gDTs) refers to generating building geometry as defined above for existing buildings
during their operation stage without prior building geometry information from point cloud
datasets (PCDs). On the other hand, the maintenance of geometric digital twins refers to
updating building geometry with the help of existing building information models (BIMs)
representing the design intent (DI). Maintenance aims to keep gDTs up-to-date during
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the whole lifecycle of buildings, primarily during the construction and operation stages.
The construction and maintenance of gDT together aim to obtain the building’s geometry
as product information at different timestamps throughout the building’s lifecycle, thus
facilitating the more efficient planning, construction, and operation of buildings. The main
problem for unlocking the practical value of gDTs is that the costs and time of digitising
the geometry of buildings still outweigh the benefits of DTs. This limits the adoption of
digital technologies at every stage of the building lifecycle for new and existing facilities.
The automation of digitalisation can help improve the efficiency of operations, reduce the
cost and schedule overrun, and increase productivity [2]. The AECO industry remains one
of the least digitised sectors of the global economy [3], which causes its low productivity.
McKinsey Global Institute also shows that the economy loses about USD 1.6 billion every
year due to the low digitisation of the construction sector [2].

The construction of gDTs aims to provide product information for existing buildings,
since they lack digital representations to support efficient operation and renovation. This
problem is worse for old buildings because their as-designed product information still sits
in two-dimensional (2D) drawings that are often inaccurate or outdated over time. More
than half of the buildings in service in the UK were built more than 20 years ago [4,5]. This
explains why their design models are not available in a digital format [6] or are not reliable
representations of current as-is geometry [7]. Around 85–95% of existing buildings will
remain in use until 2050 [8] and many will need to be renovated. Owners and managers
of such buildings cannot fully benefit from the 2D drawings mentioned above to assist
buildings’ operation and renovation.

On the other hand, the maintenance of gDTs aims to provide dynamic, updated prod-
uct information for new buildings in the construction stage to support progress monitoring
and quality control. Maintaining gDTs requires a DI model (usually referring to the final
as-designed model) serving as a benchmark to the assist updating process. Figure 1 shows
a typical building’s lifecycle of a physical twin and its corresponding DT from the design
and construction to the operation stage. Specifically, the foetal DT at the design stage
contains both product and process information, where the product information on the
various timestamps refers to as-designed BIMs. The client-approved final design file at
the end of timeline in the design stage is marked as DI, which means it will serve as the
benchmark for evaluating the construction outcomes. As-built product information is
collected on a timely basis and accumulated until the completion of the construction to
deliver a child DT during the construction stage. gDT needs to be updated regularly and
iteratively to support progress monitoring and quality control. Finally, the adult DT can
support building performance analyses for energy consumption and building components
maintenance during the operation stage. Overall, the automatic construction and mainte-
nance of gDTs for buildings is important. This paper mainly focuses on the construction
of gDTs for existing buildings at the operation stage and the maintenance of gDTs for
buildings at the construction stage. The current state-of-the-art geometry generation and
updating methods relying on PCD are still time-consuming and manual-intensive and not
reliable and robust in real, complex environments. On this basis, we argue that automating
the construction and maintenance of gDTs for buildings is crucial.

This review paper is exploratory and aims to understand the problem of digitising
building geometry. Most previous literature review papers have focused on the concept
and functions of DT [9,10], applications in construction workforce safety [11], smart manu-
facturing [12], supply chains [13], or target city scale DTs [14]. Other papers that discuss
the geometry of DTs of buildings, such as [15], do not concentrate on 3D geometry pro-
cessing or lack up-to-date comprehensive recent works in this domain [16]. In this paper,
we discuss the state of practice and state-of-the-art methods to enable creating and up-
dating efficient gDTs by relying on PCD, reference models (e.g., an as-designed model),
or both. The second objective is to understand to what extent they solve the problem.
This implies understanding the scope of the problem where the type and frequencies of
objects in a building are unknown. This is a fundamental requirement for generation and
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maintenance and to understand what methods can detect these object types. We created
a geometry-oriented object type categorisation for buildings and established the most
frequent object types by analysing a number of IFC files of different buildings to bridge
the second knowledge gap in this field. We also excluded heritage buildings from scope of
this paper because they constitute a small proportion of all buildings and their geometry is
dissimilar to other constructions.
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Figure 1. Lifecycle of the physical and digital building twins with product and process information
(updated from Sacks et al. [1]).

The main contribution of this paper is to (1) investigate the state-of-the-art prac-
tice and methods in the research of the automatic generation and maintenance of gDTs;
(2) create a geometry-based object class hierarchy; and (3) identify the most frequent build-
ing object classes. We analyse existing studies from the perspective of floor and space
detection, object detection, object matching, and object comparison in both traditional
computer vision and advanced deep learning methods. We summarise the properties,
experiments, and limitations of the state-of-the-art methods to reduce knowledge gaps in
this area of research. In order to help researchers understand the problem more clearly
from a geometric perspective, we created a new geometry-based object class hierarchy
that particularly focuses on the geometric properties of building objects, in contrast to
widely used existing object categorisations that are mainly function-oriented. The new
hierarchy serves as a basic geometry-oriented object classification to assist in determining
the most frequently used object classes in buildings. We ranked the frequency of building
objects by collecting and analysing IFC models of various building types (e.g., school,
hospital, residence, apartment, office, etc.) and identified the top 10 to 14 object classes,
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covering 75% to 92% of all objects in a building on average. We argue that automating the
construction and maintenance of these objects will significantly save time and reduce the
cost of adopting DTs for existing and new buildings.

The paper is structured as follows. Section 2 discusses, evaluates, and summarises
the state-of-the-art software for generating and updating gDTs for buildings. Section 3
elaborates on the state of research in generating and updating gDTs for buildings as well as
related areas of research, including the advantages and limitations of the methods. Section 4
then introduces the new geometry-based object hierarchy and ranks object classes based on
their frequency of appearance. Section 5 summarises the state of practice and the state of
research with respect to the most frequent object classes and finds gaps in knowledge as
well as making suggestions for future research to fill these gaps. Section 6 concludes the
paper by summarising the implications for the industry and broader society.

The following search terms were used to collect and investigate the sources and
references for this paper.

• Google Scholar: (intitle: ”digital twins” OR intitle: “building information model” OR
intitle “geometric digital twins” OR intitle “scan-to-BIM” OR intitle “scan-vs-BIM”)
AND (“machine learning” OR “deep learning” OR “construction” OR “maintenance”
OR “operation” OR “object detection” OR “object segmentation” OR “instance seg-
mentation” OR “semantic segmentation” OR “geometry updating” OR “geometry gen-
eration”).

• Scopus: (TITLE (“digital twins” OR “building information model” OR “geometric
digital twins” OR “scan-to-BIM” OR “scan-vs-BIM”) AND TITLE-ABS_KEY (“ma-
chine learning” OR “deep learning” OR “construction stage” OR “maintenance stage”
OR “operation stage” OR “object detection” OR “object segmentation” OR “instance
segmentation” OR “semantic segmentation” OR “geometry updating” OR “geome-
try generation”)).

• Other websites including “Web of Science”, “iDiscover Cambridge” “GOV.UK” “Mck-
insey Global Institute” with the same keywords.

We summarised all results and selected more than 100 papers directly related to this
review topic and provided a comprehensive systematic review based on the investiga-
tion results.

2. State of Practice

This section reviews and assesses available software for the automatic and semi-
automatic geometry processing of PCDs for buildings. It first discusses object detection
in PCDs in terms of generating the geometry of existing buildings, then covers software
assessment related to the maintenance of gDTs that compares PCDs with reference models.
The software selection was limited to those designed to work with PCDs and provide tools
to extract information from PCDs to assist a modeller. We exclude the software used for the
building design from the scope of this paper because it provided only manual tools.

2.1. Construction of Digital Twins

Software for constructing gDT from PCDs aims to reduce the manual effort necessary
to process PCDs. They perform part of the process automatically or semi-automatically
by providing tools for shape detection, object isolation in PCD, and object fitting to PCD
using object catalogues. Examples of these software include “EdgeWise”, “Faro as-built
modeller”, “Pointfuse”, “Scantobim.xyz”, “InfiPoints”, “Point Cab”, “Vision Lidar”, “Leica
Cyclone Model”, “Leica Cloudworx”, “E3D Design”, and “Trimble Realworks”, among
others. Some of the software listed above is designed for industrial assets and, therefore,
has richer functionality for piping networks and steel structures because they are more
commonly used for this type of assets [17].

Some software can automatically detect planar patches in PCDs to generate walls
and slabs. For example, “Pointfuse” automatically extracts planar surfaces in PCDs and
classifies them based on the normal orientations of these planes: vertical surfaces are
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considered to be wall segments and horizontal surfaces are ceilings or floors (Figure 2).
However, human intervention is required for manually combining and introducing surfaces
to generate volumetric models of walls. Alternatively, “EdgeWise” automatically combines
detected vertical planes into 3D parallelepipedal models of walls (Figure 3). However, the
set of detected walls is incomplete and contains the wrong cuboids. Moreover, the accuracy
of wall dimensions is not perfect and requires manually the adjustment of the length of
walls. These examples highlight how the manual effort for wall and slab generation is
reduced by providing the surfaces or coarse parametric models of these objects.

