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Abstract: A framework combining two powerful tools of hyperspectral imaging and deep learning
for the processing and classification of hyperspectral images (HSI) of rice seeds is presented. A seed-
based approach that trains a three-dimensional convolutional neural network (3D-CNN) using
the full seed spectral hypercube for classifying the seed images from high day and high night
temperatures, both including a control group, is developed. A pixel-based seed classification approach
is implemented using a deep neural network (DNN). The seed and pixel-based deep learning
architectures are validated and tested using hyperspectral images from five different rice seed
treatments with six different high temperature exposure durations during day, night, and both
day and night. A stand-alone application with Graphical User Interfaces (GUI) for calibrating,
preprocessing, and classification of hyperspectral rice seed images is presented. The software
application can be used for training two deep learning architectures for the classification of any type
of hyperspectral seed images. The average overall classification accuracy of 91.33% and 89.50% is
obtained for seed-based classification using 3D-CNN for five different treatments at each exposure
duration and six different high temperature exposure durations for each treatment, respectively. The
DNN gives an average accuracy of 94.83% and 91% for five different treatments at each exposure
duration and six different high temperature exposure durations for each treatment, respectively. The
accuracies obtained are higher than those presented in the literature for hyperspectral rice seed image
classification. The HSI analysis presented here is on the Kitaake cultivar, which can be extended to
study the temperature tolerance of other rice cultivars.

Keywords: hyperspectral images; 3D-convolutional neural networks; deep neural networks; rice
seeds; graphical user interface; high day and night temperatures

1. Introduction

Rice is a food staple for more than 3.5 billion people around the world, particularly in
Asia, Latin America, and parts of Africa. According to the International Grains Council
(IGC), the total volume of milled rice produced worldwide reached 504 million metric tons
in the 2021/2022 crop year. There is a demand for high-quality rice which is increasing
worldwide. Rice quality-related genes and their role in regulating structure and compo-
nents for improving quality of rice are being studied [1]. However, the global temperature
is predicted to rise by 0.3 to 4.8 deg C. This supra-optimal temperature cause changes in the
plants in the morphological, physiological, biochemical, as well as gene level alterations.
High temperature stress affects rice seed growth in several ways. It results in reduced
grain quality and crop yield. It affects the grain size, color, and phenotypic characteristics.
Variation in grain width and height for mature grain under high night temperature stress is
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reported in [2]. Phytohormones such as auxin and cytokinin are affected by high tempera-
tures affecting the starch filling in the grain adversely and causing chalkiness, changing
low quality grains and lowering the market value.

Global mean day and night temperatures are rising throughout the world, affecting ce-
real and grain cultivars. Hence, it becomes increasingly important to develop an automatic
mechanism to monitor the quality of grains and cereals grown under high temperatures for
market acceptance as well as to study its implications on consumer health. It is essential to
utilize imaging technology and to analyze the resultant images to determine phenotypic
variations in grains and crops that feed the communities.

Hyperspectral images (HSIs) record the spectral signature of materials imaged in
highly sampled wavelengths called spectral bands. Each material has a unique spectral
signature and can be used to distinguish it from other materials. Additionally, under
environmental stressors, the spectral signatures of naturally occurring materials, food
crops, water bodies, and minerals can be identified. Imaging techniques have been used for
crop quality assessment and prediction. Deep Learning (DL) has become a fundamental
branch of Artificial Intelligence (AI), due to its ability to discover patterns by mimicking
the functioning of neurons in the human brain. The Deep Neural Networks (DNNs) have
exceptional learning capability, and as a result, it has been used in different areas of Machine
Learning (ML) and AI. The DNNs have been used in many applications such as health,
signal processing, data analysis, and context of computing among others [3].

DL methods are also being applied to classify crop seed images. RGB images of maize
seeds have been classified in [4] using a deep learning architecture. The size, shape and
color of rice is used to identify weedy rice that are a problem to regular rice varieties.
An RGB-based image analysis and machine learning approach is presented in [5] to identify
weedy rice from regular rice seeds. An overview of spectroscopic imaging configuration,
key wavelengths, spectral, and spatial resolutions for multispectral imaging for seed
phenotyping and quality monitoring is discussed in [6]. In order to study the phenotypic
variation in rice seeds due to environmental stressors, RGB color images and hyperspectral
images are acquired and analyzed [7]. Four varieties of rice seeds have been classified using
hyperspectral images in [8]. A comparison of milled and brown rice samples is carried out
using NIR-HSI to detect rice varieties [9]. Another study reported corn seed viability using
hyperspectral imaging. A wavelength range of 900–1700 nm is employed to obtain spectral
images of three different varieties of naturally aged watermelon seed samples and to detect
the viability of seeds using partial least square discriminant analysis (PLS-DA) model.
Germination prediction of beet seeds using HSIs and machine learning approaches such
as support vector machines, random forest, and gradient boosting classifiers is presented
in [10].

