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Abstract: As a critical support and fixed component of aero engines, electro-hydrostatic actuators, and
other equipment, the operation of aviation bearings is often subject to high speed, high-temperature
rise, large load, and other continuous complex fluctuation conditions, which makes their health
assessment tasks more difficult. To solve this problem, an intelligent health assessment method based
on a new Deep Transfer Graph Convolutional Network (DTGCN) is proposed for aviation bearings
under large speed fluctuation conditions. First, a new DTGCN algorithm is designed, which mainly
uses the domain adaptation mechanism to enhance the performance of Graph Convolutional Network
(GCN) and the generalization performance of transfer properties. Specifically, order spectrum analysis
is employed to resample the vibration signals of aviation bearings and transform them into order
spectral signals. Then, the trained 1dGCN is used as the feature extractor, and the designed Dynamic
Multiple Kernel Maximum Mean Discrepancy (DMKMMD) is calculated to match the difference in
edge distribution. Finally, the aligned features are fed into the softmax classifier for intelligent health
assessment. The effectiveness of the proposed diagnostic algorithm and method are validated by
using aviation bearing fault data set under large speed fluctuation conditions.

Keywords: aviation bearings; intelligent health assessment; large speed fluctuations; graph
convolutional network (GCN); transfer learning

1. Introduction

Currently, high-speed rotating equipment represented by aero engines and aero-
hydrostatic actuators is widely used in industry, defense, and military industries [1–3].
Specifically, aviation bearings and others are core components of the rotating equipment
drive system. Its working environment is exceptionally harsh and complex, with frequent
high speeds, high-temperature rises, large loads, and other continuously fluctuating condi-
tions. Once the aviation bearing failure or damage directly affects the safety of aviation
equipment, the light will lead to an abnormal increase in vibration or noise signals. Heavy
will lead to irreversible catastrophic accidents [4,5]. Accordingly, it is necessary to carry out
effective condition monitoring and fault diagnosis for bearings and other core components
of equipment under complex operating conditions (such as variable conditions, speed
fluctuation conditions, etc.) [4–6].

Specifically, the operating speed and load of aviation bearings are determined by
the cruising speed and maneuvering action. The working condition of speed fluctuation
is almost everywhere. The problems associated with intelligent health assessment of
aviation bearings under large speed fluctuation conditions are illustrated below [7,8]:
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(1) The frequency domain signals of bearing faults under large speed fluctuation will
generate frequency shift and amplitude change problems, which make the traditional signal
processing methods unable to make accurate distinctions. (2) The time interval fluctuations
between two adjacent shocks caused by speed changes. (3) Significant differences exist
in the distribution between signals or samples. (4) The working environment is more
complex, with many excitation sources, complex transmission paths, and more severe noise
distribution. Namely, all these problems will make intelligent health assessment of aviation
bearings more arduous.

For traditional aviation bearing fluctuating vibration signals, the main processing
methods are based on two modes such as order-based analysis and time-frequency-based
analysis [8–10]. Strictly speaking, the traditional spectral analysis method is employed
to conduct discrete Fourier analysis on the vibration signal to obtain the main frequency
components of the signal rather than the frequency change law with time. Therefore, the
Fourier transform can only analyze the smooth signal if the spectral analysis interprets
the vibration signal of the speed fluctuation. “Frequency blurring” and other phenomena
are bound to occur. Specifically, short-time Fourier transforms (STFT), Gabor transforms,
Wigner-Ville distribution (WVD), continuous wavelet transform (CWT), order tracking,
and other methods can be employed to analyze non-stationary vibration signals [8–10]. The
vibration of rotating machinery is often related to the rotational speed. Its operating state
can be identified by the interrelationship between the order frequency components of the
vibration signal proportional to the rotational speed. Therefore, order ratio analysis is more
advantageous to represent the rotational speed-dependent vibrations well for monitoring
the state characteristics of rotating machinery and practical health assessment [10].

Compared with the constant operating conditions, the forces on aviation bearings
under fluctuating speed conditions are more variable and prone to failure. The mapping
relationship between their signal signs and failure mechanisms becomes more complex.
Therefore, studying bearing fault feature extraction and diagnosis under the large speed
fluctuation condition is of practical theoretical and engineering value. Zhao, et al. [10],
pointed out that the dynamic signals of mechanical equipment under variable speed will
have non-smooth features such as frequency modulation, amplitude modulation, and
modulation, which are often coupled with each other, making the fault feature extraction
very difficult. Zhu, et al. [11], studied the transient shock response pattern of bearing faults
under variable speed based on signal sparse representation theory, A sparse representation-
based fault feature extraction method for variable speed bearings was proposed.

In summary, although the above-mentioned feature extraction methods have pro-
gressed and achieved the accuracy requirements for signal analysis under severe speed
or load changes and random fluctuations, they still need to benefit from solving the high-
precision time-frequency representation of arbitrary targets perfectly. Accordingly, the
research on steady-state and relocatable fault feature extraction methods still needs to be
explored and further decoded.

