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Abstract: The application of a bidirectional laser requires the laser intensity in both directions to
be balanced. However, the CW and CCW light intensities in current bidirectional erbium-doped
fiber laser experiments differ due to the gain competition effect. There is no report on equalizing
the intensity in the CW and CCW directions. This paper proposes a bidirectional non-reciprocal
optical attenuator using the Faraday optical rotation effect. Continuous attenuation adjustment is
realized by changing the angle between the polarizer’s transmission axis and the linear polarized
light. In this study, we analyzed the influence of different parameters on the device’s performance,
built a non-reciprocal attenuator, and tested the bidirectional attenuation curve, which was consistent
with the simulation results. The device was integrated into a bidirectional fiber laser, and the
light intensity in both directions was balanced through non-reciprocal adjustment. Combined with
closed-loop control, the average intensity difference fluctuation between the two directions was
controlled at 0.28% relative to the average power, realizing stable long-term bidirectional fiber laser
intensity equalization.

Keywords: bidirectional non-reciprocal optical attenuator; Faraday optical rotation effect; intensity
equalization; bidirectional fiber laser

1. Introduction

In the field of optical detection, the bidirectional output laser has essential application
value and broad application scenarios [1–3]. There is gain competition in the bidirectional
erbium-doped fiber laser: clockwise (CW) and counterclockwise (CCW) lightwaves will
compete for the inverted particles, resulting in differences in and continuous fluctuations
of CW and CCW light intensity. The difference between the CW and CCW light intensity
will expand with increased pump power [4–7]. The bidirectional output laser requires
good coherence between the CW and CCW lasers. The close intensity of the CW and CCW
lasers also shows good coherence. Optical signals with close intensities can achieve high
optical heterodyne beat efficiency [8,9]. In addition, in the resonant cavity, the difference
in light intensity between the CW and CCW lights will cause phase differences due to the
Kerr effect, which will affect their resonant frequency and beat frequency [10–12]. If the
difference between the CW and CCW light intensity changes continuously, a frequency jitter
will be introduced into the beat signal, equivalent to introducing noise during frequency
detection. This will affect the subsequent application of the bidirectional fiber laser and
reduce its potential in other detection fields. If the CW and CCW light intensity can be
adjusted in the same optical device at the same time to reduce the difference, it can help to
reduce the phase difference between the two lights. At the same time, the beat efficiency
of the CW and CCW lights can be increased to improve the overall output power of the
system. Therefore, bidirectional fiber lasers with intensity equalization can obtain better
detection indicators and have better application prospects.
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If the CW and CCW lights can be adjusted differently in the same device simultane-
ously, a non-reciprocal effect needs to be introduced. The Faraday optical rotation effect is
a typical non-reciprocal effect [13,14]. It can be used to make non-reciprocal adjustments in
two counter-propagating directions. For example, based on the principle that the Faraday
optical rotation angles of different wavelengths are different, isolators with different con-
duction directions for different wavelengths can be made [15–18]. Combining the Faraday
rotator and quarter-wave plate, phase controllers with different phase delays in different
directions can be made [19–21], and the Faraday optical rotation effect can also be used to
make bidirectional multi-port circulators [22].

With the laser gain unchanged, adjusting the attenuation value of the laser resonator
can change the intensity of the laser. Therefore, the intensity of the CW and CCW lasers
can be balanced by balancing the attenuation of the CW and CCW resonators. The Faraday
rotation effect can change the angle of linearly polarized light, so it is widely used in
attenuation regulation applications. Adjustable attenuators and isolators can be made
based on the Faraday optical rotation effect [23–31]; changing the angle between the linear
polarized light and transmission axis of the polarizer realizes a continuous change of
attenuation. The existing optical attenuators based on the non-reciprocal Faraday optical
rotation effect only focus on the change in optical attenuation in one conduction direction,
and there are no reports on adjustable bidirectional non-reciprocal optical attenuators.

Therefore, based on the Faraday optical rotation effect, non-reciprocal attenuation
adjustments can be made to CW and CCW resonators by using the angle change between
the linear polarized light and the polarizer’s transmission axis, to realize the equalization of
the CW and CCW laser intensity of the bidirectional fiber laser, improve the beat efficiency,
and reduce other interference caused by the CW and CCW intensity difference. Based on
the Faraday optical rotation effect, simultaneous adjustment of CW and CCW resonator
attenuation can be realized in the same optical device without adjusting the intensity of
the CW and CCW. This can avoid interference introduced by a non-reciprocal optical path,
thus simplifying the system design and improving stability.

2. Materials and Methods
2.1. Intensity Equalization Principle of Bidirectional Fiber Laser

The output intensity of the laser at a stable resonance depends on the gain and
attenuation in the resonator. As shown in Equation (1), the saturation intensity Is depends
on the nature of the gain material and the frequency of the incident light, small signal gain
coefficient g0 is independent of the light intensity and depends on the properties of the
working material and the pump power, and τ is the attenuation in the resonant cavity [31].
It can be seen from the equation that laser intensity Im can be changed by changing the
attenuation in the resonant cavity.