Regularly grown rice seed varieties have been classified using Convolutional Neural
Networks (CNNs) in [11,12]. All crop seeds have starch, fat, and enzymes and hence
their spectral signatures overlap. A common drawback in a hyperspectral image-based
classification of different crop seeds is the limited number of samples available for training a
deep learning neural network. To overcome this limitation, a deep transfer learning neural
network model is used in [13] for training a deep learning network to classify a particular
variety of seed, and to reuse the network to classify other types of crop seeds. Most of the
above publications are on crop seed growth under normal conditions. Due to the changing
climate on the planet, spectroscopy is beginning to be used to understand the effects of
high temperatures on grain quality. HSIs of rice seeds are from two classes: control and
high day and night temperatures, which are classified using a 3 Dimensional Convolutional
Neural Network (3D-CNN) architecture in [14]. Currently, there is no study evaluating the
imaging spectroscopy for distinguishing seeds grown under different hours of exposure
to higher day and/or night temperatures. The main contributions of this paper are the
following:

(a) Classification of HSIs of rice seeds grown under different exposure durations to
different high day and/or night temperature treatments using DL architectures;
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(b) A DL framework for a comprehensive analysis of hyperspectral images of seeds. We
present results from rice seeds grown under High Night Temperature (HNT), High
Day and High Night Temperature (HDNT) stressors, and control environments. Our
framework includes options for calibration, preprocessing, and segmentation for HSI
seed image extraction from a panel image of seeds, spectral analysis, spatial–spectral
feature extraction, as well as classification using two different DL neural network
architectures: 3D-CNN and Deep Neural Network (DNN);

(c) A software application of the DL seed image processing framework is the first of its
kind for processing crop seed HSIs.

The rest of the paper is organized as follows. Section 2 presents the materials and
methods that describe the framework with various Graphical User Interfaces, Section 3
presents the results of rice seed HSI classification using both 3D-CNN and DNN, Section 4
presents a discussion, and Section 5 the conclusions.

2. Materials and Methods

This section describes the high temperature treatments that the rice plants have gone
through. The rice (Oryza sativa) variety Kitaake (a temperate japonica cultivar) is used
in this study. This section also presents the rice seed HSI calibration and visualization
tools, and the deep learning architectures for the analysis and classification of the images.
Rice plants are moved to the high-temperature area after fertilization. The temperatures
for the four different treatments are shown in Figure 1. This figure also shows Auxin
quantification in pmoles/g for the four different treatments and the control group during
which the temperatures are normal. The new HDNT is referred to as HDNT2 treatment
and is included in the image analysis. The Auxin level increases as the temperature
increases. In order to identify phenotypic changes as temperature increases, we analyze the
hyperspectral images of sample seeds from different hours of exposure to high temperatures.
The images of the seeds are acquired at 168, 180, 204, 216, 228, and 240 h of exposure to
high temperatures after the fertilization stage of the plants. Hence, the images analyzed
are from five different treatments including the control, and from six different hours of
exposure to high temperatures.
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2.1. Hyperspectral Rice Seed Datasets

The hyperspectral images of rice seeds grown under high day/night temperature
environments and the control environment are taken with a high-performance line-scan
image spectrograph (Micro-Hyperspec Imaging Sensors, Extended VNIR version) [1]. This
sensor covers the spectral range from 600 to 1700 nm. A hyperspectral camera that records
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the spectrum from 597.21 nm to 1703.93 nm with an inter-band sampling of 4.14 nm is
used to record the rice seed images. Each image has 268 bands. The images are recorded
as hypercubes of the dimension 1250 × 450 × 268. Hypercubes are recorded for rice
seeds grown in control, and high day and night temperature. Table 1 gives the details
of the temperature treatments of the rice seeds and number of seed images acquired in
each category.

