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Abstract: Modal-free optimization algorithms do not require specific mathematical models, and they,
along with their other benefits, have great application potential in adaptive optics. In this study,
two different algorithms, the single-dimensional perturbation descent algorithm (SDPD) and the
second-order stochastic parallel gradient descent algorithm (2SPGD), are proposed for wavefront
sensorless adaptive optics, and a theoretical analysis of the algorithms’ convergence rates is presented.
The results demonstrate that the single-dimensional perturbation descent algorithm outperforms the
stochastic parallel gradient descent (SPGD) and 2SPGD algorithms in terms of convergence speed.
Then, a 32-unit deformable mirror is constructed as the wavefront corrector, and the SPGD, single-
dimensional perturbation descent, and 2SPSA algorithms are used in an adaptive optics numerical
simulation model of the wavefront controller. Similarly, a 39-unit deformable mirror is constructed as
the wavefront controller, and the SPGD and single-dimensional perturbation descent algorithms are
used in an adaptive optics experimental verification device of the wavefront controller. The outcomes
demonstrate that the convergence speed of the algorithm developed in this paper is more than twice
as fast as that of the SPGD and 2SPGD algorithms, and the convergence accuracy of the algorithm is
4% better than that of the SPGD algorithm.

Keywords: adaptive optics; wavefront sensorless; SPGD

1. Introduction

Wavefront sensorless sensing technology, as compared to adaptive optics systems with
wavefront sensing, not only reduces the complexity and cost of adaptive optics systems,
but it also has significant advantages in situations with weak light or a large turbulence
amplitude with distant targets. As a result, they have attracted widespread attention
for laser technology and laser communication applications [1–7] and are one of the most
investigated topics in adaptive optics research [8–12].

Optimal control algorithms for wavefront sensorless adaptive optical systems have
been divided into two categories: modal-based and modal-free. The mathematical modal-
based optimization algorithms include the modal method [13–15] and the geometric prin-
ciple method [16–19]. In theory, the mathematical modal-based method requires the
construction of a mathematical model of the system according to basic functions with the
objective of faster convergence. However, the method typically requires the calculation and
measurement of the parameters associated with the system model beforehand, which hin-
ders its implementation as compared to the modal-free optimization algorithm. Mountain
climbing, simulated annealing, augmented learning, particle swarm, genetic algorithm,
and stochastic parallel gradient descent (SPGD) are among the most common modal-free
algorithms [20–25]. Modal-free optimization algorithms are easier to implement because
they do not rely on specific mathematical models. The simultaneous perturbation of the
stochastic approximation (SPSA) algorithm has the benefits of simple implementation and
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robustness and is a common control algorithm for wavefront sensorless adaptive optics; it
has also been used to enhance stochastic parallel gradient descent. However, the stochastic
parallel gradient descent algorithm can converge at an ideal extreme value with a specific
probability with accuracy loss, and it exhibits a certain degree of randomness. Such algo-
rithms require multiple iterations to converge, and each iteration requires the image data
to be acquired twice. This is very time-consuming, as the number of algorithm iterations
determines whether it can be applied to adaptive optics systems operating in real-time.

In this study, single-dimensional perturbation descent and second-order stochastic
parallel gradient descent algorithms (2SPGD) are proposed for a wavefront sensorless
system in an effort to increase convergence speed, and their convergence characteristics
are analyzed by comparing them to the stochastic parallel gradient descent algorithm, the
finite-difference stochastic approximation algorithm, and the second-order simultaneous
perturbation of the stochastic approximation algorithm (2SPSA) for theoretical analysis. An
adaptive optics numerical simulation of a 32-unit deformed mirror and an experimental
optics verification system of a 39-unit deformed mirror are constructed in order to evaluate
the practicability, convergence speed, and convergence accuracy of the single-dimensional
perturbation descent algorithm.

2. Principles of Algorithm and Convergence Speed Analysis
2.1. Algorithm Principle

The SPGD algorithm is described as follows: let u(k) = (u1, u2, · · · , un) denote the
current control voltage of a deformable mirror, k denote the current number of iterations,
n denote the number of deformable mirror drivers, and J =

∫∫
I2(x, y)dxdy denote the

performance index. When updating the correction voltage, first generate a random per-
turbation voltage vector ∆u = (∆u1, ∆u2, · · ·∆un) that is independent and follows the
Bernoulli distribution, and then apply the positive perturbation voltage u+ = u(k) + ∆u to
obtain the positive performance index J+. Then, apply the negative perturbation voltage
u− = u(k) − ∆u to obtain the negative performance index J−, and then calculate the gradi-
ent ∆J = J+ − J− of the performance index and update the voltage u(k+1) = u(k) + a∆J∆u.
The variable a is the system gain, which is positive when optimized to its maximum
value and is negative otherwise. Follow the preceding steps until the performance index J
is optimal.