Im =
(

g0 − τ
)

Is/τ (1)

In a bidirectional fiber laser, the output light intensity in one direction can be controlled
by controlling the attenuation in that direction. If pump power fluctuations and external
disturbances are ignored, when the attenuation of the CW resonator is increased, the
consumption of reverse particles by the CW light will be reduced, so the CCW light can
obtain more reverse particles and gain improved intensity.

Based on the above principle, the intensity of the lights in two directions can be
detected, and the attenuation of the CW and CCW resonators can be adjusted according
to the intensity difference in the two directions to realize intensity equalization of lasers
transmitted in two counter-propagating directions.

2.2. Design of Non-Reciprocal Optical Attenuator

Attenuation can be produced by the angle between the linearly polarized light and
the polarizer’s transmission axis, and the magnitude of attenuation is related to the angle.
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At the same time, the polarization rotation direction of linearly polarized light passing
through the Faraday rotator is independent of the passing direction; non-reciprocal rotation
can be introduced in both forward and backward passing directions through the Faraday
rotation effect.

Based on the above two principles, we can design a device to realize non-reciprocal
attenuation control of forward and backward directions on the same optical structure.

A non-reciprocal optical attenuator mainly comprises two collimators, two polarizers,
and a Faraday rotator. The specific structure is shown in Figure 1. Based on the reference
coordinate system on the right side of the figure, the transmission axis of polarizer 1 is
parallel to the x-axis. The rotation direction of the Faraday rotator is from the x-axis to the
y-axis, and the rotation angle is α. The angle between the transmission axis of polarizer 2
and polarizer 1 is β.
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Figure 1. Structure of non-reciprocal optical attenuator, composed of collimator 1 (C1), polarizer
1 (P1), Faraday rotator (FR), polarizer 2 (P2), and collimator 2 (C2).

The collimator uses a polarization-maintaining (PM) fiber. The polarizer’s transmis-
sion axis is aligned with the slow axis of the PM fiber. In the experiment, the Faraday
rotation angle is changed by applying magnetic field intensity to the Faraday rotation
crystal. The Faraday rotation crystal, polarizer, and collimator used in the experiment all
work at 1550 nm.

Assuming the positive direction along the z-axis is the forward transmission direction
and the negative direction of the z-axis is the backward transmission direction, we can
analyze the change of polarization angle and attenuation of linearly polarized light in
different transmission directions.

In Figure 2, the blue two-way arrow indicates the direction of the transmission axis
of polarizer 1, the black two-way arrow indicates the direction of the transmission axis of
polarizer 2, the angle between the two polarizers is β, and the red two-way arrow indicates
the direction of linearly polarized light.

The characteristic after transmission in two directions is calculated through the Jones
matrix. The Jones matrix of the linear polarizer is P1 and P2, and that of the Faraday rotator
is FR:

[P1] =

[
1 0
0 0

]
(2)

[P2] =

[
cos2 β cosβsinβ

cosβsinβ sin2 β

]
(3)

[FR] =
[

cosα −sinα

sinα cosα

]
(4)
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The Jones matrix in the forward propagation direction is

[P2][FR][P1]

[
1
0

]
= cos (β− α)

[
cosα
sinα

]
(5)

Light intensity after forward propagation If is

If = cos2(β− α)
(

cos2 α+ sin2 α
)
=cos2(β− α) (6)

The Jones matrix in the backward propagation direction is

[P1][FR][P2]

[
cosβ
sinβ

]
= cos (α+ β)

[
1
0

]
(7)

The light intensity after backward propagation Ib is

Ib = cos2(α+ β) (8)

By observing the expression of output light intensity in two directions, it can be seen
that the Faraday rotator introduces a non-reciprocal rotation of linearly polarized light,
which makes the attenuation of forward and backward light different after passing through
the linear polarizer. On this basis, forward and backward attenuation can be continuously
adjusted by changing the angle of the Faraday rotator. Combined with the light intensity
formula, the attenuation characteristic curve of two opposite directions when the Faraday
rotation angle changes was simulated and angle β between the two polarizers was assumed
to be 45◦.
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As shown in Figure 3, when the angle between the two polarizers is 45◦, the adjustment
of the Faraday rotation angle to forward and backward attenuation is periodic. The
adjustment period of forward and backward attenuation is 180◦. The forward and backward
attenuation are the same when the Faraday rotation angle is α = k × 90◦ (k is an integer).
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When the Faraday rotation angle is α = 45◦ + k × 180◦, the device becomes a forward
conduction device. When the Faraday rotation angle is α = −45◦ + k × 180◦, the device
becomes a backward conduction device.
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Figure 3. Curve of forward and backward propagation transmittance changing with Faraday rotation
angle; angle between polarizer 1 and polarizer 2 is 45◦.

The Faraday rotator can realize complete cut-off and conduction in the forward or
backward directions within a ±45◦ rotation range. A continuous adjustment interval exists
between complete cut-off and conduction in one direction. Therefore, in the rotation range
of ±45◦, continuously variable attenuation adjustment can be achieved by continuously
changing the Faraday rotation angle.