Table 1. Temperature treatments classes of rice seeds.

Treatment Class Day/Night Temperature ◦C Number of Images

Control 28/23 40

High day/night temperature
1 (HDNT1) 36/32 40

High night temperature (HNT) 28/28 40

High day temperature (HDT) 36/23 40

High day/night
temperature (HDNT2) 36/28 40

2.2. Calibration and Segmentation of Rice Seed HSI

We present the processing and DL classification framework of HSIs of rice seeds using
Graphical User Interfaces (GUIs). Figure 2 presents the GUI for HSI rice seed calibration
and segmentation. The calibration is conducted using the Shafer model [15] given by
the equation,

Ic =
I − Id

Iw − Id
(1)

where Ic is the calibrated constant reflection value at a predetermined wavelength, I is
the original spectra in the form of intensity, Iw is the white reference image captured
from a white Teflon tile with 100% reflection, and Id is the dark reference image with
0% reflection obtained with the light source turned off and the camera lens covered with
a cap. The module 1 in the GUI presents the dimension of the image hypercube that
includes the number of rows, number of columns, and number of bands. Module 2 is used
for calibration of the image. In this sub-window, the dark and white reference images
are uploaded, a button is provided for calibration, and another for saving the calibrated
image. In module 3, the user can select the red, green, and blue bands as any three out
of the 268 bands for displaying the image as an RGB color composite. Module 4 is for
segmenting the seeds from the background, which opens a new interface shown in Figure 3
for extracting each seed and saving the image. The "Find" button is used to select the path
in which the individual rice seed images are to be saved. In this case, there are four different
datasets of rice seed high temperature treatments, and six subclasses of high temperature
exposure duration for each of the four treatment class. There is one control class of HSIs for
normal temperature grown rice seeds. The individual seed images are saved in a folder for
training the 3D-CNN architecture. The tools button in module 4 in Figure 2 opens another
interface shown in Figure 4. In the left panel of this module, each individual band can be
visualized as an image. In the select image panel, an image from a temperature treatment
and a subclass of the number of hours of exposure and band number can be input for
the image to be displayed in the bottom left panel. For example, band number 75 from
a HDNT2 rice seed HSI, exposed to a high day and night temperature for 204 h is shown
on the left bottom side of the panel. By clicking on the spectrum button, individual pixel
spectra of several pixels are plotted next to the image. On the rightmost bottom panel, the
mean spectrum is plotted. The right top panel displays measurements of spatial–spectral
phenotype characteristics of the seed. Furthermore, the spectrum button in Figure 4 enables
the user to point the cursor at a pixel location to see the spectra of that pixel on the right
side of this interface. The feature extraction button is used to calculate shape features of the



Sensors 2023, 23, 4370 5 of 18

seed image displayed in a panel in the GUI. In order to extract phenotype characteristics,
the following features are extracted from the rice seed images [16].
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2.3. Hyperspectral Seed Graphical User Interfaces

Four Graphical User Interfaces (GUIs) have been developed for the extraction of rice
seed images and for feature extraction. Figure 3 shows the GUI for individual seed image
extraction from a panel image containing several seeds. The user can input the path where
the images have to be saved, as well as the category or class and subclass. The button for
feature extraction is shown in the GUI in Figure 4. The features are described below:
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If the boundary of the rice seed is represented by a polygonal curve, the diameter of
a boundary is defined by

diameter(B) = max
[
D
(

pi, pj
)]

(2)

where D is a distance measure and pi and pj are points on the boundary. The value of
the diameter and the orientation of a line segment connecting the two extreme points that
comprise the diameter is called the major axis. The line perpendicular to the major axis is
called the minor axis. The ratio of the major axis to the minor axis is called the eccentricity
given by

eccentricity =

√
1− (b/a)2, a ≥ b (3)

where a is half the length of the major axis and b is half the length of the minor axis. The
surface area of the rice seed is the area of an ellipse given by

area = πab (4)

The perimeter of an ellipse is given by

p = π(a + b) (5)

A more frequently used feature descriptor for shape is compactness given by

compactness = p2/A (6)

where A is the area. The roundness or circularity is a dimensionless measure given by

roundness =
4πA

p2 (7)

The mean intensity of the pixels in the seeds is given by

X =
1
N ∑N

i=1 xi (8)
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Some of these features are shown in the top panel of the GUI in Figure 4. The selection
of the classification button opens a fifth GUI shown in Figure 5. This GUI implements two
DL methods for seed image classification. The first is the 3D-CNN which is an image-based
classification method and the second is a DNN which is a pixel based classification method.
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Figure 5 shows the GUI for loading the training HSI rice seed images from the train
folder, and for loading the testing HSI rice seed images from the test folder. The link to
download the codes for the GUI is provided in the Supplementary Materials.