Sensors 2023, 23, x FOR PEER REVIEW  5  of  36 
 

 

2.1. Construction of Digital Twins 

Software for constructing gDT from PCDs aims to reduce the manual effort necessary 

to process PCDs. They perform part of the process automatically or semi‐automatically 

by providing tools for shape detection, object isolation in PCD, and object fitting to PCD 

using object catalogues. Examples of these software include “EdgeWise”, “Faro as‐built 

modeller”,  “Pointfuse”,  “Scantobim.xyz”,  “InfiPoints”,  “Point  Cab”,  “Vision  Lidar”, 

“Leica Cyclone Model”, “Leica Cloudworx”, “E3D Design”, and “Trimble Realworks”, 

among others. Some of  the software  listed above  is designed  for  industrial assets and, 

therefore, has richer functionality for piping networks and steel structures because they 

are more commonly used for this type of assets [17]. 

Some software can automatically detect planar patches in PCDs to generate walls and 

slabs. For example, “Pointfuse” automatically extracts planar surfaces in PCDs and clas‐

sifies them based on the normal orientations of these planes: vertical surfaces are consid‐

ered to be wall segments and horizontal surfaces are ceilings or floors (Figure 2). How‐

ever, human intervention is required for manually combining and introducing surfaces to 

generate volumetric models of walls. Alternatively, “EdgeWise” automatically combines 

detected vertical planes into 3D parallelepipedal models of walls (Figure 3). However, the 

set of detected walls is incomplete and contains the wrong cuboids. Moreover, the accu‐

racy of wall dimensions is not perfect and requires manually the adjustment of the length 

of walls. These examples highlight how the manual effort for wall and slab generation is 

reduced by providing the surfaces or coarse parametric models of these objects. 

 

Figure 2. Automatic wall, floor detection in PointFuse. Source [18]. Figure 2. Automatic wall, floor detection in PointFuse. Source [18].
Sensors 2023, 23, x FOR PEER REVIEW  6  of  36 
 

 

 

Figure 3. Automatic wall detection in EdgeWise. Source [19]. 

A similar approach is used to generate piping elements automatically. For instance, 

“EdgeWise” assists in generating piping networks by detecting and fitting pipes in a PCD 

and proposing pipe fittings on pipe endings. This software automatically extracts cylin‐

drical surfaces in a PCD and fits a cylinder as a model of a pipe (Figure 4). A quantitative 

study shows that EdgeWise achieves 62% precision and 75% recall in detecting cylinders 

[17]—meaning that three‐quarters of pipes can be automatically generated without user 

intervention. If a pipe is not automatically detected, “EdgeWise” allows the user to isolate 

a PCD cluster that contains a pipe and automatically fits a pipe there. Lastly, pipe fittings, 

such as elbows and tees, are localised on pipe endings (Figure 5). Although these fittings 

introduce  connected  systems  for an asset,  their  resulting models notably deviate  from 

PCDs. These tools significantly reduce manual effort but leave a notable amount of work 

for the user. 

 

Figure 4. Automatic pipe detection in EdgeWise. Source [20]. 

Figure 3. Automatic wall detection in EdgeWise. Source [19].

A similar approach is used to generate piping elements automatically. For instance,
“EdgeWise” assists in generating piping networks by detecting and fitting pipes in a PCD
and proposing pipe fittings on pipe endings. This software automatically extracts cylin-
drical surfaces in a PCD and fits a cylinder as a model of a pipe (Figure 4). A quantitative
study shows that EdgeWise achieves 62% precision and 75% recall in detecting cylin-
ders [17]—meaning that three-quarters of pipes can be automatically generated without
user intervention. If a pipe is not automatically detected, “EdgeWise” allows the user to
isolate a PCD cluster that contains a pipe and automatically fits a pipe there. Lastly, pipe
fittings, such as elbows and tees, are localised on pipe endings (Figure 5). Although these
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fittings introduce connected systems for an asset, their resulting models notably deviate
from PCDs. These tools significantly reduce manual effort but leave a notable amount of
work for the user.
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Another approach for the detection of piping elements implemented in commercial
software is an iterative semi-manual object detection approach. This approach exploits the
fact that most piping elements are connected together and form continuous pipe runs. For
example, “Faro as-built” uses a pipe or the end of a fitting, as well as its orientation, as the
prior knowledge for the position of the next element. It automatically analyses PCDs at
the suppositional location of the next element, automatically models the next element In
the piping network, and fits a model from the catalogue of elements. The user verifies and
adjusts the parameters of generated models to improve object identification. This process
reduces manual effort but still requires keeping a human in the loop. In contrast to the
“EdgeWise” approach, this method aims to provide exact specifications for each generated
element. Objects with extruding geometry, such as beams and columns of various profiles,
are not automatically generated by the existing software. For example, generating an
I-beam in “Faro as-built” requires a user to specify the rough position of the object itself
or a profile plane. Then, the software extracts the profile of the object and models it by
using a catalogue of elements (Figure 6). Although it requires picking one to three points,
these points can be manually selected for every object in the PCD. Lastly, software such
as “EdgeWise” can automatically model structural elements, such as columns, if they are
located on a regular grid after one of them is modelled.
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Template matching is another approach for detecting and generating objects located
on walls, such as doors and windows. For example, “EdgeWise” automatically detects a
point cloud template in the limited part of the input (Figure 7). The search space is limited
to a wall to ensure the computational feasibility of the search and practically limits the
search along a plane with the known orientation of the template or just a small input. This
does not require manual work for each object in the PCD and allows the scaling of the
number of objects in the input.
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Overall, commercial software for generating building geometry from a PCD can
significantly reduce manual effort. The software can automatically detect primitive shapes
and combine them into objects with relatively simple shapes, such as walls. Table 1
summarises existing software’s capabilities with respect to the automatic generation of
the most frequently used object types in buildings from PCDs. However, there is still a
substantial amount of manual work required. The user must verify every object detected
automatically, manually adjust details (such as the boundaries of objects), and generate
objects that were not detected, which is time-consuming.



Sensors 2023, 23, 4382 8 of 32

Table 1. Comparison of existing software for building gDT construction. The table depicts whether the software can model a specific object type and how.

Round Pipe Segment Wall Round Elbow Window Beam Door PlumbingHeatingTerminal

EdgeWise (Building
and Plant packages)

Automatic (cylinder
extraction)

Semi-automate (few
clicks to adjust profile
through one slice)

Automatic
(Autocompletion pipe
runs)

Templates Semi-automatic (grid
pattern detection) Templates Manual

Faro as-built modeller
Semi-Automatic
(Cylinder extraction and
best pipe type fitting)

Manual
Semi-Automatic
(autocompletion of pipe
runs)

Manual
Semi-automatic (few
clicks to adjust profile
through one slice)

Manual Manual

Pointfuse Manual (Extract meshes)
Automatic (extract
planar meshes, can
classify planar meshes)

Manual Manual Manual Semi-Automatic (Auto
planar meshes)

Semi-Automatic (extract
planar meshes, can classify
planar meshes)

Scantobim.xyz

Semi-Automatic (click
on pipe point→
cylinder extracted→
adjust manually)

Manual Manual No No No No

InfiPoints Semi-Automatic
(Automatic cylinders) No Manual No

Manual (automatic
cylinders and plates, a
few click selection to
model beam)

No No

PointCab No Semi-Automatic
(Automatic planes) No No No No No

Vision Lidar No Automatic (PCD
semantic segmentation) No Automatic (PCD

semantic segmentation) No Automatic (PCD
semantic segmentation) No

Leica CloudWorx and
Cyclone Model

Semi-Automatic (specify
one point in a pipe run
→ a pipe run with
segments and elbows is
extracted)

No

Semi-Automatic (specify
one point in a pipe run
→ a pipe run with
segments and elbows is
extracted)

No
Semi-automatic (few
clicks to detect a beam,
then adjust it)

No No

E3D Design

Semi-Automatic (Select
point on pipe, select
point on another
segment then pipe
segments and elbows
are modelled)

No No No No No No

Trimble RealWorks

Semi-Automatic
(autoextract cylinders
and pipe runs in isolated
point-clouds)

No

Semi-Automatic
(autoextract cylinders
and pipe runs in isolated
point-clouds)

No Semi-Automatic (no
information) Manual No

Smap3D

Semi-Automatic
(automatic pipe
detection, then manual
adjustment and
connection)

Manual (planar surfeces
detection) No No No No No

Tekla Structure Manual Semi-Automatic (planar
shapes) Manual Manual Semi-Automatic Manual Manual
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2.2. Maintenance of Digital Twins