The SPGD algorithm was obtained by improving the algorithm of SPSA, and the
2SPSA algorithm was proposed by Spall et al. [26] recently. This paper was inspired by
the 2SPSA algorithm and proposes the 2SPGD algorithm. The 2SPGD algorithm is defined
as follows:

u(k+1) = u(k) + a
G(k)

H(k)
, (1)

G(k) =
J+ − J−

2∆u
, (2)

H(k)
=

√
H(k)H(k) + bI, (3)

When the function is non-convex, the second-order algorithm is non-convergent [27]; the
function of Equation (3) makes the Hessian matrix [28] positive definite, where I is the unit
matrix. When the second-order gradient is negative, the correction for the b smaller coefficient
is 0.00006; this prevents division by zero in Equation (1).

H(k) = 0.5[
G(k+) − G(k−)

2
∆u−T + (

G(k+) − G(k−)

2
∆u−T)T ], (4)

In Equation (4), H(k) represents the approximate second-order gradient, G(k) repre-
sents the first-order gradient, G(k+) represents the positive perturbation derived from G(k),
and G(k−) represents the negative perturbation derived from G(k).
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The following describes the finite-difference stochastic approximation (FDSA or serial
gradient descent algorithm): Generate a perturbation signal ∆u = (∆u1, ∆u2, · · ·∆un) with
the same magnitude and sign across all vectors, apply the perturbation to each driver in
turn, and calculate the performance index value to obtain the vector ∆J = (∆J1, ∆J2, · · ·∆Jn);
thus, this yields the gradient vector ∆J · ∆u for all drivers, and the optimization equation is
uk = uk−1 + a∆J · ∆u.

The coordinate descent method differs from the FDSA algorithm by transforming a
high-dimensional optimization problem into a single-dimensional optimization problem
and drastically reducing the problem’s complexity. By applying the coordinate descent
method, the algorithm for the single-dimensional perturbation descent algorithm(SDPD)
is enhanced. The SDPD algorithm’s flowchart is shown in Figure 1. Each step of the
SDPD algorithm involves calculating and optimizing the gradient information of a single
driving unit of the deformable mirror. When the unit has been optimized to its optimal
state, the next unit of the deformable mirror is iterated, and the system is optimized to its
optimal state. For instance, step i only carries out algorithm optimization for unit i of the
deformable mirror, applies a positive perturbation voltage uk

i = uk−1
i + ∆ui to unit i of the

deformable mirror, and then calculates the positive performance index Jk
+. Next, we apply a

negative perturbation voltage uk
i = uk−1

i − ∆ui to unit i of the deformable mirror, calculate
to obtain the negative performance index Jk

−, and, finally, acquire the gradient information
∆J = Jk

+ − Jk
− of unit i. When the gradient value ∆J of the unit is less than the threshold

value, it indicates that optimization of the deformable mirror of the unit is complete, and
optimization of the next unit is carried out. However, when the gradient value ∆J of the
unit is greater than the threshold value, it is necessary to continue optimization of the
deformable mirror of the unit and calculate the updated voltage value of the ith unit of
the deformable mirror according to Equation uk

i = uk−1
i + a∆Jk−1

i ∆ui until all units of the
deformable mirror are optimized. Then, the system can complete the wavefront correction.
The first step perturbs only the first unit control signal, calculates its gradient, and updates
the control signal, i.e., “uk

1 = uk−1
1 + a∆J1∆u1”, while the nth step perturbs only the nth unit

control signal, calculates its gradient, and updates the control signal uk
n = uk−1

n + a∆Jn∆un
until the performance index J is optimal.

2.2. Analysis of the Convergence Speed of the Algorithm

According to the analysis of Cauwenberghs [29], the SPGD algorithm converges
√

n
times faster, ideally, than the serial gradient descent algorithm (finite difference stochastic
approximation algorithm) and

√
n times slower than the pure parallel gradient descent

algorithm, with n being the number of system units. The pure parallel gradient descent
algorithm can calculate derivatives in the 2n−1 direction simultaneously as gradients, but
it is not applicable to adaptive optical systems. The stochastic parallel gradient descent
algorithm computes the gradient in one of the 2n−1 directions chosen at random. Although
the finite difference stochastic approximation algorithm has the same short path as the pure
parallel gradient descent algorithm, each iteration needs to measure the derivatives in n
dimensions in turn, so the iteration speed is n times slower than that of the pure parallel
gradient descent algorithm.