2.4. 3D-Convolutional Neural Network

The architecture of a 3D-CNN consists of 3D convolutional layers, 3D pooling layers,
and fully connected layers. Each convolutional layer in a 3D-CNN applies multiple 3D
filters to the input data. The result of each convolution is passed through a non-linear
activation ReLu function to introduce non-linearities into the model. The resulting data is
then subjected to 3D pooling, using a 3D pooling operation to reduce the dimensionality of
the feature volume. Finally, the output of the last pooling layer is fed into one or more fully
connected layers to produce the final output of the model.

3D convolutions are performed similar to 2D convolutions in a CNN. However, in
a 3D-CNN, the convolutional kernel has three dimensions instead of two. We have a 3D
input I of size C× D× H ×W, where C is the number of channels, D is the depth of the
image, H is the height of the image, and W is the width of the image. To perform a 3D
convolution on I, a 3D kernel K of size C′ × D′ × H′ ×W ′ is used, where C’ is the number
of output channels, D’ is the depth of the kernel, H’ is the height of the kernel, and W’ is
the width of the kernel. The 3D convolution operation is defined as the following:

Oi,j,k = ∑D′−1
d=0 ∑H′−1

h=0 ∑W ′−1
w=0 ∑C−1

c=0 ∑C′−1
c′=0 Ii+d, j+h,k+w,cKd,h,w,c,c′ (9)

where O is the output of the convolution at position (i, j, k), I is the input volume, K is the
kernel volume, D’ is the depth of the kernel, H’ is the height of the kernel, W’ is the width
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of the kernel, C is the number of input channels, C’ is the number of output channels, and d,
h, w, c, and c’ are indices that iterate over the kernel and input dimensions. The 3D pooling
operation is performed similarly to the 2D pooling operation in a CNN. The goal of 3D
pooling is to reduce the dimensionality of the feature volume by subsampling the features
in all three dimensions.

2.5. 3D-CNN Training and Validations

Eighty percent of images are used for training the 3D-CNN, ten percent for validation,
and ten percent for testing. The whole hypercube image of each seed is used to train the
network. Since the imaging systems acquire lesser images, data augmentation is used to
generate more images for training the 3D-CNN architecture. With data augmentation, the
total number of images used for each class is 40 images. The workflow for the 3D-CNN-
based classification is shown in Figure 6. The architecture consists of a 3D convolution
layer with the Rectified Linear Unit (ReLu) and Max Pool operations. The output from the
second 3D convolution layer is flattened and input to a fully connected layer with Softmax
operation. The output of this layer is the classification of the seed image into one of the
trained categories.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

where O is the output of the convolution at position (i, j, k), I is the input volume, K is the 
kernel volume, D’ is the depth of the kernel, H’ is the height of the kernel, W’ is the width 
of the kernel, C is the number of input channels, C’ is the number of output channels, and 
d, h, w, c, and c’ are indices that iterate over the kernel and input dimensions. The 3D 
pooling operation is performed similarly to the 2D pooling operation in a CNN. The goal 
of 3D pooling is to reduce the dimensionality of the feature volume by subsampling the 
features in all three dimensions. 

2.5. 3D-CNN Training and Validations 
Eighty percent of images are used for training the 3D-CNN, ten percent for valida-

tion, and ten percent for testing. The whole hypercube image of each seed is used to train 
the network. Since the imaging systems acquire lesser images, data augmentation is used 
to generate more images for training the 3D-CNN architecture. With data augmentation, 
the total number of images used for each class is 40 images. The workflow for the 3D-
CNN-based classification is shown in Figure 6. The architecture consists of a 3D convolu-
tion layer with the Rectified Linear Unit (ReLu) and Max Pool operations. The output from 
the second 3D convolution layer is flattened and input to a fully connected layer with 
Softmax operation. The output of this layer is the classification of the seed image into one 
of the trained categories. 