The maintenance of gDTs requires updating product information by comparing as-is
PCDs with previous statuses (e.g., as-designed models, previous as-built models). We
summarise the three main steps to maintain gDT and elaborate on each of them based
on the scan-vs-BIM system developed by Bosché et al. [24]: (1) DI geometry to spatial
and visual data (SVD) registration; (2) SVD-vs-DI object instance detection; and (3) object
instance geometry reconstruction. The first step ensures that the DI file (e.g., IFC file)
and the as-built SVDs can be registered into a common global coordinate system. SVD
refers to spatial data, namely PCD, and visual data, namely images and videos. Some
current commercialised software are able to achieve coarse registration (e.g., Tekla Structure
and Trimble RealWorks). The user needs to manually find at least three corresponding
points both in the PCD and the DI geometry, then the software automatically calculates the
transition and rotation matrix to register the PCD against the DI. Another way to achieve
PCD to DI geometry registration is to manually adjust origins and axes to make coordinate
systems the same. Images can also be registered by simulating camera poses in the 3D DI
geometry to capture 2D pictures. This requires knowing the camera’s intrinsic and extrinsic
parameters. The purpose of the first step is to facilitate the object instance detection as the
second step between the DI-borne geometry and the as-built status during the construction
stage.The second step contains PCD-vs-DI object instance detection and image-based object
instance detection. This involves detecting object instances in input PCDs or images guided
by DI. The output of this step is the extracted labelled point cluster corresponding to the
designated object instance. To the best of our knowledge, no commercial software can
automatically detect as-built object instances and match them with as-designed models in
the SVD-vs-DI environment. Some software can perform clash detection between PCD and
DI geometry, but they cannot focus on the instance level in order to detect and extract the
whole individual component in the PCD. We carried out clash detection to verify whether it
could be used to obtain point clusters of individual objects presented in the PCD. We used
“Faro as-built” for Revit on the ISPRS benchmark TUB1 dataset [25] with the upper range
clearance 50 mm. It took 22 min to complete clash detection on a computer (Processor:
AMD Ryzen 5 5600X 6-Core Processor; RAM: 32 GB; GPU: AMD Radeon RX 6800). The
result of 87 clashed elements contains over 90% unnecessary collisions, such as the noisy
points of a part of an object instance (Figure 8). Therefore, clash detection cannot be directly
used to match object instances for updating building gDT. Overall, the output data (e.g.,
extracted point cloud cluster) of the second step can be used to capture the 3D geometry of
object instances in the third step.
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The third step is to convert the extracted point cluster as low-level digitised 3D data
into high-level volumetric 3D formats (e.g., 3D surface mesh). To the best of our knowledge,
no software is capable of automatically capturing and recording the 3D geometry of as-
built object instances from the PCDs with the help of DI. By contrast, two commercial
solutions named OpenSpace and Buildots can measure construction progress by capturing
images with a hat-mounted 360◦ camera. The image data stream is then compared with
the expected progress from the DI to update the progress situation. Buildots can also
evaluate visual quality by automatically detecting misalignment between images and DI.
Nevertheless, these two solutions only rely on visual inspections to detect quality-related
issues; they cannot update building gDT in a 3D view. The updated 3D geometry is
essential for evaluating spatial quality during construction. Additionally, some software
can automatically extract or generate limited object classes only from the PCD without
being guided by the DI. For example, EdgeWise can automatically detect and generate
cylindrical pipe segments, round joints (e.g., elbows, reducers), and rectangular duct
segments without any manual effort. However, it is designed for PCD-to-BIM rather than
PCD-vs-DI. It cannot help distinguish which as-built object instance belongs to which DI
instance. Overall, to the best of our knowledge, there is no state-of-practice solution that
can automatically keep building DT geometry updated based on the DI.

3. State of Research

This section explores state of the art in research in building geometry digitisation and
the areas of computer vision relevant to gDT construction and maintenance for buildings.
This includes space and object detection, which directly generates spaces and objects
from PCDs; object matching and comparison, which allows the comparison of PCD with
as-designed models; and image and point cloud segmentation, which may help with
processing images and PCDs by enriching them with class labels. The construction of a
gDT from a PCD is covered by the space and object detection methods and does not rely
on reference geometry (i.e., previous as-built geometry or DI). The maintenance of gDT
requires additional subsequent stages, namely matching objects from the PCD to objects
from the reference geometry and comparing these objects with DI.

The decomposition of a PCD into a set of objects for buildings can be generally cat-
egorised into bottom-up and top-down approaches. Buildings are complex hierarchical
structures consisting of floors, rooms, and hallways, with various objects inside and be-
tween spaces. The bottom-up methods start by detecting local features and composing
them together to form objects, their combinations, spaces, floors, etc. The following subsec-
tion (Section 3.1) overviews bottom-up methods for object detection. Top-down methods
start by detecting high-level and high-scale features and gradually decomposing them
into smaller objects. Top-down methods for the digitisation of geometry for buildings
are based on layout reconstruction (floor and space detection) methods because a layout
is a high-level feature in a building. They then detect objects within spaces based on
the information about spaces. Section 3.2 will review layout reconstruction methods for
top-down geometry digitisation.

3.1. Object Detection

Object detection in a PCD refers to finding a particular object instance, including
its location, in a PCD comprised of multiple object instances. This section discusses
object detection methods for objects in buildings and related areas in computer science
research, beginning with classic model-driven computer vision algorithms that represent
deterministic methods for object detection and ending with data-driven deep learning
methods for object detection that are useful for the generation and maintenance of gDTs.
Object detection is relevant to the generation of the gDTs of buildings and to the second
step of the three-step approach mentioned in Section 2.2.
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3.1.1. Classic Computer Vision Algorithms

Classical computer vision algorithms (also referred to as non-machine learning (ML)
methods) for object detection are based on deterministic procedures for data analysis,
such as primitive shape fitting and statistical analysis. The bottom-up methods for object
detection in buildings are based on detecting and combining low-level features, such as
planar or cylindrical patches, also referred to as primitive shapes. The basis for object
generation methods are primitive shape detection methods, namely RANSAC [26], Hough
transform [27], or region growing methods and their variations. These methods are de-
signed to find shape parameters (or any hypothesis about data) in a given data or point
clusters of individual geometric shapes; therefore, they can be applied to find shapes in
PCDs with multiple shapes and fit parametric models into PCDs of a particular object. We
refer readers to [28] for the review of RANSAC and its variations.

RANSAC-based methods can be applied for object detection during gDT generation
and maintenance. For example, researchers use them to detect planar patches for wall
generation [29,30]. These methods have also been used to detect pipes [31], cast-in-place
footing detection [32], and cable trays and ventilation ducts [31], among other examples.
These methods have also been used to verify the quality of precast concrete objects, such
as walls and slabs, during construction [33,34]. After primitive shapes are extracted, rule-
based methods can be used to adjust object dimensions, as shown in [35], where authors
extended walls to remove gaps on corners. Zhang et al. [36] employed decision trees to
compose geometric primitives together to form objects with more complex shapes.

Hough transform finds shape parameters to best describe the provide data for object
generation from PCD. Researchers have shown how this method could be applied to
detect pipes and other cylindrical elements [37–39]. It can also be used to estimate shape
parameters from a PCD with the prior shape knowledge from the corresponding DI [40].
The applications of RANSAC and Hough transform are limited to object detection during
the generation and maintenance of gDTs. Both methods are computationally expensive
due to large inputs and inputs with multiple shape instances. They both require tolerance
thresholds, which depend on data quality, the size of objects, and scene composition. They
are also sensitive to clutter and occlusion and limited in the variety of shapes they can
detect, working well for primitive shapes only. These methods fail if a notable amount
of clutter is present in the PCD. Overall, these methods can successfully detect planar,
cylindrical, or spherical objects in relatively small PCDs with small occlusions.

Region growing algorithms can also detect planar, cylindrical, and spherical objects
in PCDs. These methods are based on the fact that the abovementioned shapes have
homogeneous local curvatures throughout. This allows the selection of a point and the
growing of a region by adding all neighbouring points with similar curvatures or normal
orientations. As a result, such a method segments a PCD into clusters that represent objects,
such as walls, slabs, pipes, ducts, elbows, or their parts [41–44]. These methods also allow
the detection of objects from a reference model in PCD, when the object position deviates
from reference geometry [45]. However, region growing methods are sensitive to noise
because they greatly influence local parameters estimation, such as normal and curvature
parameters. In addition, they tend to oversegment the PCD.

Other methods aim to reduce the problem into a 2D domain in order to simplify the
object detection process. For example, Wang et al. [46] proposed slicing the input into
multiple slices orthogonal to the X and Y axes and searching for the profiles of extruded
objects or objects with non-trivial shapes. They showed how to use this method to detect
pipes, beams and various extruded objects and machinery using template matching in 2D.
However, the proposed method requires objects to be oriented parallel to the main axes
only, limiting its applicability.

3.1.2. Deep Learning for Shape Detection

Unlike classical computer vision approaches, data-driven methods for shape detection,
such as deep learning methods, extract domain knowledge from labelled data provided to
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a model beforehand. These methods do not require specifying explicit knowledge in their
design; therefore, they can be extended to multiple object types in multiple environments.
Deep neural networks are used to classify individual points in PCDs, infer bounding boxes
of objects, or classify point clusters. These applications can play a vital role in the geometry
digitisation of buildings from PCD.

Bounding box prediction enables the detection of an object to reduce the complexity of
generating its geometry. For example, Xu et al. [47,48] applied bounding box regression on
indoor scenes on S3DIS [49] and SUNCG [50]. After a bounding box is determined for an
object, this object can be modelled from a point cloud inside the bounding box. However, a
bounding box may contain points from other closely located objects or if the object is not
convex. This requires the further filtering of points irrelevant to the object. A point cluster
of the object can be obtained by shape fitting using the above-mentioned methods, such
as RANSAC or Hough transform, if the shape is known. The alternative approach is to
obtain the point clusters of individual objects directly from the input. Thus, the instance
segmentation of a PCD of a building will directly produce information required to generate
the final geometry of objects.