Deep learning (DL), one of the most advanced data and information processing
tools, is used to enhance the accuracy of classification or prediction by multi-layer feature
extraction [12,13]. Accordingly, scholars have researched intelligent fault diagnosis methods
based on deep learning [13,14]. Miao, et al. [15], first used the AMESim simulation platform
and experimental platform to simulate the fault of the aero-electro hydrostatic actuation
system, then constructed an intelligent fault diagnosis model based on a deep convolutional
neural network. Shao, et al. [13], designed a new fault diagnosis framework based on
Dual-Threshold Attention-Guided Gan and limited infrared thermal images for rotating
machinery. Zhao, et al. [1], developed an intelligent fault diagnosis method incorporating
adaptive parametric rectifier linear units and deep residual networks for rotating machinery
vibration signals that can vary significantly under different operating conditions. Due to the
“high-dimensional and massive” state of the data measured by the aerospace equipment,
the information from multiple sources from cross-coupling conditions, modes, and channels
makes it difficult to guarantee the generalization of the diagnostic model. However, DL
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only performs nonlinear mapping of Euclidean space data, which is easy to ignore the
interdependent correlation between data [13–15].

With the continuous in-depth research of DL models, many deep learning algorithms
are combined with graph theory, where deep neural networks are injected with fresh
blood [16–19]. Currently, the hot graph neural networks (GNN) focus more on the connec-
tion relationship of the data, and its goal is to establish specific network connections for the
data stored in the graph domain to deal with the structural information of non-Euclidean
spatial data. Owing to traditional neural networks are not translation invariant on non-
Euclidean data structures (they cannot employ kernels of the same size for convolution).
Still, this type of data is widely available in the real world. Graph Convolutional Networks
(GCN) [17] came into being to handle such data, making it possible to convolve on irregular
graph structures. Recently, algorithms such as Graph Attention Network (GAT) [18] and
Graph Convolutional Auto-encoder (GCAE) [19] have been proposed, which have stronger
data sparsity and reconfigurability. In Ref. [20], an intelligent fault diagnosis framework
for multi-receiver field graph convolutional networks was offered for the existing DL al-
gorithms that cannot mine the correlation information between signals. Zhao, et al. [21],
proposed an intelligent fault diagnosis method for electro-mechanical systems based on a
novel semi-supervised graph convolutional deep belief networks (SSGCDBN) algorithm.

However, the fluctuations in real operating conditions can produce a series of distur-
bances to the training of traditional machine learning (e.g., shallow learning, DL, GNN, etc.)
models, which can be summarized as follows [4,20,21]: (1) It is challenging to obtain fault
data during the service life of an aviation bearing, as fault data and label data are relatively
scarce, but traditional models need a sufficient amount for model training. (2) The distribu-
tion of bearing measurement data varies greatly across conditions and component levels,
which is challenging to ensure that the trained model can be adapted to other distributed
data, etc. Accordingly, these factors are the bottlenecks that hinder the development of
aviation-bearing fault diagnosis and intelligent maintenance.

To this end, transfer learning (TL) [22,23] provides a novel solution to the aforemen-
tioned problem by applying models and knowledge learned in the old domain (source
domain) to the new domain (target domain) by exploiting the similarity between data,
tasks, or models. Liao, et al. [22], first proposed a deep semi-supervised domain generaliza-
tion network for fault diagnosis under rotating machinery variable speed for the problem
that testing and training samples are not independently and identically distributed. Li,
et al. [23], also established a deep adversarial multi-classifier optimization model based
on cross-domain fault diagnosis to solve the domain transfer problem. However, the large
fluctuation of fault conditions and multi-source parameter coupling of aviation bearings
can result in a geometric structure relationship. Moreover, the non-Euclidean space correla-
tion between their graph domains needs to be addressed. To solve the above-mentioned
problems, deep graph transfer learning (DGTL) [22–26] is born, mainly by fusing the ge-
ometric structure relationship extraction performance of graph neural network and the
knowledge transfer ability and strong generalization, which opens up a new research idea
to solve the existing problems of aerospace equipment fault diagnosis.

To solve the problem of fault diagnosis difficulties arising from fluctuating conditions
of aviation bearings, a new deep graph transfer learning algorithm is designed in this paper.
Specifically, an intelligent health assessment method is proposed based on a deep transfer
graph convolutional network (DTGCN) for aviation bearings under large fluctuating
working conditions. Firstly, the proposed DTGCN algorithm uses a feature transfer learning
mechanism to enhance GCN to have both solid geometric feature extractions in the graph
domain and stronger generalization performance with more robust transfer characteristics.
The aviation-bearing fault dataset under large speed fluctuation has validated the proposed
diagnostic method and algorithm. Namely, the main contributions of this paper are
included in the following three aspects:

(1) A deep transfer graph convolutional network (named DTGCN) algorithm is first
proposed in this paper;
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(2) Based on the proposed DTGCN algorithm, an intelligent health assessment method
based on DTGCN algorithm is proposed for aviation bearing under large speed
fluctuations;

(3) The intelligent health assessment method based on DTGCN can be validated using
experimental data from aero engine bearing failure simulation.

The rest of this paper is mainly described as follows. Section 2 reviews a brief theory
of GCN and MKMMD. Section 3 describes the proposed approach in detail. The validation
and analysis of case studies are presented in Section 4. Finally, some conclusions are
summarized in Section 5.

2. Preliminaries

The basics of graph convolutional network (GCN) and multiple kernel maximum
mean discrepancy (MKMMD) [24] can be briefly introduced in this section to provide a
research basis for the subsequent design of intelligent health assessment algorithm and
method.