With the following path analysis, the SDPD algorithm converges faster than the serial
method and the SPGD algorithm.
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Figure 1. Flowchart of SDPD algorithm.

In Figure 2, Assuming point A is the optimal point of the system and c is the pure
parallel gradient descent and sequential gradient descent algorithm route, the values of a,
b, and c represent the distance traveled by the algorithm; route L of the SDPD algorithm is
determined, as follows:

L = a + b, (5)

L = c(sin(θ) + cos(θ)), (6)

L =
√

2c sin(θ +
π

4
), (7)

c ≤ L ≤
√

2c, (8)
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Figure 2. Paths for different algorithms. Point O is the starting point of the algorithm, and A is the
system optimum point; a is the distance from point O to point A for the SPGD, 2SPGD, and FDSA
algorithms, and b + c is the distance from point O to point A for the SDPD algorithm.

Generalization to n dimensions:

L = a1 + a2 + · · · an, (9)

When a1 = a2 = · · · = an, L reaches its maximum value:

c ≤ L ≤
√

nc, (10)

The maximum value of L is
√

nc, indicating that the uni-dimensional perturbation
descent algorithm is

√
n times slower than the parallel gradient descent algorithm in

the slowest case, while the SPGD is
√

n times slower than the parallel gradient descent
algorithm in an ideal state. Considering that the path of the actual SPGD algorithm
contains more randomness and is not necessarily optimal, whereas the path of the SDPD
algorithm is fixed and free of randomness, the convergence speed of the SDPD algorithm
should be faster than that of the actual SPGD algorithm.

The hill climbing method has the slowest convergence speed and does not utilize
the gradient information. FDSA requires n iterations and has a slower convergence
speed when calculating performance metrics. 2SPGD is a second-order convergence but
requires four iterations to calculate the performance metrics, whereas the SDPD and SPGD
algorithms only require two iterations. The convergence rates of the SDPD, SPGD, and
2SPGD algorithms are measured experimentally below.

3. Experiments and Results Analysis
3.1. Numerical Simulation

The simulation model for wavefront sensorless sensing adaptive optics depicted in
Figure 3 was established. The performance index analysis module calculated J and its
gradient ∆J , and the optimization algorithm calculated the deformable mirror control
signal based on J and its gradient ∆J. The system index was optimized through multiple
iterations. As the wavefront corrector, a 32-unit deformable mirror was utilized, with the
image sharpness function serving as the optimization objective function. The standard
Strehl ratio (SR) was computed, and the number of iterations after which the SR reached
0.8 was used as an index to determine the algorithm’s iteration speed. The maximum Strehl
ratio value was 1, which indicated no distortion.
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The numerical simulation of the deformable mirror was as follows: the phase compen-
sation caused by the deformable mirror is denoted by m(x, y).

m(x, y) =
32

∑
i=1

uiSi(x, y), (11)

Si(x, y) = exp{ln w(

√
(x− xi)

2 + (y− yi)
2/d)a}, (12)

where (x, y) is the coordinate on the wavefront plane, (xi, yi) is the coordinate on the ith
unit actuator of the deformable mirror, w is the coupling value between actuators and had
a value of 0.6, a is the Gaussian index and had a size of 2, and d is the distance between
actuators and had a size of 0.12.

Figure 3. Schematic diagram of the wavefront sensorless adaptive optics numerical simulation. J
was obtained by analyzing the image sensor data for performance metrics, and then an optimization
algorithm (SPGD) was used to generate voltage data to control the deformable mirror.

The numerical simulation of the image sensor was performed as follows: the acquired
light intensity signal I(x, y) was simulated by a Fourier algorithm.

The image performance index J is shown in the following equation:

J =
∫∫

I2(x, y)dxdy. (13)

The Strehl ratio (SR) is shown in the following equation:

SR =
Imax(x, y)
Idl
max(x, y)

. (14)

In Equation (14), I(x, y) is the actual distribution of light intensity, Imax(x, y) is the
actual far-field intensity peak, and Idl

max(x, y) is the ideal distribution of light intensity.
In both the uni-dimensional perturbation descent algorithm and the parallel stochastic

gradient descent algorithm, the magnitude of the perturbation voltage and the gradient
gain had an effect on the convergence speed; therefore, this paper compares the gain
adjustment to the best convergence speed of the respective algorithms under the same
perturbation voltage.