The instance segmentation of PCD separates the input into individual point clusters,
each representing a single object with its class. A point cluster can then be tessellated to
obtain the geometric representation of each object. Park and Cho [51] applied class instance
segmentation to the built environment in order to digitise the geometry of buildings, but
they require the knowledge of the materials of objects as extra supervision to improve
the performance. Mean precisions and recalls represent precisions and recalls averaged
over all classes, where a positive detection is recorded if their intersection over union
(IoU) exceeds 50%. The best models, such as those of Chen et al. [52], Jiang et al. [53],
Liang et al. [54], Vu et al. [55], and Zhong et al. [56], score about 70% of precision and
recall on S3DIS dataset, which means that only 70% of objects are detected, given that
the intersection between the detected and the ground truth is at least 50% of their union,
which declines if the IoU threshold is larger. It is worth noting that high recall is preferable
over high precision because it is easier to delete an irrelevant cluster than to model it
from scratch. Overall, it is not enough to automatically produce point clusters or meshes
of individual objects from point clouds because it leaves 30% of objects to be processed
manually and the further adjustment of point clusters to make IoU with a ground truth
closer to 100%.

Object detection methods can also benefit from the 2D image analysis domain by
adopting convolutional neural network (CNN) models. Czerniawski and Leite [57] applied
DeepLab [58] architecture to automatically segment RGB-D (colour and depth) images into
13 building object classes, including windows, floors, stairs, walls, elevators, ducts, columns,
ceilings, diffusers, doors, plumbing, furniture, and conduits. The experimental result shows
that the average intersection of union (IoU) is 0.50. Narazaki et al. [59] applied a fully
convolutional network (FCN) to detect bridge components. FCN is also used to detect
building changes from remote sensing images with 88.86% of IoU from the experimental
results [60]. Yeum et al. [61] applied AlexNet [62] to detect the welded joints of a highway
sign truss structure. Liang [63] used the faster R-CNN (regions with CNN features) [64]
to detect bridge components, while Kufuor et al. [65] used it to detect MEP components,
including sockets, switches, and radiators, by training both RGB 360 and standard images.
Overall, these methods based on R-CNN can achieve high detection accuracy (over 90%)
because of the greater availability of labelled data for training. Pan et al. [66] used image
sequences to detect small objects, such as light fixtures, room signs, etc., and aligned a
videogrammetric PCD to gDT to enrich it with these objects.

Environments with limited labelled data available for training deep neural networks
can benefit from synthesising labelled data from the 3D models of buildings. Studies,
such as Nikolenko [67] and Tremblay et al. [68], showed that synthetic data, such as PCDs
sampled from 3D models, can assist in overcoming the lack of real-world data. Researchers
compared strategies for training models when real-world ground truth data were lim-
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ited [69]. They claimed that neural networks trained on a large amount of synthetic data
and real data (20% of the available real dataset) achieved worse performance—roughly 10%
lower than a trained model on the entire real dataset. On the other hand, the model
trained on mixed data achieved significantly better performance (~20% higher) than a
model trained only on the real part of the same dataset. These experiments highlighted that
artificial data could bridge the gap when a massive amount of real data are unavailable.

3.2. Layout Reconstruction

We define a building layout to be a space decomposition which has two levels: floors
and rooms, halls, and other spaces. Layout reconstruction the process of generating a
building layout based on its as-is PCD and it is a basis for top-down approaches. The
first step is to decompose a PCD into point clusters of individual floors. Huber et al. [70]
presented a simple floor detection method based on projecting a PCD onto the Z-axis and
localising density peaks there. The method is based on the fact that floors and ceilings
are large horizontal objects and the height of all points of a floor or ceiling has the same
Z coordinate. The height of peaks and the knowledge of the approximate width of slabs and
floor height allow the identification of each floor and ceiling. Scanners provide information
about gravity direction and align the Z-axis of PCD. A similar idea can be applied to detect
rooms inside the PCDs of individual floors. This approach is limited to horizontal floors
only. It cannot successfully detect floors and ceilings if they are tilted or non-flat (e.g.,
variations in the hight of a floor).

Room boundaries can then be detected in the high-density areas of the X–Y projection
of the PCD of a floor. Filtering points by keeping only points with normal perpendicular to
the Z-axis improves the performance of the method because it keeps only points on vertical
surfaces while discarding others. The wall occupancy information can then be used to
compute the floorplan for the PCD. Alternatively, one could use the information on empty
parts on the X–Y plane to infer a floor plan. However, this method assumes that walls
would be the only major visible vertical structures in a building, which does not hold if
there are other vertical objects, such as cabinets, or if walls are significantly occluded.

Macher et al. [71] proposed identifying rooms on a storey by computing a discrete
occupancy map for the horizontal slice containing the ceiling. This method is based on
the idea that rooms and hallways are disjointed at the ceiling because transitions between
them, such as doors, have a smaller height than the ceiling itself. This assumption allows
the segmentation of spaces by joining neighbouring occupied parts together. Afterwards, a
2D room layout can be refined by computing alpha shapes to reduce the influence of clutter
and occlusions. This output allows the splitting of the input PCD of multiple rooms into
multiple PCDs of single rooms.

Alternatively, a room arrangement can be detected by optimising the wall-space layout
based on the information on potential wall location. For example, Ochmann et al. [72]
projected points onto the X–Y plane and detected lines there. They then split space based
on the faces spanned by lines and marked surfaces as belonging to the same space with
the co-visibility information from the sensor (essentially whether points in the region are
from the same scan). However, this requires extra input on top of the PCD and limits the
applications of the method. They also marked line segments as potential wall locations if
two lines nearly parallel lines were within wall thickness. Finally, they reformulated the
space layout problem as an optimisation problem of mapping faces to rooms and classified
line segments into walls and non-walls. They then used integer linear programming (ILP)
to solve this optimisation problem and produced a space layout with walls. A similar
approach was used in other papers, e.g., Ambruş et al. [73], Fang et al. [74], Han et al. [30],
and Turner and Zakhor [75]; however, these approaches use RANSAC-based wall detection
in 2D or 3D, which is not robust in the presence of noise, clutter, or occlusions. Additionally,
this has similar limitations to other methods based on the X–Y projections mentioned above.
Researchers also used data-driven approaches to provide information for ILP. Data-driven
methods are less sensitive to noise, clutter, or occlusions but require labelled data. For
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example, Liu et al. [76] predicted room corners from RGB-D video and used ILP to obtain
room layout. Similarly, Nauata and Furukawa [77] used a similar approach to detect
buildings in outdoor areal images, while Chen et al. [41] used mask-RCNN to detect rooms
on a PCD projection to a ground plane using panoramic RGB-D images.

Space decomposition can also be solved in 3D space. Tran et al. [78] proposed splitting
the 3D space into cuboids based on the density peaks along each line. Then, they classified
each cuboid and surface based on the PCD on the surface, manually added information
on doors and windows, and iteratively merged them using the shape-grammar approach.
Another method proposed is to detect empty spaces in the 3D PCD using the void-growing
approach [79]. This method finds the empty regions of a PCD by growing a cuboid until
it touches a wall or slab. In the first stage, it searches for vertical planes to produce room
centre candidates (the authors split space through planes parallel to two main axes and
obtained cube centres). Then, the method enlarges each cuboid in each direction until the
points on the boundary of the cuboid surface occupy a significant part of the surface. In the
final step of space detection, it discards thin cuboids (walls) and merges overlapping spaces
to account for non-rectangular rooms, such as L-shaped rooms. Both of these methods allow
the detection of rooms, hallways, and other spaces and their boundaries directly in 3D, but
both are based on the Manhattan world assumption, which limits their application.

Overall, space detection methods reduce the complexity of object detection and pro-
vide information for wall location. The 2D floor plan can be used to split the PCD into
multiple PCDs of individual rooms. This enables the parallel processing of multiple smaller
PCDs for detecting objects located inside rooms. Additionally, it provides topological
information about the building, which is necessary for generating gDT and developing
its applications.

3.3. Object Matching

Object matching refers to matching a PCD cluster of an individual object with the cor-
responding DI geometry by comparing features extracted from both datasets. We separated
methods into two classes: direct feature-based object matching and mesh-supported object
matching. The former uses hand-crafted feature values (e.g., position, orientation, colour)
extracted from object instances of a PCD and a DI, while the latter needs to transfer PCD or
DI geometry to the format of mesh and then extracts the core vertices of object instances to
support matching.

Feature-based object matching methods take advantage of the properties (e.g., position,
orientation, scale, colour) of the object instance to support PCD detection. These methods
extract features from a point cluster (a small set of PCD) and DI object, then compare
them to decide whether they represent the same object instance. A method based on
three features has been developed for detecting linear object instances (e.g., columns and
beams) and surface object instances (e.g., slabs) for construction progress measurement [80].
The first feature is the Lalonde feature [81], which is a 3D vector for capturing lines and
surfaces, the second feature is “orientation”, and the third feature is “continuity”. The
method uses these features to remove points that are irrelevant to the object in the DI from
a point cluster that represents this object. This method assumes that all object instances are
located according to the DI. Similarly, a method based on five features has been proposed to
match object instances using a “spatial context” matrix with features including length, scale,
colour, orientation, and the number of connections with adjacent object instances [82]. This
method was only tested for prefabricated pipe detection in an environment without any
occlusion and clutter. A distribution-based 3D shape matching method has been developed
by computing the probability distribution of the geometric properties for both PCD and
the DI file [83,84]. The authors used 3D shape distribution (i.e., the probability distribution
of the geometric properties sampled from segments in point cloud data and components
modelled in a BIM) as the feature and calculated the shape similarity by Euclidean distance
between the points of the components. However, this method requires a denoised PCD
without any occlusion. Therefore, more generic methods need to be developed to match
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objects relying on features that are robust to shapes and spatial contexts. A mesh-supported
method is therefore proposed.