2.1. Graph Convolutional Network (GCN)

To effectively handle non-Euclidean spatial data, GCN [17] was created to perform con-
volution on irregular graph structures. The schematic diagram of GCN based on frequency
domain convolution can be illustrated in Figure 1. The specific GCN implementation
process is described as follows.
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Figure 1. Schematic diagram of Graph Convolutional Network (GCN).

First, the spectral graph relationship with the Laplacian matrix as nodes and edges
must be established. The graph can be represented as G (V, E, W), where V denotes the
node in the graph, E denotes the edge between two nodes, and W denotes the edge weight
between two vertices. In addition, the graph can be represented by a Laplace matrix as L
= D − A, where D and A represent the degree matrix and adjacency matrix, respectively.
Ultimately, the characteristic decomposition of the Laplacian matrix is defined as

L = U

 λ1
. . .
λn

U−1 = UΛU−1 (1)

where U =
[→

u 1,
→
u 2, · · ·,→u n

]
is the unit eigenvector and Λ is a diagonal matrix consisting

of the eigenvalues of the Laplacian matrix. Since U is an orthogonal matrix (i.e., UUT = E),
its eigendecomposition can also be expressed as,

L = U

 λ1
. . .
λn

UT = UΛUT (2)

where is U−1 = UT .
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Based on the frequency domain convolution theory, the graph Fourier transform on
the graph signal can be performed and convoluted in the spectral domain using the Fourier
transform. Specifically, the graph Fourier transform operation is described as,

F(λl) = f̂ (λl)
N

∑
i=1

f (i)u∗l (i) (3)

where f is the N-dimensional component of the graph, and f (i) corresponds to the graph
nodes one by one. Denotes ul(i) is the i-th element of the l-th feature vector and u∗l (i) is the
conjugate vector ul(i) of the representation.

The Fourier transform matrix form of the graph is f̂ = UT f . Specifically, the Fourier
transform has specific properties: f × g = F−1{F{ f } · F{g}}. Calculating the graph domain
convolution is equivalent to Fourier domain multiplication, which first does the Fourier
transform of the graph and convolution kernel after multiplication. Then, the Fourier in-
verse transforms back. The graph domain convolution can be obtained. The corresponding
graph Fourier inverse transform is written as,

f (i) =
N

∑
i=1

f̂ (λi)ul(i). (4)

According to the convolution theorem (i.e., the convolution of both functions f (t) and
g(t) is the inverse of the product of the Fourier transforms of their functions), the process of
convolution of the graph is rewritten as,

( f ∗ g)G = U

 g(λ1)
. . .

g(λn)

UT f (5)

where ( f ∗ g)G denotes the convolution of the functions f (t) and g(t), UTf denotes the
Fourier transform, and g denotes the convolution kernel.

According to the properties of the Laplacian matrix, there is ( f × h)G = U(UT(h)·UT( f )),
where ◦ is the Hadamard product, which represents the element-by-element product of
two vectors of the same dimension at the corresponding positions. The output of the graph
convolution network can be simply expressed as,

youtput = σ(Ugθ(λ)UTx) (6)

More theoretical knowledge about GCN can be found in Ref. [17].

2.2. Multi Kernel-Maximum Mean Discrepancies (MKMMD)

MKMMD [24] is one of the most commonly used non-parametric methods to mea-
sure the difference in distribution between two domain datasets. Specifically, the feature
representations in the source and target domains in transfer learning are mapped into
the reproducing kernel Hilbert space (RKHS). Then the distance between the means of
the two data types is calculated. The mean matching is calculated spatially to estimate
the variability between edge distributions. Specifically, let hs and ht denote two types of
deep features that fluctuate or cross-machine/cross-bearing, respectively, then MKMMD
distance based on the two types of features is described as,

`MK−MMD
(
hs, ht) = ∥∥∥∥∥ 1

Ms

Ms

∑
i=1

φ(hs
i )−

1
Mt

Mt

∑
i=1

φ(ht
i)

∥∥∥∥∥
2

H

(7)

where ‖·‖H denotes the regenerated kernel Hilbert space and φ(·) represents a series of char-
acteristic mapping functions associated with the kernel mapping k

(
hs, ht) = 〈φ(hs), φ(ht)

〉
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for mapping the original variables to the regenerated kernel Hilbert space, kl
(
hs, ht) defined

as a convex combination of the l underlying kernels.

3. The Proposed Method
3.1. Problem Description

Specifically, the domain adaptation problem and task for cross-bearing fault feature
extraction can be described as follows [27,28]: First, assuming that a labeled source domain
Ds =

{
xi

s, yi
s
}n

i=1 and an unlabeled target domain Dt =
{

xi
s
}m

i=1 are given. However, the
edge and the conditional distribution are different, i.e., P(xs) 6= P(xt) and Q(ys, xs) 6=
Q(yt, xt). Accordingly, the model trained based on the source domain cannot be used
directly in the target domain. Accordingly, the source and target domains can be mapped
to a shared feature space by constructing a mapping relationship f. The mapped feature
distribution satisfies the requirement that the source domain distribution is approximately
equal to the target domain distribution, which can be used for target domain classification,
and other problems described in Figure 2.
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3.2. The Constructed DTGCN Algorithm

To implement domain adaptation fault feature extraction and intelligent health as-
sessment under fluctuating operating conditions, the proposed DTGCN-based-intelligent
health assessment is designed in this section. This algorithm mainly consists of three com-
ponents: feature extractor G, label predictor P, and domain discriminator D. Specifically,
the structure of the proposed DTGCN algorithm is schematically displayed in Figure 3. In
addition, the proposed DTGCN algorithm mainly involves a graph construction phase, a
1dGCN feature learning phase, and a domain adaptation and classification phase, which
are illustrated below.
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3.2.1. Graph Learning Construction Stage

Firstly, the multi-head attention mechanism and one-dimensional GCN are mainly
used to construct the graph representation layer, graph attention layer, graph convolu-
tion, and graph pooling layer for multi-source signals and information fuse. The specific
operation process is illustrated as follows.