 
Figure 6. 3D-CNN rice seed classification architecture. 

2.6. Deep Neural Network 
The input of the DNN are the pixel vectors X of size 268 corresponding to the number 

of bands. The pixels are arranged in a matrix of dimension (numbers of pixels x numbers 
of bands). Each row of pixels is input to the DNN with its corresponding initial weights. 
The following notation is used for the DNN:  

Data=𝑋   (10) 

Weights=𝑊   (11) 

where i corresponds to the index pixel (row), j corresponds to the values of the vector pixel 
and l corresponds to the layer.  

The process that occurs in each hidden layer is defined by the following operation. 
Taking for example the first pixel (neuron) in the first hidden layer:  ∑ = (𝑋 ∗ 𝑊 ) + (𝑋 ∗ 𝑊 )+ . . . +(𝑋 ∗ 𝑊 )  (12) 

In vector form, it is the following:  ∑ = 𝑋 . 𝑊   (13) 

where 𝑋 = [𝑋 , 𝑋 , … , 𝑋 ] and 𝑊 = [𝑊 , 𝑊 , … , 𝑊 ]  (14) 

Adding a bias vector, the following general equation for the DNN is obtained:             𝑍 = 𝑋. 𝑊 + 𝑏 (15) 

Figure 6. 3D-CNN rice seed classification architecture.

2.6. Deep Neural Network

The input of the DNN are the pixel vectors X of size 268 corresponding to the number
of bands. The pixels are arranged in a matrix of dimension (numbers of pixels x numbers
of bands). Each row of pixels is input to the DNN with its corresponding initial weights.
The following notation is used for the DNN:

Data = Xl
ij (10)

Weights = W l
ij (11)

where i corresponds to the index pixel (row), j corresponds to the values of the vector pixel
and l corresponds to the layer.

The process that occurs in each hidden layer is defined by the following operation.
Taking for example the first pixel (neuron) in the first hidden layer:

∑ =
(

X1
11 ∗W1

11

)
+
(

X1
12 ∗W1

12

)
+ . . . +

(
X1

1n ∗W1
1n

)
(12)

In vector form, it is the following:

∑ = X1
1 .W1

1 (13)

where
X1

1 =
[

X1
11, X1

12, . . . , X1
1n

]
and W1

1 =
[
W1

11, W1
12, . . . , W1

1n

]
(14)
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Adding a bias vector, the following general equation for the DNN is obtained:

Z = X.W + b (15)

where b is the bias tensor.
The next step is to pass Z through a non-linear activation function. For the DNN

proposed in this work, the Rectified Linear Unit activation function (ReLu) is used:

y = ReLu(Z) (16)

Once the DNN is defined, we proceed to the training process using a lost function
which is categorical cross entropy and the optimizer is the Adam optimizer.

2.7. DNN Training and Validation

The architecture for the pixel-based classification scheme using DNN is given in
Figure 7. The input data that is provided to the DNN at the input layer is the pixel spectral
vector; in this case, each pixel vector has a dimension of 268 (number of band). The DNN
consists of one input layer, 12 hidden layers, and finally an output layer using Softmax
operation as shown in Figure 7. For the classification of rice images using DNN, 70% of the
pixels of each rice seed from the treatments is used to train the model. The remaining 30%
of the pixels is used for validation. Both DL methods are used for classifying two types
of classification experiments. The first one is the classification of rice seeds or pixels of
rice seeds. The results are evaluated using the Average Accuracy (AA), Overall Accuracy
(OA), and Kappa score for the 3D-CNN, and the precision, recall, and f1-score metrics
for the DNN. These performance metrics are shown in Table 2 In Table 2, TP stands for
true positive, FP for false positive, TN for true negative, and FN for false negative. P
and N are the total number of positive and negative samples for each class, respectively.
The Kappa score tests the inter-reliability of the results, i.e., how much of the accuracy is
obtained by chance. Po is the proportion of observed agreement, and Pe is the proportion
of agreement expected by chance. Precision score measures the proportion of true positive
samples among all samples that have been predicted as positive by the classifier. Precision
is a useful metric to assess the importance of classification models and is used with recall
and f1-score. Recall is the proportion of true positive samples among all actual positive
samples in the dataset. A higher recall indicates that the model is better at identifying
positive samples. A higher f1-score indicates better overall performance, considering both
precision and recall.
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Table 2. Performance metrics used for 3D-CNN and DNN.