The initial idea of the mesh-supported method applied the spin image to match object
instances. The spin image was developed for 3D object instance matching [85,86]. It is a
data-level shape descriptor representing the surface of the instance, which can be used
to match tessellation surfaces between two datasets. A 2D array representation of a spin
image is created by bilinear interpolation with projected distances [87]. The corresponding
points in both as-built and as-designed tessellations can then be matched by comparing
spin images. Kim et al. [88] also generated a tessellation from the sparse PCD to semi-
automatically match object instances for quantity calculation and progress monitoring
at the construction stage. This method also presents some limitations. First, the PCD
is downsampled and approximated with a polygon tessellation, resulting in a loss of
information initially contained in the PCD. Secondly, the method does not investigate
all points (vertices) for matching object instances (typically only around 20~50%), which
means that small or highly occluded object instances may be missed. Investigating all
vertices may avoid this problem but leads to high computational complexity.

3.4. PCD to DI Comparison

PCD to DI comparison aims to detect whether object instances from a DI exist in the
corresponding PCD. We illustrated two groups of methods for object comparison, namely
point-to-point and point-to-surface comparison. These methods verify whether an object
is present or not and cannot be used directly to extract entire points corresponding to
the instance.

Point-to-point comparison methods generate points from the DI geometry and retrieve
relevant points from the as-built PCD. They keep only those points from the as-built PCD
that are close to points sampled from DI. Bosché and Haas [89] applied this method to
automatically retrieve 3D object instances from PCD. They defined the retrieval rate R% as
the ratio of the number of retrieved as-designed points to the total number of as-designed
points. The threshold was set as 50% to assess the retrieval result, and the initial experiments
on small-scale datasets (four columns and one slab, each within 18,000 points) presented
robust results. Chen and Cho [90] also applied point-to-point comparison for automated
PCD-vs-DI deviation detection for ductwork, columns, and beams. This method has
been improved and applied for the detection of the main structural object classes [91,92]
and mechanical object classes [40] to monitor progress at the construction stage. The
experimental results show that the method can track the progress status of structural object
instances, including floors, ceilings, beams, and columns, from the as-built PCD and the 4D
DI combined with the schedule. By contrast, the experiment for mechanical object instance
detection (round pipe segments and rectangular duct segments) fails to automatically
detect object instances due to the higher false-negative or false-positive rates. Large spatial
deviations between a PCD and a DI (e.g., 50mm or more) for mechanical objects cause
higher false-negative rates. They also lead to higher false-positive rates in case part of
one object instance is at the same location as another object instance in a PCD and a DI.
This cannot be avoided in the experiments completely, even though the authors used the
orientation of the surface’s normalas an additional rule. Turkan et al. [93] extended this
method to track secondary and temporary object instances for progress monitoring in
structural concrete work. The temporary structures include formwork, scaffolding, and
shoring, while the secondary components include rebar.

Another method is point-to-surface comparison. It has also been used in the PCD-vs-DI
object instance detection, including columns, walls, round pipe segments, and rectangular
duct segments. This method calculates the ratio of the overlapping area between the
segments extracted from the PCD and the object instance from the DI [83,84,94]. This
method can also be used for deviation analysis between the as-built object instance and the
DI [95]. Tran and Khoshelham [96] proposed an advanced surface coverage approach to
make the method robust, which can theoretically detect arbitrary object classes. Euclidean
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distance is also used to determine the nearest point to the DI geometry surface, for instance,
detection [97–99]. However, the limitation of all these methods is that they cannot recognise
all points corresponding to the object instances when there are deviations between the PCD
and DI geometry or in the PCD with high clutter. Additionally, the method requires the
coverage ratio threshold to be manually set beforehand, and the method will fail if the
deviation of the as-built position or orientation exceeds the ratio threshold. Currently, the
existing research methods have only been tested on common object types, such as slabs,
columns, or pipes, etc.

3.5. Summary

The construction of gDTs for buildings is based on object detection (Section 3.1) or
layout reconstruction (Section 3.2) methods. The overall pipeline for object detection can
rely on detecting large-scale features (top-down), low-level features (bottom-up), or a
mixture of these (hybrid). The maintenance of gDTs also relies on DI as a reference for
object detection. It can generally use one of the following two workflows: (1) use object
detection methods to retrieve object instances from a PCD (Sections 3.1 and 3.2) and then
use object matching methods (Section 3.3) to match them to object instances from the
corresponding DI or (2) use PCD to DI comparison methods (Section 3.4) to guide object
instance retrieval from a PCD.

Table 2 summarises state-of-the-art research in object detection and layout reconstruc-
tion methods discussed in Sections 3.1 and 3.2. Layout reconstruction methods provide
spaces and objects that define building topology, namely slabs, walls, doors, and windows.
In addition, they achieve two extra goals: reduce input for object detection methods and
generate a hierarchical structure of a building. Object detection methods can generally be
split into non-ML object detection methods and ML methods. The former group represents
primarily deterministic methods that exploit explicit knowledge about object shapes, their
contexts, environmental constraints, and others, but the assumptions that these methods
make vary from method to method. One of the examples of such constraints in many object
or shape detection methods is the Manhattan world assumption, which significantly limits
these methods’ applicability. Their applicability to large or cluttered environments remains
questionable, and their extensibility to alternative contexts is limited. In contrast, deep
learning methods do not use explicit knowledge about buildings. They aim to capture
this implicitly from labelled datasets during training. These models can be then used to
directly infer point clusters of individual objects, infer minimal bounding boxes of objects to
simplify object detection for methods discussed above, generate the layouts of buildings, or
provide other forms of support. These methods can theoretically be extended to other object
types or environments by providing labelled data, although we still lack practical evidence
of this. However, these methods require large, labelled datasets, which are expensive to
produce. Unfortunately, we have only a limited number of publicly available PCDs.

Few datasets are publicly available for digitising building geometry needs, namely
S3DIS [49], which has the point clouds of an indoor environment with major structural
elements labelled; ScanNet [100], which contains labelled data for furniture and some
structural elements; SUN-RGBD [101], which has semantic segmentation and depth maps
of indoor images; ISPRS [25], which has point clouds and corresponding IFC models;
SUNCG [50], which consists of RGBD images of different models of rooms; Matterport
3D [102], which consists of multiple multi-level indoor scenes with instance annotations,
among other things. It is still unclear how well deep learning methods work for environ-
ments different from those present in the labelled data provided to the model. It is also
unclear how large the labelled dataset should be in order to generalise.

The maintenance of the gDT also includes object detection (discussed in Table 2), object
matching, and PCD to DI comparison. The purpose of maintaining a gDT is to keep gDT
dynamic and up to date in order to support progress monitoring and quality control by
analysing discrepancies. The summary of the methods for object matching and DI-guided
object detection is presented in Table 3. The methods for object matching require the as-built
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conditions to be roughly the same as the DI. For instance, the feature-based method and
mesh-supported method require the same features extracted from two datasets before
matching each other. They cannot match objects if there are moderate or distinct deviations
in terms of shape, position, orientation, and scale between the DI and as-is instances. On the
other hand, DI-guided object detection methods (point-to-point comparison and point-to-
surface comparison) tolerate certain deviations in terms of shape, position, orientation, and
scale between two datasets. They are able to retrieve object instances when there are minor
discrepancies between two datasets. However, they cannot extract all points corresponding
to the object instances, and the results highly depend on the retrieve rate setting.

Table 2. Summary of object instance detection methods for gDT generation and maintenance.

Detector Methods Existing Studies Objects Advantages Core Limitations

Sh
ap

e
de

te
ct

or

Hough transform [24,38] Cylindrical pipe,
round elbow Easy to implement

Computational
complexity; fails to

detect occluded
object instances

RANSAC [29,31,32,34,37,45]

Precast slab, wall,
cast-in-place

footing, cylindrical
pipe, rectangular
duct, cable tray,
round column,
round elbow

Easy to implement;
robust to limited

clutter and
occlusions

Inefficient for large
inputs or when a
large number of

objects are present;
requires further
processing; only

robust for
primitive shapes

Region-growing [43]

Walls, slabs, round
pipes, round

elbows, round
columns

Scalable

Oversegmentation;
a limited number

of shapes; requires
further processing;
sensitivity to noise

2D Slicing and
projection [46]

Round and
rectangular pipes,
columns, beams,

heating and
plumbing
terminals

Objects of
extrusion, arbitrary

and complex
shapes

Objects must be
located along a

limited number of
axes

Deep learning
supervised PCD

segmentation
[103] All Need only labelled

data to generalise

Need a large set of
labelled data to

generalise

Deep learning
supervised on

images

[11,57,61,65]

window, stairs,
wall, elevator, duct,

column, beam,
slab, door, pipe,
socket, switch,

radiator

Theoretically
extendable to

arbitrary shapes

Requires
alignment with 3D

data to reflect
spatial information

La
yo

ut
ge

ne
ra

ti
on

1D projections:
Histograms of

number of points
[70,78] / Easy to implement Intolerant to clutter

and occlusions

2D projections:
Floor-plan

reconstruction
[71,72] / Structured,

connected output

Rely explicitly on
knowledge, design

patterns; not
extensible
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Table 3. Summary of object instance matching and comparison methods for maintenance.