Graph representation layer: An undirected connected graph can be defined as
G =

{
(Vi)

n
i=1, (Ej)

m
j=1, A ∈ RN×N

}
.
{
(Vi)

n
i=1
}

represents all samples in the graph and

the vertices that make up the graph.
{
(Ej)

m
j=1

}
denotes all edges connecting the vertices.

Based on this, the algorithmic steps are refined, and the core steps of graph representation
learning are described in Figure 4.
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3.2.2. Feature Fusion and Extraction Stage

Graph attention layer: after realizing the signal-to-graph domain conversion, the
graph attention layer inputs are both two sets of signals, which are randomly selected in
the same domain with Vb =

{
vb

1, vb
2, . . . , vb

n

∣∣∣vb
i ∈ RL

}
and Vc =

{
vc

1, vc
2, . . . , vc

n
∣∣vc

i ∈ RL }
corresponding to the adjacency matrix Abc ∈ Rn×n, respectively. L is the signal length. Abc
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is extracted by F(·) for each signal, and the Euclidean distance between two features is
calculated as

Abc =



∥∥∥F
(

vb
1

)
, F
(
vc

1
)∥∥∥

2

∥∥∥F
(

vb
1

)
, F(vc

2)
∥∥∥

2
· · ·
∥∥∥F
(

vb
1

)
, F(vc

n)
∥∥∥

2∥∥∥F
(

vb
2

)
, F
(
vc

1
)∥∥∥

2

∥∥∥F
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Each element of Abc represents the correlation between two signal samples. With the
benefit of Abc revealing the correlation between Vb and Vc vertices, the graph attention
layer efficiently fuses the information contained in Vb and Vc, and the attention matrix E
can be calculated as

E = Attention
(

VbWb, VcWc
)

(9)

The multi-head-attention (MAE) mechanism is introduced to filter irrelevant informa-
tion. Essentially, MAE is a combination of multiple self-attentive structures using Scaled
Dot Product Attention (SDPA) to compute the input vector sequence query Q, key K, and
value V attention output, which can be expressed as

SDPA(Q, K, V) = so f tmax
(

QKT
√

d

)
V (10)

where Q = Wqei, K = Wkei, V = Wvei, d is the network hidden layer size, i.e., the
projection size. Accordingly, the input features in the MAE are projected to different
subspaces by multiple self-attention operations, and then the set of multiple attention
vectors are calculated as

Mutilhead(Q, K, V) = Concat(head1, head2, · · ·, headn) (11)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(12)

The multi-headed attention output is cascaded with a single-layer feedforward net-
work, and the output is obtained. Then, each head attention output can be expressed as

headi = SDPA
(

QWQ
i , KWK

i , VWV
i

)
(13)

Equation (9) to Equation (13) were employed to weigh the combined form to form a
multi-head attention matrix.

First, the graph structure of the multi-source signal at a specific moment is normal-
ized L = IN − D−1/2 AD−1/2 ∈ RN×N , where IN denotes the unit matrix, A denotes the
adjacency matrix, and D∈RN×N denotes the diagonal matrix (Dii ∈ ∑j Aij). Since the
Laplacian matrix L is a real symmetric matrix, an eigenvalue decomposition L = UΛUT is
performed on it, where U denotes the Fourier basis L = UΛUT and the diagonal matrix
Λ = diag([λ0, . . . , λN−1]) ∈ RN×N is composed of eigenvalues. The graph signal x of
Fourier transform can be expressed as x̂ = UTx, where x is the graph signals from feature
fusion. Since U is an orthogonal matrix, its Fourier inverse transform is x = Ux̂. Doing the
convolution operator g and the graph Fourier transform of the graph signal x separately,
multiplying the transform results, and then obtaining the graph convolution results by the
graph Fourier inverse transform,

g ∗ x = U
(

UT g ·UTx
)

(14)
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Here, * specifically refers to the graph convolution operation. Therefore, Cheby-
shev polynomials are proposed for the approximate solution with guaranteed accuracy.
Ultimately, the propagation rule of the convolutional layer in GCN is expressed as

H(l+1) = σ
(

D̃−1/2AD̃−1/2H(l)W(l)
)

(15)

where σ(·) is the activation function, H is the output, W is the weight matrix, and l is the
number of layers. Finally, GCN is then formed.

3.2.3. Domain Adaptation and Classification Stages

Accordingly, the feature extractor consists of three 1dGCN layers and one fully con-
nected layer, and the propagation rules of the 1dGCN layer are described above. The
corresponding domain discriminator D determines whether the data comes from the source
or target domain, takes the learned features as input, and outputs the predicted domain
labels D(G(x)).