Performance Metrics Formula

Precision TP
TP+FP

Recall TP
TP+FN

F1-Score 2 ∗ precision∗Recall
Precision+Recal

Average Accuracy (AA) TP+TN
TP+TN+FP+FN

Overall Accuracy (OA) TP+TN
(P+N)

Kappa (K) Po−Pe
1−Pe

The Python codes for the DL framework for hyperspectral seed image calibration,
preprocessing, segmentation, and DL neural network classification are made in a Github
link provided in the Supplementary Materials.

3. Results

This section presents the results using the 3D-CNN architecture and the DNN architecture
for classification. About 30 images from each category of rice seed HSI are used in the training,
testing, and validation phases of the 3D-CNN architecture. All the rice seed images are
extracted from a panel of seeds using the GUI presented in Figures 2 and 3. The GUI in
Figure 4 is used to examine the spectra of the HSI seed images. GUI in Figure 5 is used to
upload the training and testing images for each experiment. Two types of experiments are
conducted. The first is to classify the rice seeds from the five different treatments for each
hour of exposure. The second is to classify the rice seeds for different hours of exposure under
each treatment class. The classification results of the first experiment are given in Table 3, and
the classification results for the second experiment are given in Table 4, respectively.

Table 3. Classification accuracy for different treatments of high day and night temperatures.

High Temperature Treatment Classes

Exposure HDT HDNT1 HDNT2 HNT Control AA OA K

168 0.93 0.91 0.93 0.93 0.92 0.92 0.91 0.91
180 0.91 0.9 0.89 0.92 0.89 0.91 0.9 0.89
204 0.94 0.93 0.93 0.94 0.94 0.94 0.94 0.94
216 0.92 0.91 0.91 0.9 0.93 0.92 0.92 0.91
228 0.91 0.91 0.9 0.91 0.91 0.91 0.9 0.91
240 0.92 0.92 0.92 0.93 0.92 0.92 0.91 0.92

Table 4. Classification accuracy for different exposure times to high temperatures (hours of exposure).

High Temperature Exposure Time (Hours)

Classes 168 180 204 216 228 240 AA OA K

HDNT1 0.89 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.88
HDNT2 0.91 0.9 0.92 0.9 0.89 0.9 0.9 0.89 0.88

HDT 0.91 0.92 0.92 0.9 0.91 0.9 0.91 0.91 0.9
HNT 0.91 0.92 0.92 0.9 0.91 0.91 0.91 0.9 0.89

Table 5 shows the classification results for the different temperature treatments of
high day/night temperature for each exposure time using the DNN architecture. The
classification maps for the different temperature treatments (classes) for each exposure
time are shown in Figure 8, and the ground truths are shown in Figure 9, respectively.
Table 6 gives the classification accuracies using the DNN for six different exposure times
for each high day/night temperature treatment class. Figure 10 gives the classification map
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obtained from the DNN architecture for different exposure times, and Figure 11 gives the
ground truth for this experiment, respectively.

Table 5. Classification results for different high day/night temperature treatments using the DNN
architecture.

168 h 180 h 204 h 216 h 228 h 240 h

Classes Precision Precision Precision Precision Precision Precision

HDT 0.97 1 0.92 1 0.99 0.98
HDNT1 0.92 0.96 0.85 0.96 0.97 0.86
HDNT2 0.95 0.9 0.93 0.91 0.96 0.86

HNT 0.93 0.96 0.95 0.96 0.92 0.96
Control 0.96 1 0.94 0.98 0.98 0.96

Macro average 0.95 0.96 0.92 0.96 0.96 0.92
Weighted average 0.95 0.97 0.92 0.96 0.97 0.92

Classes recall recall recall recall recall recall

HDT 0.97 1 0.98 0.96 1 1
HDNT1 0.97 0.91 0.86 0.96 0.95 0.86
HDNT2 0.88 0.95 0.89 0.95 0.96 0.84

HNT 0.95 0.99 0.88 0.95 0.96 0.9
Control 0.96 0.99 0.96 0.99 0.97 0.99

Macro average 0.94 0.97 0.92 0.96 0.97 0.92
Weighted average 0.95 0.97 0.92 0.96 0.97 0.92

Classes f1-score f1-score f1-score f1-score f1-score f1-score

HDT 0.97 1 0.95 0.98 1 0.99
HDNT1 0.94 0.94 0.85 0.96 0.96 0.86
HDNT2 0.91 0.92 0.91 0.93 0.96 0.85

HNT 0.94 0.97 0.92 0.96 0.94 0.93
Control 0.96 0.99 0.95 0.98 0.97 0.97

Accuracy 0.95 0.97 0.92 0.96 0.97 0.92
Macro average 0.94 0.96 0.91 0.96 0.97 0.92

Weighted average 0.95 0.97 0.92 0.96 0.97 0.92
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Table 6. Classification results for different exposure times for each temperature treatment using the
DNN architecture.