Categories Methods Existing Studies Objects Advantages Core Limitations

PCD-vs-DI
detector

Point-to-point
comparison [40,89,91–93]

Column, beam,
slab, wall,

cylindrical pipe,
rectangular duct,

formwork,
scaffolding,

shoring, rebar

Theoretically
extendable to

arbitrary shapes

Fails to detect
instances with

distinct deviation;
sensitive to

clutter/occlusion

Feature-based
method [80,82,84]

Wall, ceiling,
column, beam,

slab, rectangular
duct, cylindrical

pipe, round
elbow/reducer

Theoretically
extendable to

arbitrary shapes

As-built must be
the same as
as-designed;

requires as-built
without any

occlusion and
noise; fails to

detect glass-made
or curved planes

Point-to-surface
comparison [84,94,96]

Column, wall,
cylindrical pipe,

round elbow,
round reducer,

rectangular duct

Theoretically
extendable to

arbitrary shapes

Cannot extract all
points

corresponding to
the object instance

Mesh-supported
method [86,88]

Cylindrical pipe,
U-shape round
joint, wye joint,
cross joint, slab,

wall, beam,
column

Theoretically
extendable to

arbitrary shapes

Loss of PCD
information when

meshing; small
and highly

occluded instances
may be missed

4. Hudrokis Tree and Most Frequently Used Object Class Analyses

While there are thousands of different objects in a building, most of them are rarely
used in gDTs. We hypothesise that only a few object classes are often modelled to support
DT applications. Therefore, there is a need to identify the most frequent objects. Prioritising
the most frequent object classes for the automation of geometry processing can significantly
save time and reduce the cost of the construction and the maintenance of gDTs. In this
section, we analysed the current building object classification standards and found the
limitation that they do not support the generation and updating of building DTs from the
geometric perspective. We then derived a new geometry-oriented building object class
hierarchy to help classify objects from the shape perspective. Thereafter, we collected and
analysed IFC models of various types of buildings and identified the most frequent object
classes that appear in the gDTs of buildings. For the future directions of construction and
the maintenance of gDTs, researchers are suggested to develop methods from the geometric
perspective based on this new hierarchy and focus on these most frequently used objects to
make methods more useful in the AECO industry.

4.1. Hudrokis Tree

We first needed to identify object classes from the geometric perspective that exist in a
typical building before generating and updating their geometry in a gDT. There have been
various building object classification systems developed by different institutions in the last
sixty years, including SfB in Scandinavia (first edition in the 1950s), BSAB 96 in Sweden
(1998), DBK in Denmark (2006), MasterFormat in the US (first edition in 1963), OmniClass
in the US (first edition in 2006), UniFormat in the US (first edition in 1973), SFCA in the
UK (first edition in 1961), and Uniclass in the UK (first edition in 1997) [104,105]. All these
classification standards were developed to categorise building object instances, but each
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has its own criteria. We needed to conduct a detailed review of predominant standards to
assess whether one of these can be employed to assist in generating and updating gDTs.

Four primary classification standards carried out by the UK and US institutes have
been selected for a detailed review. These are Uniclass from the UK [106], the RICS (Royal
Institution of Chartered Surveyors) classification from the UK [107], UniFormat from the
US [108], and OmniClass from the US [109]. Table 4 summarises and compares the essential
information and properties extracted from these four classification systems. The authors
examined the latest versions of each standard and found that these standards focus on
classifying elements by their functions or activities.

Table 4. Summary and comparison among four predominant building elemental classification systems.

Standard Uniclass SFCA (BCIS
Elements) UniFormat OmniClass (OCCS)

Latest Version Uniclass-2023 SFCA-2012 UniFormat-2010 OCCS-2012

Function

For design and
construction stages,

documentation,
specification.

For Elemental cost
plans, “Element” is

defined as a physical
building part with
specific functions.

For the building
lifecycle management,

cost analysis.

For the building lifecycle
information

management.

Attribute

The database comprises
14 fundamental tables,

with “Elements”
categorizing key

structural components,
including walls and

roofs in a building or
edifice.

The hierarchical data
structure consists of 14
primary classes, with

the first six classes
categorising the

building elements into
further 3 sub-levels,

The hierarchical data
structure features 5

levels, encompassing
major construction

information categories
distinguished by their
functions, including
shell and interiors.

The database
encompasses 15 tables
centered on buildings,
landscapes, civil, and

process engineering, with
specific focus on

elements (Table 21),
products (Table 23),
services (Table 32).

(Tables can be
downloaded from [109].)

The database encompasses 15 tables centered on buildings, landscapes, civil, and
process engineering, with specific focus on elements (Table 21), products (Table 23), services
(Table 32). (Tables can be downloaded from [109].)

To conclude, current categorisations cannot be applied directly to facilitate DT geome-
try generation and updating because they are function-oriented and are designed to support
activities during a building’s lifecycle. Therefore, we developed a new geometry-ended
building object class hierarchy from a geometric perspective and named it the Hudrokis
Tree (HT).

We made the following assumptions for generating the HT:

• We consider common building object types with explicit geometry on the IFC model
level. We do not focus on the objects that are not integral parts of a building (e.g., the
handle of the window, the door shaft, etc.) since these objects are rarely used in BIMs.

• We consider visible object types in buildings. Any inner objects, such as rebars and
foundations, are not included in the Hudrokis Tree since they are out of its scope.

We followed a top-down methodology to generate HT, starting from the functional
categories and ending with the geometry level. The hierarchy of HT (Figure 9) comprises
the major categories of building object types separated by their specific functions, followed
by three levels that eventually deliver the geometry-oriented classification at the end leaves.
Specifically, we divided building object classes into structural, mechanical, and electrical
categories at the first level. Here, the structural category also includes all architectural
components, such as partition walls, and non-structural objects in some definitions. The
structural category contains four primary object classes and ten enriched object classes.
The mechanical category includes eighteen object classes from plumbing, heating, and air
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conditioning systems and four object classes from the fire protection system. Similarly, the
electrical category comprises twelve object classes from the electrical supply, three object
classes from the transport system, and four object classes from the control system. The
geometry of the majority of these classes is 3D cuboids or cylinders.
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Figure 9. New geometry‐based building object class hierarchy—Hudrokis Tree (H.T.). Figure 9. New geometry-based building object class hierarchy—Hudrokis Tree (H.T.).
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HT is different from existing classification standards since it is geometry-ended. Specif-
ically, it merged certain object types with different functions but the same geometry into
one object class. For instance, Uniclass and OmniClass categorise service systems into
plumbing, heating, cooling, and ventilation functions. Each function contains a range of
various pumps, tanks, pipes, ducts, drains, and other components sorted by their different
roles [109,110]. The hierarchy of HT is instead based on geometry classes. We merged
duct, piping, and drain segments into one segment class named the “plumbing segment”
because all these object class geometries can only be a cuboid or a cylinder. Similarly,
we integrated all types of mechanical connection components into two classes based on
their geometry representations: round joints and rectangular joints. Here, “round” and
“rectangular” refer to the cross-sections of shapes. Various shape-based classes, including
elbow-, wye-, T-, cross-, and U-shaped, are then listed on the next level in order to refine
the specific geometry classes of round joints and rectangular joints.

HT meets two core characteristics that make it more applicable for constructing and
maintaining gDTs than the existing classification standards: (1) it contains all common
visible building object classes of interest to the design, construction, and operation stages.
Any non-visible object types, such as foundations, piles, and ground beams are not included
in the HT. (2) It is a geometry-ended classification standard. The end leaves of this new
tree contain the most common existing shapes for each object class. For example, the
common 3D geometry of walls shown in the Hudrokis Tree contains a flat cuboid, curved
cuboid, and triangular edge, which always exit in traditional British houses. This geometry-
ended classification guides researchers to focus on the common shapes in order to develop
solutions for the generation and updating of gDT. Specifically, the tree can be used as prior
knowledge to support rule-based geometry construction and maintenance or to facilitate
the collection of a deep-learning-based training dataset. We regard the Hudrokis Tree as a
comprehensive and valuable classification system for constructing and maintaining gDTs
during the building’s lifecycle. It is a prerequisite for ranking the top frequent object classes
in a typical building in the next section.

4.2. Frequency Analysis

The next step in defining building structure is identifying the average fractions of each
component. It is necessary to build the order of object types for automation. The frequency
analysis provided insight into what object classes professionals usually generate and update,
and therefore, what is usually requested by the industry. The priority would be given
to more frequent objects since higher frequency implies higher effort in performing asset
geometry generation and updating. The frequency analysis aims to identify which object
classes are more frequent than others, not to identify object frequencies with high precision.

We gathered a dataset of 24 sufficiently complete “Industry Foundation Classes” (IFC)
models of buildings on the design, construction, and operation stages for this frequency
analysis. Table 5 shows the distribution of the number of objects in the dataset. The sources
of data were open repositories [111], industry partners (Trimble), and the university’s
resources (Department of Engineering, University of Cambridge). The models represented
various types of buildings, including office buildings, university buildings, hospitals, and
residential buildings.