Therefore, the domain adversarial learning strategy is introduced to minimize the
training loss function of the feature extractor G, and the training loss function of the
domain discriminator D is maximized. Through such a dynamic “game” process, the
feature extractor G and the domain discriminator D are optimally trained. Finally, the label
predictor P is further used to optimize and predict G(x). Assuming that the parameters
of the feature extractor, label predictor, and domain discriminator are θG, θP, and θD,
respectively, the loss function in model optimization can be expressed as

L(θG, θD, θP) =
1
ns ∑

xi∈Ds

Lp(P(G(xi)), yi)−
λ

ns+nt ∑
xi∈(Ds∪Dt)

LD(D(G(xi)), di)
(16)

where Lp and LD are label predictor and domain discriminator, respectively. λ are the
adjustment factors, and di is the label of inputting samples. Finally, the label predictor
parameters are updated by minimizing and maximizing the objective function to update
the domain discriminator parameters.

For the distribution constraint of DMKMMD, when the edge distributions Df of
two domain features are different, the dynamic distribution alignment D f can be quantita-
tively evaluated (D f and Dc

f ). D f can be expressed as

D f = (1− γ)D f (Ps, Pt) + γDc
f (Ps, Pt) (17)

where the adaptive factors γ ∈ [0, 1] are used for the alignment weights Dc
f and D f .

The dynamic alignment distribution for the domain invariant mapping f can be further
expressed as

D f = (1− γ)

∥∥∥∥∥ 1
n

n
∑

i=1
f (zi)− 1

m

n+m
∑

j=n+1
f (zj)

∥∥∥∥∥
2

HK

+γ

∥∥∥∥∥ 1
n

n
∑

i=1
f (zc

i )−
1
m

n+m
∑

j=n+1
f (zc

j )

∥∥∥∥∥
2

HK

= tr
(

G̃M0

)
+ tr

(
G̃Mc

) (18)

where tr denotes the operation of finding the matrix trace, and the optimal combination
of multiple kernels makes the feature extraction have a more accurate and reasonable
expression by setting K to be a convex combination of U different kernel functions, which
can be further expressed as

K :

{
k =

U

∑
u=1

auku

∣∣∣∣∣ U

∑
u=1

au = 1, au ≥ 0

}
(19)
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The above Mo and Mc are the MMD matrices for conditional distribution adaptation
and edge distribution adaptation, respectively, denoted as

M0 =


1

n2

(
zi, zj ∈ Ds

)
1

m2

(
zi, zj ∈ Dt

)
− 1

mn (otherwise)
(20)

Mc =



1
n2

c

(
zi, zj ∈ D(c)

s

)
1

m2
c

(
zi, zj ∈ D(c)

t

)
− 1

mcnc

([
zi ∈ D(c)

s , zj ∈ D(c)
t

zi ∈ D(c)
t , zj ∈ D(c)

s

])
0 (otherwise)

(21)

The output of its hidden layer is used as the depth features, and the deep feature vari-
ability is measured and characterized under fluctuating working conditions. DMKMMD is
employed for the feature distributions of the s source domains. The data are projected into
the Hilbert space, where mean matching is computed over the space, enabling estimation
of the variability between edge distributions and avoiding the computation of intermediate
probability densities. Let hs and ht denote the two types of depth features of work fluctu-
ations or cross-bearing, respectively. The DMKMMD distance based on the two types of
features can be expressed as

`DMK−MMD
(
hs, ht) = ∥∥∥∥∥ 1

Ms

Ms

∑
i=1

φ(hs
i )−

1
Mt

Mt

∑
i=1

φ(ht
i)

∥∥∥∥∥
2

H

(22)

where ‖·‖H denotes the regenerative kernel Hilbert space and φ(·) represents a series of
feature mapping functions k

(
hs, ht) = 〈φ(hs), φ(ht)

〉
associated with the kernel mapping,

kl
(
hs, ht) defined as a convex combination of l underlying kernels. Then the joint objective

function with min-max optimization training strategy can be rewritten as

min
C,Q,P

max
D

`GCNs + λ1`DMKMMD + λ2`GAN (23)

where `MTGAE is the GCN loss, `DMKMMD is the DMKMMD loss, and `GAN is the adver-
sarial loss.

Accordingly, the training phase focuses on the dynamic learning and optimization
of the diagnosis model by using domain data input to the built algorithm framework,
and then it is employed by generating adversarial learning strategies and the distribution
variability between DMKMMD-aligned domains, the joint objective function and the
parameter optimization can be displayed as

θ̂E = arg
{

min
θE

LC
(
θE, θ̂C

)
, max

θE
LD
(
θE, θ̂D

)}
θ̂C = argmin

θC
LC
(
θ̂E, θC

)
θ̂D = argmin

θD
LD
(
θ̂E, θD

) (24)

3.3. The Proposed Intelligent Health Assessment Method for Aviation Bearings

The proposed health assessment method can be divided into two main steps: signal
processing based on order ratio analysis and intelligent health assessment based on DTGCN
algorithm.
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3.3.1. Signal Processing Based on Simultaneous Extraction Transform-Order Ratio Analysis