HDT HDNT1 HDNT2 HNT

Classes Precision Precision Precision Precision

168 0.95 0.89 0.91 0.91
180 0.99 0.91 0.93 0.98
204 0.96 0.86 0.81 0.94
216 0.86 0.83 0.86 0.89
228 0.86 0.9 0.9 0.92
240 0.98 0.94 0.78 0.91

Macro average 0.94 0.89 0.87 0.93
Weighted average 0.95 0.89 0.87 0.93

Classes recall recall recall recall

168 0.96 0.83 0.83 0.92
180 0.97 0.98 0.92 0.96
204 0.96 0.87 0.88 0.92
216 0.99 0.92 0.76 0.89
228 0.9 0.82 0.9 0.96
240 0.91 0.89 0.93 0.91

Macro average 0.95 0.89 0.87 0.93
Weighted average 0.95 0.89 0.87 0.93

Classes f1-score f1-score f1-score f1-score

168 0.95 0.86 0.87 0.91
180 0.98 0.94 0.92 0.97
204 0.96 0.87 0.84 0.93
216 0.92 0.87 0.81 0.89
228 0.88 0.86 0.9 0.94

Accuracy 0.95 0.89 0.87 0.93
Macro average 0.94 0.89 0.87 0.93

Weighted average 0.95 0.89 0.87 0.93
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4. Discussion

The accuracies are ordered in rows for the 3D-CNN in Tables 3 and 4, and the accuracies
are ordered in columns in the case of DNN in Tables 5 and 6. For the DNN architecture
the precision, recall, and f1-scores are also calculated, and hence they had to be ordered in
columns. The average overall classification accuracy from Table 3 for classification of seeds
from different temperature treatments using the 3D-CNN architecture is 91.33% which
shows that the 3D-CNN performs well in discriminating between the seeds from different
treatments for each exposure time. The average overall classification accuracy from Table 4
for different exposure times of rice seeds for all the treatments is 89.50%.

The seeds from HDNT1 and HDNT2 treatments have lower accuracies for different
exposure times. The average accuracy from Table 5 for different temperature treatments of
rice seeds using the DNN architecture is 94.3%, which shows that the DNN performs well
in discriminating between the seeds from different treatments for each exposure time. The
precision scores are interpreted along with recall, which from Tables 5 and 6 range between
0.86 and 1.0, showing that the classification model is good at identifying positive samples,
and at the same time performs well in not identifying samples wrongly from another class;
in other words, it has low false-positive errors. The f1-score is a combination of precision
and recall, and ranges between 0.86 and 1.0, which shows a better overall performance
of the DNN model. The lowest macro average and weighted average of precision, recall,
and f1-score obtained are for the exposure times of 204 and 240 h. For 204 h of exposure
time, the HDNT1 obtained the lowest accuracy values and for 240 h of exposure time, the
treatments HDNT1 and HDNT2 obtained the lowest accuracy. Observing Figure 10, it can
be seen that there are misclassifications in the rice seeds of the HDNT2 class into HDNT1
class and vice versa, which means that for these two exposure times these rice classes have
similar pixel spectral characteristics.

A t-Stochastic Nearest Neighbor Embedding (t-SNE) of the rice seed hyperspectral
vectors have been performed and displayed in Figure 12. The t-SNE plots are made after
taking the first 50 bands of the Principal Components Analysis (PCA) decomposition and
performing a t-SNE visualization using the t-SNE1 (x-axis) and t-SNE2 (y-axis) components.
These plots show that HSI of rice seeds grown under high temperatures have useful
information in the different bands for distinguishing between the seeds grown under
different hours of exposure to high temperatures. Most of the seed hyperspectral vectors
from the five high temperature treatments are uncorrelated with each other as seen by the
clustering of the colors. Hence, imaging spectroscopy is a promising tool for studying
the impact of warming temperatures in the planet where seed crops are grown, and to
study the phenotypic spatial–spectral changes in the seeds due to increase in day and
night temperatures.