Table 5. Size of models in the dataset.

Number of Objects Number of Models

0–99 4

100–999 9

1000–9999 8

10,000+ 3
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The analysis aimed to obtain the number of frequencies of each object class in the
dataset. Each IFC object representing a physical item of every IFC model was added to
the list of object instances. Objects in this list were then mapped into the classification
introduced previously. This mapping was carried out based on either the object’s type and
parameters in the IFC schema or its textual description. IFC type was used for the type
mapping if it allowed the unambiguous identification of the object type in the proposed
classification (for example, “IfcWall” is mapped to “Wall”). However, it was not always
possible to uniquely map based on the IFC type; therefore, IFC parameters, such as the
object’s geometry (for example, to separate round and rectangular “IfcDuctSegment”s),
were taken into account in this case. The classification of an object can be attempted based
on its textual description provided by a modeller by searching for keywords if previous
rules failed to identify its type. Objects that could not be processed based on the strategies
above were considered invalid or ambiguous and inspected manually.

This procedure produced a table of counts for each object class and each building
model (i.e., how many objects of the type “T” is in building “B”). However, some models
from the dataset missed objects from some level-one categories, namely structural, me-
chanical, or electrical. There are nine models with electrical objects, eighteen models with
mechanical objects, and twenty-four models with structural objects. Therefore, the counts
of missing categories should have been compensated for in unmodelled categories. This
was built based on the following assumptions:

• All valid objects are from one of three categories: structural, mechanical, or electrical.
• A category is considered to be modelled entirely for a file if at least one object within

the category in the file is modelled.
• The distribution of objects’ fractions within a category is multinomial and the same

for all models.
• The distribution of category fractions is multinomial and the same for all models.

The first step in compensating for missing counts was to estimate fractions for each
level one category. The key observation for calculating category frequencies was that all
models have either electrical objects missing or electrical and mechanical objects miss-
ing. This allowed the estimation of these fractions consequently. In the latter equations,
Si, Mi, Ei denote the total number of structural, mechanical, and electrical objects in the
i-th model, respectively; pS, pM, pE denote the fraction of structural, mechanical, and
electrical objects in the dataset (i.e., the number of structural, mechanical, and electrical
objects in the dataset divided by the total number of objects in the dataset given that all
intended objects are modelled), respectively; and Equation (1) shows the indicator function.
Counts for the electrical category were computed at this stage by summing the counts
of all electrical objects across all complete models and then dividing by the total number
of objects in these models (Equation (2)). The next step was to estimate the fraction of
mechanical objects among structural and mechanical objects. This was performed similarly
by considering all files that have objects of these two categories. After that, the fraction of
mechanical objects was computed by accounting for a fraction of the electrical category
(Equation (3)). Lastly, the fraction of structural objects can be computed as a remaining part
(Equation (4)).

δ(x) =
{

1, i f x 6= 0
0, i f x = 0

(1)

pE =
∑i Ei

∑i δ(Ei)(Ei + Si + Mi)
(2)

pM =
∑i Mi

∑i δ(Mi)(Si + Mi)
× (1− pE) (3)

pS = 1− pM − pE (4)
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We adjusted the counts of objects by introducing “missing” objects for missing cat-
egories after these fractions were identified. The category count was multiplied by the
percentage of the object type within the category to convert the “missing” counts of cate-
gories into the “missing” counts of individual objects. These percentages were determined
empirically from the dataset by summing the object type counts for all files and dividing
them by category size. This adjustment neglected the effect of unmodelled categories in
some of the presented models.

The frequency analysis of the tree in Figure 9 is based on 24 IFC models that include
105 k objects. The dataset of the 24 IFC models consisted of 105,000 objects (with more
than 100,000 real objects and about 5000 “missing” objects). The empirical fractions of the
object categories were 35.29% for structural, 58.22% for mechanical, and 6.49% for electrical
objects. The top 10 most frequent objects are listed below (Table 6).

Table 6. Top 10 object types. The fractions of particular object types among all objects.

Rank Category Component Total Fraction (%)

1 Mechanical PipeSegment.Round 24,645 23.44
2 Structural Wall 11,432 10.87
3 Mechanical RoundJoint.Elbow 11,411 10.85
4 Structural Beam 8224 7.82
5 Structural Column 5284 5.03
6 Structural Slab 5283 5.02
7 Electrical LightFixture 4755 4.52
8 Mechanical PlumbingHeatingTerminal 4253 4.05
9 Mechanical RoundJoint.SingleCylinder 4088 3.89
10 Mechanical PipeSegment.Rectangular 3617 3.44

Table 7 lists the top ten structural objects. The statistical analysis showed that the
top six structural elements accounted for more than 96% of structural elements for build-
ings. These were walls, beams, columns, slabs, doors, and windows. Others made up
less than 4%. Table 8 presents the fractions of the top 10 objects of the mechanical objects
class. The top two objects, namely round pipe segments and round joints, constituted
about 60% of all mechanical objects. The following five object types (plumbing and heat-
ing terminals, round cylindrical connections, rectangular duct segments, round Ts, and
reducers) increased the coverage to 88% of all mechanical objects. Lastly, Table 9 shows
the frequencies of the top eight electrical object types. Here, the top two object types (light
fixtures and alarms) represented 98% of all electrical objects in the dataset.

Table 7. Top 10 structural objects. The fractions of particular object types among structural objects.

Rank Component Total Fraction (%)

1 Wall 11,432 30.81
2 Beam 8224 22.16
3 Column 5284 14.24
4 Slab 5283 14.23
5 Door 2867 7.72
6 Window 2548 6.86
7 Railing 807 2.17
8 Stair 506 1.36
9 Roof 138 0.37
10 Ramp 15 0.04
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Table 8. Top 10 mechanical objects. The fractions of particular object types among mechanical objects.

Rank Component Total Fraction (%)

1 PipeSegment.Round 24,645 40.25
2 RoundJoint.Elbow 11,412 18.64
3 PlumbingHeatingTerminal 4253 6.94
4 RoundJoint.SingleCylinder 4088 6.67
5 PipeSegment.Rectangular 3617 5.9
6 RoundJoint.Tee 3341 5.45
7 RoundJoint.Reducer 2797 4.56
8 RectangularJoint.Elbow 1574 2.57
9 Sprinkler 1463 2.38
10 Joint.RectangularToRoundTransition 1042 1.7

Table 9. Top 8 electrical objects. The fractions of particular object types among electrical objects.

Rank Component Total Fraction (%)

1 LightFixture 4756 69.67
2 Alarm 1911 27.99
3 CableSegment 113 1.65
4 CableCarrierSegment 20 0.29
5 JunctionBox 11 0.15
6 Switch 11 0.15
7 Convertor 3 0.03
8 DistributionBoard 1 0.01

The combination of the above-mentioned top object types from each category covered
a significant portion of objects within a building. The top six structural, the top two
mechanical, and the top two electrical objects represented 75% of all objects in a building
on average. Therefore, the automation of the geometry generation of these ten object types
was prioritised over other objects. The overall coverage of objects in a building rose to 92%
by replacing the top two mechanical object types with the top seven.

5. Discussion

Space and object detection is a core step for the construction and maintenance of
gDTs. Commercial software available today assists object detection by detecting geometric
primitives, such as cylinders for pipes and columns or planes for slabs, walls, and other
planar objects. Alternatively, the software can refine parameters for object geometry based
on the point clusters of individual objects, which works well in the presence of a catalogue
of objects. However, it is unable to do both at the same time since the latter option is
sensitive to the quality of point cluster generation.

Approaches for space detection, object detection, object matching, and PCD to DI
comparison are discussed in Section 3.5 and summarised in Tables 2 and 3. Section 4.2
then analysed the IFC models of multiple buildings and identified the most frequent object
classes, namely walls, slabs, beams, columns, doors, windows, round pipe segments, round
elbows, light fixtures, alarms, plumbing and heating terminals, and various pipe fittings,
which cover up to 90% of objects on average. Most of these object classes are consid-
ered in commercial software or state-of-the-art research for automatic or semi-automatic
construction or maintenance.

• Walls, Slabs: Many software programmes, such as PointFuse and EdgeWise, can
automatically detect walls and slabs as planar surfaces and combine them together
to form volumetric models of their geometry. Many research papers also focus on
wall and slab detection for the construction and maintenance of gDTs. The authors
used RANSAC, Hough transform, region growing-based methods, or feature-based
methods to detect large planar patches, e.g., [24,29,30,43,84]. Additionally, many
room detection methods produce walls as objects separating rooms, e.g., [70–72,78].
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However, these methods remain sensitive to noise, clutter, and occlusions. In addi-
tion, some papers used point-to-point/surface methods to monitor the progress of
slabs [91,92].

• Beams, Columns: Software does not provide automatic tools to detect beams and
columns from a PCD but can automatically determine profile parameters and length
once a part of an object or its approximate location is detected, for example, “Faro
as-built” or Leica. A few research papers focus on beams and columns for automatic
detection, such as [46], but this approach is limited due to the assumptions for the
direction of the axis. The automation of round column detection is more mature since
they have simpler geometry (cylinder). This class of object can be detected using
RANSAC, Hough transform, region growing-based methods, or feature-based object
matching [24,38,80,82,84] with the limitations of these methods mentioned above.