First, the time domain signal is low-pass filtered and downsampled to remove the
high-frequency interference components. Then, the time-frequency spectrum of the down-
sampled signal is obtained by using the synchronous extraction transform. Next, the
instantaneous frequency curve f Cs(k) of the rotational frequency is obtained from the time-
frequency spectrum by defining the peak search (k is the sampling point number), and
then the instantaneous frequency curve is fitted by reconstructing the least-squares fitting
method. Then, the instantaneous frequency curve fi(t) is obtained from the instantaneous
frequency curve, and then the phase identification time scale Tn is obtained from the
instantaneous frequency curve. Finally, the original data are resampled by the phase
identification time scale at equal angles to obtain the quasi-steady-state angular signal
sequence x(Tn).

x(Tn) = ∑
m

x(m∆ts)hs(m∆ts − Tn) (25)

where ∆ts is the time domain sampling interval, m∆ts is the value around Tn, and hs(t) is
the different filter. Finally, the order ratio spectrum analysis is obtained.

3.3.2. Feature Extraction and Intelligent Health Assessment Based on DTGCN Algorithm

The above transformed quasi-smooth spectral signals are firstly input into the DTGCN
algorithm. The fault information under fluctuating operating conditions is represented
through the graph learning layer. The shared high dimensions of the source and target
domains are extracted using the graph attention, graph convolution, and graph pooling
layers (i.e., the improved 1DGCN), respectively. Afterward, DMKMMD and domain adver-
sarial learning mechanisms are employed. Finally, the training of the health assessment
algorithm under fluctuating conditions is implemented by the label predictor and domain
discriminator.

Specifically, the flow chart of the DTGCN-based intelligent health assessment method
for aviation bearings under large speed fluctuation conditions is described in Figure 5.

Sensors 2023, 23, x 11 of 19 
 

 

3.3. The Proposed Intelligent Health Assessment Method for Aviation Bearings 
The proposed health assessment method can be divided into two main steps: signal 

processing based on order ratio analysis and intelligent health assessment based on 
DTGCN algorithm. 

3.3.1. Signal Processing Based on Simultaneous Extraction Transform-Order  
Ratio Analysis 

First, the time domain signal is low-pass filtered and downsampled to remove the 
high-frequency interference components. Then, the time-frequency spectrum of the 
down-sampled signal is obtained by using the synchronous extraction transform. Next, 
the instantaneous frequency curve fCs(k) of the rotational frequency is obtained from the 
time-frequency spectrum by defining the peak search (k is the sampling point number), 
and then the instantaneous frequency curve is fitted by reconstructing the least-squares 
fitting method. Then, the instantaneous frequency curve fi(t) is obtained from the instan-
taneous frequency curve, and then the phase identification time scale Tn is obtained from 
the instantaneous frequency curve. Finally, the original data are resampled by the phase 
identification time scale at equal angles to obtain the quasi-steady-state angular signal 
sequence x(Tn). 

( )( ) ( )n s s s n
m

x T x m t h m t T= ∆ ∆ −∑
  

(25) 

where st∆  is the time domain sampling interval, sm t∆  is the value around Tn, and ( )sh t  
is the different filter. Finally, the order ratio spectrum analysis is obtained. 

3.3.2. Feature Extraction and Intelligent Health Assessment Based on DTGCN Algorithm 
The above transformed quasi-smooth spectral signals are firstly input into the 

DTGCN algorithm. The fault information under fluctuating operating conditions is rep-
resented through the graph learning layer. The shared high dimensions of the source and 
target domains are extracted using the graph attention, graph convolution, and graph 
pooling layers (i.e., the improved 1DGCN), respectively. Afterward, DMKMMD and do-
main adversarial learning mechanisms are employed. Finally, the training of the health 
assessment algorithm under fluctuating conditions is implemented by the label predictor 
and domain discriminator. 

Specifically, the flow chart of the DTGCN-based intelligent health assessment method 
for aviation bearings under large speed fluctuation conditions is described in Figure 5. 

1dGCN-based feature extraction 
and fusion

Domain Discriminator

Label Predictor

Category Labels

True 
Category 

labels

True
Domain 
labels

Source 
Domain

Target 
Domain

Speed fluctuations  
bearings

Graph convolution and 
graph pooling

Shared 
high-

dimensional 
features

Loss

Loss
Domain 
labels

Order ratio analysis and graph 
representation learning

E

Domain adaptive and fault 
diagnosis

 
Figure 5. Flow chart of DTGCN-based intelligent health assessment method for aviation bearings. Figure 5. Flow chart of DTGCN-based intelligent health assessment method for aviation bearings.

4. Validation and Analysis
4.1. Description for Aviation Bearing Fault Simulation Test Bench

The data used in this section are from the aero engine high-speed bearing fault simula-
tion test bench at the Department of Mechanical and Aerospace Engineering, Politecnico di
Torino, Italy [29]. Specifically, the vibration acceleration data of aero bearings at different
high speeds with other loads can be measured. A realistic view of the test rig is described
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in Figure 6. Accordingly, B1, B2, and B3 are three bearing supports. The triaxial vibration
acceleration sensors are installed at A1 and A2, respectively. The vibration signal from the
damaged bearing supports B1 and B2 can be measured and subjected to the maximum
external load. The failure simulation process was roughly displayed as follows: First, the
bearing was run briefly at 100 Hz rpm (6000 r/min) under no load, and after the correct
installation, the magnitude of the external load was gradually changed, and the external
load was slowly changed and increased in steps of 100 Hz to realize the modal simulation
of speed fluctuation conditions. The rotational speed and external load of aviation bearing
fault simulation are given in Table 1.