In Figure 12, the light green points are the HDNT1 pixels and dark green points are
the HDNT2 rice seed pixels, respectively, which show some correlation. These are the
two classes of high temperature grown seeds that have similar values in spectral bands
obtaining a lower accuracy compared to the other high temperature grown rice seeds. The
classification accuracies using the DNN are 1% to 4% higher than that of the 3D-CNN,
because the DNN performs a pixel-based classification, and there are more pixel samples to
train the DNN. The 3D-CNN uses whole seed images for training the network. Whole seed
HSI acquisition is costly and time consuming. However, the 3D-CNN also has performed
well in distinguishing between the rice seeds from different temperature treatments and
high temperature exposure durations.
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Comparison with State-of-the-Art Rice Seed HSI Classification

There are many publications on regular PNG or RGB rice seed variety classifications
in the literature using machine learning and deep learning methods [17–20]. Table 7
summarizes the rice seed HSI classification. The work by Gao et al. [14] is the only one that
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classifies HSI rice seeds grown under high temperatures using 3D-CNN. Moreover, they
classify only one temperature class against control totaling only two categories. Whereas, in
this paper we have used 3D-CNN to classify rice seed HSI from four different temperature
classes against the control and also to distinguish seeds exposed to different durations of
high temperatures.

Table 7. State-of-the-Art in rice seed HSI Classification.

Year Authors Algorithm Number Classes Overall Accuracy

2021 T. Gao et al. [14] Rice seed HSI classification using
3D-CNN (high temperature) 2 97.5%

2021 T. Gao et al. [14] Rice pixel based HSI classification
(high temperature) 2 94.21%

2019 Z. Qui et al. [8] Regular rice seed HSI image
classification using CNN 4 87%

2018 I.Hatnuntawech et al. [11] Regular rice seed HSI classification
using ResNet-B 6 91.09%

Proposed method High temperature grown rice seed
HSI using 3D-CNN 6 91.33%

Proposed method High temperature grown rice seed
HSI using DNN 6 94.83%

There are also no studies on the State-Of-the-Art (SOA) on DNN for rice seed HSI
pixel-based classification. The methods listed in Table 7 mostly use CNN but not 3D-CNN.
The 3D-CNN architectures, as well as the DNN architecture presented in this framework,
are able to perform a seed-based as well as a pixel-based classification of rice seeds grown
under high day and/or night temperatures, obtaining higher accuracies than the SOA with
a higher number of temperature treatment classes.

The DL framework for the processing and classification of rice seeds grown under high
temperature can be extended to other varieties of rice seeds and grains to better understand
the effects of warming temperatures on seed crops. The spectral phenotypic changes can
be correlated with gene studies as well as evaluate the nutrition content of the seeds grown
under higher temperatures. The DL software application runs without the installation
of Python software, and can be used for calibration, processing, segmentation, feature
extraction, and classification of other types of hyperspectral images of seeds such as wheat,
maize, corn, watermelon, beet, and soybean.

5. Conclusions

A DL framework for the calibration, preprocessing, segmentation, and classification of
rice seed hyperspectral images has been presented. The 3D-CNN architecture performs well
in classifying the rice seeds from different temperature treatments, as well as classifying the
seeds from subclasses of six temperature exposure durations. The DNN architecture uses
the spectral information in each pixel of the rice seed images and performs a pixel-based
classification obtaining a higher accuracy for all the four temperature treatments as well
as for sub classes of varying temperature exposure durations. The rice seed hyperspectral
images from the highest day and night temperature of 36/32 degree Celsius gives the lowest
accuracy, showing that higher temperatures alter the seed spectral–spatial characteristics
drastically making it non-discriminable from seeds from the other treatment classes. The
HSI and DL methods presented here can be applied in precision agriculture to study the
impact of environmental variables on grain varieties.
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Supplementary Materials: The codes for the DL framework for hyperspectral seed image calibration,
preprocessing, segmentation, and classification are available at: https://gitfront.io/r/vido6/vC6
4GLsxCDZx/classificationRice/, accessed on 23 March 2023.
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