3.2. Analysis of Simulation Result

Due to the high randomness of SPGD and 2SPGD, an average of 1000 iterations was ex-
amined, whereas the single-dimensional perturbation descent algorithm was deterministic
and did not require multiple averaging.
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Figure 4 depicts the simulation results for a 32-unit adaptive optics system. The
number of SDPD iterations was greater than the number of 2SPSA iterations, and the
number of 2SPGD iterations was greater than the number of SPGD iterations. However,
SDPD and SPGD required two measurements per iteration to obtain image data and
calculate the performance index, whereas 2SPGD required four measurements per iteration.
Therefore, 2SPSA had the worst convergence speed. Table 1 presents the quantitative
analysis of the convergence velocity. The SDPD algorithm required 65 iterations to converge
to an SR value of 0.8, whereas the SPGD algorithm required 182 iterations, representing a
twofold decrease in convergence speed. In contrast to the correction accuracy, the stochastic
parallel gradient descent algorithm could only converge to an SR value of 0.958, which was
a 4% improvement in accuracy.

Figure 4. Comparison of the Strehl ratio versus iteration number for the SPGD, 2SPGD, and the
SDPD algorithms. The Strehl ratio has been normalized to the maximum.

Table 1. Types of algorithms and their convergence effects.

Types of Algorithms Number of Iterations Convergence Times Final Convergence
Value of SR

SDPD 65 0.73 ms 0.999
2SPGD 134 4.02 ms 0.958
SPGD 182 3.185 ms 0.957

In summary, the 2SPGD algorithm had the worst correction effect, while the SDPD
algorithm was two times faster than the stochastic parallel gradient descent algorithm, and
its convergence accuracy was 4% better than that of the stochastic parallel gradient descent
algorithm. In addition, the SDPD algorithm did not require the generation of a random
sequence, making it easier to implement than the SPGD algorithm.

3.3. Experiments and Results Analysis

As depicted in Figure 5, a 39-unit adaptive optics experimental setup comprised a
laser, a 39-unit micro-electromechanical deformable mirror, a focusing lens, a image sensor,
and an computer. The image sensor captured the far-field image, the computer calculated
the performance index, and the SDPD and SPGD algorithms controlled the deformable
mirror through multiple iterations to complete the wavefront correction. The average
results of 100 correction iterations were used to validate the practicability and efficacy of
this algorithm.

Figure 6 (bottom) shows the far-field location prior to and following correction, while
Figure 6 (top) shows the far-field spot’s cross-section prior to and following correction.
After correction by the SDPD algorithm, it was observed that the far-field spot energy
was more concentrated. Figure 7 compares the iteration speed and performance index.
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The SPGD algorithm converged in approximately 70 iterations, and the SPGD algorithm
converged in approximately 160 iterations.

Figure 5. Schematic for wavefront sensorless adaptive optical systems used in the experiments:
optimization algorithm were used to correct the wavefront aberrations caused by aberration films.
The focal length corresponding to the lens was 18 in. (45.7 cm).

Figure 6. Comparison of the correction effect of SPGD and SDPD algorithms. (Bottom) Camera
images of the focused spots before and after correction with the SPGD and the SDPD algorithms.
(Top) spot cross-section data from before and after correction.
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Figure 7. Comparison of J-values and number of iterations for SPGD and SDPD algorithms.

4. Conclusions

A SDPD algorithm and 2SPGD were proposed for an adaptive optics system without
wavefront detection. The theoretical analysis demonstrated that the convergence rate
of the algorithm for SDPD is superior to that of the SPGD algorithm. In the numerical
simulation, the SPGD, 2SPGD, and SDPD algorithms were established as the numerical
simulation platforms for the controller. The convergence times of SPGD, 2SPGD, and SDPD
were 3.185 ms, 4.02 ms, and 0.73 ms, respectively, and the numerical simulation showed
that the 2SPGD algorithm was not applicable to the field of adaptive optics, while the
SDPD algorithm in the field of adaptive optics had higher real-time performance. The
experimental platform further verified the practicability of the SDPD algorithm. The 2SPGD
algorithm had fewer iterations, but it had to calculate the performance index four times, so
its convergence rate was slower than that of SPGD.
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