Sensors 2023, 23, x 12 of 19 
 

 

4. Validation and Analysis 
4.1. Description for Aviation Bearing Fault Simulation Test Bench 

The data used in this section are from the aero engine high-speed bearing fault sim-
ulation test bench at the Department of Mechanical and Aerospace Engineering, Politec-
nico di Torino, Italy [29]. Specifically, the vibration acceleration data of aero bearings at 
different high speeds with other loads can be measured. A realistic view of the test rig is 
described in Figure 6. Accordingly, B1, B2, and B3 are three bearing supports. The triaxial 
vibration acceleration sensors are installed at A1 and A2, respectively. The vibration signal 
from the damaged bearing supports B1 and B2 can be measured and subjected to the max-
imum external load. The failure simulation process was roughly displayed as follows: 
First, the bearing was run briefly at 100 Hz rpm (6000 r/min) under no load, and after the 
correct installation, the magnitude of the external load was gradually changed, and the 
external load was slowly changed and increased in steps of 100 Hz to realize the modal 
simulation of speed fluctuation conditions. The rotational speed and external load of avi-
ation bearing fault simulation are given in Table 1. 

Spindle Sledge Load system

B3

B1

Lubrication 
system

Sensors

A1

A2 X

YZB3

B2

B1
B1 B2 B3

(a) Aero-engine high-speed bearing fault simulation tester

(b) Measurement and test 
systems

(c) Aero-engine high-speed 
bearing  

Figure 6. Aero engine high-speed bearing fault simulation test bench. 

Table 1. Test load and speed conditions. 

Rated Load/N 0 1000 1400 1800 

Rotating speed (r/min) 

6000 6000 6000 6000 
12,000 12,000 12,000 12,000 
18,000 18,000 18,000 18,000 
24,000 24,000 24,000 / 
30,000 30,000 / / 

4.2. Construction of Aviation Bearing Dataset 
To simulate the actual conditions of aero engine bearings operating at high speed 

and heavy load for a long time, vibration data under three loads (0 N, 1000 N, and 1400 
N, respectively, A, B, and C data sets under fluctuating working conditions with speed 
fluctuation from 6000 rpm to 24,000 rpm) are selected to verify the effectiveness of the 
proposed method. Among them, the specific descriptions related to the typical experi-
mental data set T1 are described in Table 2. Accordingly, the time domain and frequency 

Figure 6. Aero engine high-speed bearing fault simulation test bench.

Table 1. Test load and speed conditions.

Rated Load/N 0 1000 1400 1800

Rotating speed
(r/min)

6000 6000 6000 6000
12,000 12,000 12,000 12,000
18,000 18,000 18,000 18,000
24,000 24,000 24,000 /
30,000 30,000 / /

4.2. Construction of Aviation Bearing Dataset

To simulate the actual conditions of aero engine bearings operating at high speed and
heavy load for a long time, vibration data under three loads (0 N, 1000 N, and 1400 N,
respectively, A, B, and C data sets under fluctuating working conditions with speed fluctu-
ation from 6000 rpm to 24,000 rpm) are selected to verify the effectiveness of the proposed
method. Among them, the specific descriptions related to the typical experimental data set
T1 are described in Table 2. Accordingly, the time domain and frequency domain waveform
of specific speed fluctuations under the aviation bearing normal H1 and serious roller
failure H5 are drawn in Figure 7.
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Table 2. Description of aviation bearing data set T1 (load = 0 N).

Labels Damaged Areas Diameter (um) Rotational
Speed (r/min)

Number of
Samples

H1 No No 6000~24,000 1000
H2 Inner ring 450 6000~24,000 1000
H3 Inner ring 250 6000~24,000 1000
H4 Inner ring 150 6000~24,000 1000
H5 Roller 450 6000~24,000 1000
H6 Roller 250 6000~24,000 1000
H7 Roller 150 6000~24,000 1000
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4.3. Experimental Settings

To verify the effectiveness and generalization of the proposed method, cross-validation
transfer tasks between different loads and rotational speeds are set. The specific transfer
task numbers and rotational speed settings are described in Table 3. Accordingly, the
number of samples in both source and target domains is set to 1000, and the sample length
is 1024. FFT is the pre-processing data method to transform the original vibration signal
into the frequency domain.

Table 3. Different transfer task settings.

Source Domain Data Set Transfer Tasks

Training sample set A A→B (T1) A→C (T2)
Training sample set B B→C (T3) B→A (T4)
Training sample set C C→A (T5) C→B (T6)

First, the main parameters of the constructed DTGCN algorithm model and the
operating environment need to be briefly introduced and analyzed. Generally speaking, the
number of network layers and the main parameters of the designed DTGCN are described
in Table 3. In the following study, 10 trials of each experiment were performed for averaging
to reduce the effect of randomness. The software tool used to run the fault diagnosis
program was the PyCharm framework. Python was chosen as the programming language,
and the programming framework for the deep learning algorithm was TensorFlow 1.2.0.
The computer platform used for fault diagnosis was an i7-6700 with 8 cores and 8 GB
of RAM, running in a Windows 64-bit operating system. The parameters of the weight
initialization network and the model weights were updated using the Adam optimizer. A
Dropout of 50% was implemented to reduce over-fitting.
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4.4. Experimental Results