• Doors, Windows: Software such as EdgeWise can detect doors and windows via
template matching on surfaces; however, the search space for this approach is limited.
Research proposes methods for door and window detection on walls, using colour
inconsistency for closed doors [112] or searching for doors in voids on walls for opened
doors [44]. Additionally, current research methods cannot deal with transparent
windows, doors, and walls.

• Pipe Segments, Elbows, and other Pipe Fittings: Round pipes have a cylindrical
shape and can be automatically detected by many types of software, such as Edge-
Wise and many RANSAC, Hough transform, region growing methods, feature-based
methods, and point-to-point/surface methods, e.g., [24,43,46,83,94,96]. Pipe fittings,
on the other hand, are detected on the ends of piping segments. Some software detects
pipes and fittings semi-automatically using iterative pipe runs.

• Light Fixtures, Alarms, Plumbing, and Heating Terminals: These objects are usually
smaller and have less constrained shapes. No software is developed to detect these
objects. Some software allows template matching but is limited or computationally
inefficient. In addition, the mesh-supported method can detect small and shape-
arbitrary objects by matching corresponding vertices in the scan-vs-BIM system [86,88]
but can cause the loss of information due to downsampling PCD and cannot match
highly occluded object instances.

RANSAC- and Hough transform-based methods are robust to noise to some extent
but sensitive to the presence of clutter or occlusions. Region growing methods, on the other
hand, are less sensitive to clutter and occlusions but sensitive to noise. These are also scal-
able to large PCDs, unlike RANSAC and Hough Transform, which become computationally
inefficient with large inputs.

Deep learning methods can be generally applied to any object classes, given that there
are enough labelled data to train neural networks. Many deep learning methods have
been tested in bounding box regression or the PCD semantic and instance segmentation of
walls, slabs, doors, windows, columns, beams, or pipes in indoor PCDs, see, e.g., [47,48,65].
These methods can also be applied to the remaining classes of objects; however, there is
no scientific evidence of their success. Generally, deep learning methods tend to perform
better on large objects, such as walls and slabs, and perform worse on small objects, such
as pipe fittings and plumbing terminals.

The state-of-practice software simplifies the generation of the most frequent object
types in buildings to some extent. The software can automatically detect primitive shapes,
such as planar patches and cylinders in PCDs, and provide a user interface to generate
objects and connect them to create DTs. These tools significantly reduce the manual effort
necessary for digitising the geometry of existing assets from PCDs.

However, the generation of each object still requires some human intervention. Objects
with planar surfaces require the manual adjustments of dimension sizes. For example,
automatically generated walls and pipes in “EdgeWise” require a manual extension or
shortening along the length. Automatic pipe fitting generation in this software considers
only pipe endings and does not account for the PCD itself. It results in objects with the
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wrong parameters (e.g., elbows with the wrong radius). Semi-automatic pipe run detection
is implemented in “Faro”, which tries to automatically fit the next network element and
requires manual involvement for each object. The same holds for the detection of steel
structures.

The state of research covers all most frequently used object classes identified in this
paper except plumbing and heating terminals and some pipe/duct fittings. Although
multiple methods can be applied to detect and generate these objects separately, the input
should satisfy the assumptions of all methods used. Moreover, even if all assumptions
hold, such approaches yields different levels of quality and details for different object
classes and these objects are completely disconnected from each other. To the best of our
knowledge, there is no end-to-end or unified pipeline either in practice or in research that
enables constructing and maintaining gDTs. To this end, we incorporated some of the
aforementioned methods and approaches into a framework (Figure 10) that supports the
construction and maintenance of gDTs.
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The framework incorporates the main steps for gDT construction and maintenance,
provides a basis for the gDT lifecycle, and highlights the group of methods helpful for
geometry digitisation. Depending on the stage of a physical twin lifecycle, a gDT originates
through gDT generation from PCD for existing buildings without a gDT or as-built model
or an as-designed model serves as a start for a gDT for buildings that are in the design or
construction stages. Implementing this framework offers several benefits, such as a stream-
lined and standardized approach to gDT construction and maintenance, which reduces
the need for customized solutions and the ability to generate gDTs at different levels of
detail for different object classes. Additionally, our framework provides a practical solution
for keeping up-to-date building geometric data, allowing users to benefit from it through
various digital twin applications, such as predictive maintenance, energy management,
and real-time monitoring.

Gaps in Knowledge, Open Questions, and Future Research Directions

Based on the review of the methods for object detection, object matching, and object
comparison methods, we identify the following challenges and gaps in knowledge that
should be addressed in order to enable the efficient automation of gDT generation and
maintenance from PCD:
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• Most of the classical computer vision methods are evaluated on different private
datasets, which complicates their comparison. Therefore, it is hard to identify which
methods work best for different object types. Researchers should evaluate these
methods on public datasets to make the fair comparison of methods easier.

• Existing non-ML methods are hardly generalisable for arbitrary buildings and objects.
Although knowledge about buildings helps make non-ML methods less complex and
more robust, they exploit specific assumptions that limit their practical applications.
The presence of noise, clutter, and occlusions make the problem harder. The industry
would benefit from more generic methods for object detection and matching. We
believe that deep learning methods can play a vital role in developing generic methods.
How can we apply deep-learning methods to help detecting objects, spaces, and
relationships between them?

• Following the previous point, classic computer-vision methods cannot detect the
majority of objects with non-primitive shapes, such as various pipe joints or light
fixtures, in various environments. Many non-ML methods are designed to detect
primitive shapes, such as cuboids, cylinders, and spheres. We believe that adopting
deep learning methods can tackle this problem. How can we design deep-learning
methods to robustly detect complex shapes in PCDs? How can we incorporate prior
knowledge to guide these methods?

• Matching an object instance between the PCD and the reference model when its
location in both domains deviates notably is still challenging. We can find similarities
between individual objects, but we cannot always identify them unambiguously due
to the highly repetitive ensembles of objects. Additionally, current research methods
are only suitable for progress monitoring but not quality control, because they cannot
extract all points corresponding to the instance; thus, the extracted result cannot be
meshed and analysed for quality assessment. We believe that adopting unsupervised
clustering methods with the support of DI and images could be a potential solution.
Alternatively, anaylsing object composition can help to reduce the ambiguity of object
instance matching. How can we analyse object composition by primitive shapes?

• Deep learning methods require enough labelled data that include different geometric
objects, but the amount of available labelled 3D data for the built environment are
limited. This hinders the full automation of geometry digitisation. In addition, most
of the current methods are not generalised with existing public data. We believe that
adopting synthetic data for training may overcome the limited labelled data. How
much real-world labelled data do we need? How should we generate and use synthetic
data to reduce the size of real-world labelled data?

• PCD acquisition techniques are still not fully capable of capturing transparent and
specular objects, which are integral parts of buildings. We do not know how to capture
this type of object. We believe PCD data are insufficient to detect these objects because
the points on such surfaces are significantly mislocated or removed as noise. We
believe that incorporating 2D image analysis into geometry digitisation should help to
detect transparent and specular objects. How can we seamlessly incorporate 2D image
analysis? How can we seamlessly correspond 3D and 2D data with each other?

6. Conclusions

This paper provides an overview of the gDTs of buildings and their construction and
maintenance during the construction, operation, and management stages. We discussed
most of the well-known software in the AECO industry and to what level they automate
the geometry digitisation process. We highlighted the current state of research and other
relevant areas of study and the main limitations of the current methods. As a result of the
discussion, we created a categorisation of building’s objects from the perspective of the
objects’ geometry. We collected IFC models of buildings and performed frequency analysis
to identify the most frequent object types in buildings, which should be prioritised for the
automation of their detection, matching, and comparison.
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It is essential to acknowledge the limitations of the research. One of the limitations of
this paper is that the frequency analysis focused only on the most frequently used building
elements that can be prioritised for automation, which may not capture the full range of
building elements and does not capture other aspects that may be important to particular
applications. It aimed to capture the entire range of applications by averaging frequencies
from the IFC models created for various applications. Furthermore, this review did not
include an evaluation of the effectiveness or accuracy of the presented methods. Finally,
this study focused on typical buildings, such as offices, hospitals, and residential buildings.
Therefore, the applicability of the findings may not apply to buildings of a significantly
different nature, for example, heritage buildings.

The automatic generation of gDT from PCD will reduce the costs associated with
creating a DT, making it commercially viable. This offers a wide range of benefits during
the building operation and renovation stages, such as energy performance optimization, im-
proved information management, schedule optimization, and reduced building operation
costs, among others. Additionally, maintaining a dynamic gDT during construction allows
for progress monitoring and quality control, which can catch mistakes and delays earlier in
the process, resulting in shorter schedule delays and smaller budget overruns. We believe
that tackling the aforementioned challenges can significantly improve the automation of
geometry generation and updating for buildings. This contributes to the reduction of
gDT costs and unlocks the benefits of DTs for the existing buildings, such as information
management, predictive maintenance, and optimisation for renovation. It will also enable
automatic progress monitoring and quality control during the construction stage of build-
ings’ lifecycles. As a result, buildings will become cheaper in construction and operation.
This will improve construction productivity and reduce prices in built environments. This
entails reductions in housing prices, office space and commercial space rents, and the final
prices of goods. Additionally, more efficient construction reduces the environmental impact
of the industry.
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