To further illustrate and analyze the proposed method’s effectiveness, the parameter-
sharing mechanism selected 1dGCN as the benchmark comparison algorithm for DTGCN.
Figure 8 shows the diagnostic confusion matrix of this diagnostic method based on DT-
GCNs and migrated 1dGCNs algorithm under different migration task conditions. The
proposed method effectively classifies aerospace bearing faults under various operating con-
ditions. Additionally, Figure 9 shows the training error curves under fluctuating operating
conditions with different algorithms.
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To explore the characteristics of the feature maps in each layer of the deep neural net-
work, the commonly used t-distributed stochastic neighbor embedding (t-SNE) [30–36] was
used to reduce the high-dimensional features of the test samples. As shown in Figure 10a,
compared with the ordinary 1DGCN model, the constructed DTGCN model reflects higher
separability among testing samples under different health states, which verifies from the
perspective of the distribution of test samples in the feature space the improvement of the
diagnostic accuracy.
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4.5. Comparison with Other Relevant Methods

CNN [6], GCN [17], Transfer Component Analysis (TCA) [30], JDA (Joint Distribution
Adaptation) [31], Deep Adaptation Networks (Deep Adaptation Network (DAN) [32], and
other DTGCN comparison methods were used to verify the effectiveness of the suggested
method. Specifically, a preliminary normalization of the aforementioned datasets can be
performed to improve the models’ diagnostic effectiveness, and we chose T1, T2, and T3 as
specific training tasks multiple times as average results.

In addition, sensitivity and specificity were further introduced to evaluate the pro-
posed model’s ability to predict different fault types. A positive and negative two-level
problem was used as a better explanation. True positives (TP) are the number of correctly
identified positive samples. False negatives (FN) are the number of samples incorrectly
classified as positive. False Positive (FP) is the number of samples incorrectly classified as
positive. True negative (TN) is the number of corrected and classified as negative samples.

Generally, sensitivity and specificity can be defined as follows.

Sensitivity = (TP/(TP + FN )) (26)

Specificity = TN/(TN + FP) (27)

where sensitivity measures the proportion of actual positives correctly identified, and
specificity measures the ratio of real negatives correctly identified. Good models usually
have high sensitivity and high specificity. Finally, the specific diagnostic results of the
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above-mentioned diagnostic models for the above three tasks are displayed in Figure 11.
Accordingly, DTGCN achieves better migration diagnosis results in different migration
tasks with an average accuracy of 95.57%. Owing DTGCN utilizes the nearest neighbor
extraction performance of the geometric structure of 1dGCNs, which has a powerful
transfer learning capability.
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Figure 11. Comparison of diagnostic results of different diagnostic methods on the aerospace bearing
dataset.

To validate the superiority of the proposed method, the above-mentioned related
algorithms were selected for comparison with the proposed DTGCN algorithm. In addition,
it should be noted that the variable condition dataset utilized here is between 6000 and
24,000 rpm. The model parameters are mainly tuned several times according to the above
experiments. T4, T5, and T6 are selected as migration tasks. The training and testing sample
subsets are input to the above six types of fault diagnosis methods for diagnosis to obtain
the diagnosis recognition accuracy after multiple averaging. To increase the difficulty of
diagnosis and recognition, Gaussian white noise with different degrees of signal-to-noise
ratio (SNR) is added to the original fluctuating working condition aviation-bearing fault
data set to simulate the actual industrial fault diagnosis situation [30–33]. Meanwhile, 60%
of the new data set after noise addition is randomly divided into training sample sets,
and the remaining 40% is the testing sample set. The diagnostic recognition accuracy of
the above six diagnostic methods with different degrees of random noise interference is
displayed in Figure 12.
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From Figure 12, it can be seen that the recognition rate of all diagnostic methods
decreases with increasing random noise interference. Still, the overall noise resistance
performance of the DTGCN model is stable. Some slight random noise interference before
SNR = 5 has little effect on DTGCN. The traditional variable condition fault diagnosis
methods (such as CNN and GCN) are more influenced by random noise, and the multi-
scale fault diagnosis methods have a specific good effect on fluctuating conditions. In
summary, the DTGCN algorithm based on the diagnosis method is more stable and noise-
resistant than other traditional diagnosis frameworks.

5. Conclusions

In future work, extensive research and experiments will be conducted to improve the
CNN model further and fuse data from multiple sensors to improve the diagnostic accuracy
and robustness of the method. An intelligent health assessment method based on a deep
transfer graph convolutional network is proposed to solve the poor diagnostic effect of
aviation bearings under large speed fluctuation conditions. First, a novel DTGCN algorithm
is designed, which uses an adaptive domain mechanism to enhance the convolutional graph
network to have strong geometric feature extraction performance in the graph domain,
which is a more robust generalization performance in transfer characteristics. The aviation-
bearing fault data set under fluctuating conditions validate and advance the proposed
diagnostic algorithm and method. Accordingly, the experimental results illustrated that
the proposed method has higher diagnostic accuracy and robustness, which can eliminate
the variability of health state sample distribution under large speed fluctuation conditions.
Future work will continue to conduct in-depth research on the diagnosis of cross-machine
and cross-part generalization and transfer of key aero engine components under extreme
working conditions.
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