2.3. Analysis of Parameters and Characteristics of Non-Reciprocal Optical Attenuator

In the non-reciprocal optical attenuator, in addition to adjusting the Faraday rotation
angle, changing β will also affect the device’s characteristics.

We changed β and observed the influence on the bidirectional adjustment ability of the
device. From Figure 4, we can see that regardless of the value of β, forward and backward
transmission curves If and Ib show periodic changes; because the period of cos2 function is
180◦, If and Ib show continuous changes with a period of 180◦.

At the same time, when β changes periodically, the device characteristic curve also
changes, with a period of 180◦. When β changes in the range of 0–180◦, the change in the
device characteristics shows symmetry, so it is only necessary to study the change in device
characteristics with a rotation angle in the range of 0–45◦.

It can be seen from Figure 4a that when β is 0◦, the forward and backward transmission
curves are the same, and the device has no non-reciprocal adjustment function. At the
same time, different β values will affect the transmittance when the forward and reverse
attenuation are equal. It can be seen from Figure 4 that when β is π/16, the transmittance is
about 96% and 4% when the forward and backward attenuation are equal; when β is π/8
the values are 86% and 14%; when β is 3π/16, the values are 69% and 31%; and when β is
π/4, the value is 50%.
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The value of β also affects the adjustable range of the device, assuming that the
maximum non-reciprocal range (within the dotted black lines in Figure 4) is the adjustable
range of the device. It can be seen from Figure 4 that when β is small, such as π/16, the
adjustable range of the device is 22◦; when β is π/8, the value is 45◦, and when β is 3π/16,
the value is 68◦, all of which are less than the 90◦ range when β is π/4. When the device is
an isolator with one-way conduction, if β is not equal to π/4, it cannot be completely cut
off in one direction and completely penetrated in the other.

It can be seen from Figure 5 that when the logarithmic coordinate system is used to
express transmittance, the smaller β is, the smaller the non-reciprocal adjustment angle
range is, the smaller the attenuation adjustment range will be, and the smoother the curve
will be within the adjustment range.
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3. Results
3.1. Non-Reciprocal Attenuator Test

We built a non-reciprocal optical attenuator for testing, and a photo is shown in
Figure 6.
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Figure 6. Non-reciprocal optical attenuator, composed of collimator 1 (C1), polarizer 1 (P1), Faraday
rotator (FR), polarizer 2 (P2), and collimator 2 (C2). The solenoid is made by Beijing Cuihai Jiacheng
magnetoelectronics company. Equipment model: CHL10-270; Equipment number: CH-230223-07.

The bidirectional attenuation curve obtained from the test is shown in Figure 7, and β

is π/4. When the attenuation in both directions is consistent, the insertion loss of the device
is about 7.5 dB. Due to the limitation of magnetic field strength, the adjustment range of the
Faraday rotation angle is ±15◦. The test results are consistent with the simulation results
within the adjustment range. It can be seen from Figure 7a that when the Faraday rotation
angle is within ±15◦, the adjustment range of attenuation in a single direction can reach
5.5 dB.
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3.2. Manual Open-Loop Test of Bidirectional Fiber Laser

In addition to testing the adjustable non-reciprocal attenuation characteristics of the
attenuator separately, the device was also integrated into the bidirectional fiber laser to
observe its effect on output intensity.

The bidirectionally operated erbium-doped fiber amplifier (EDFA) provides the gain
in the bidirectional fiber laser. A narrow band-pass filter with a bandwidth of 0.4 nm and a
fiber ring filter with a ring length of 60 cm were used to reduce the number of longitudinal
modes in the system. The system was a fully polarization-maintaining structure. The
monitoring of forward and backward optical power was completed through 90:10 couplers.
In Figure 8, the forward transmission direction is clockwise, and the backward transmission
direction is counterclockwise.
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Figure 8. Structure of bidirectional fiber laser, composed of bidirectional EDFA (Bi-EDFA), two
90:10 optical couplers (OC-1, OC-2), a fiber ring filter (FRF), an optical bandpass filter (BPF), and a
non-reciprocal optical attenuator (NOA).

Due to the pump and the difference in attenuation of the CW and CCW resonator
without the non-reciprocal attenuator, the difference in CW and CCW optical intensity
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is significant, and there are large intensity fluctuations, as shown in Figure 9. During
the observation process, the intensity difference between CW and CCW directions con-
tinuously shifted, indicating an unstable state of continuous gain competition. Then, the
non-reciprocal optical attenuator was added, and the pump power was adjusted so that the
average output intensity of the system was similar before and after adding the attenuator.
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Figure 9. CW and CCW intensity change when non-reciprocal attenuator is not added. Intensity
difference between CW and CCW light is large and fluctuates.

Comparing Figures 9 and 10, after adding the non-reciprocal optical attenuator and
adjusting so that the CW and CCW intensity were close, the difference between CW and
CCW optical intensity and power fluctuation also decreased. Without the non-reciprocal
optical attenuator, the average CW intensity was 777.7 µW with a variance of 0.03428,
the average CCW intensity was 594.6 µW with a variance of 0.02041, and the average
CW and CCW intensity was 686.2 µW. With the non-reciprocal optical attenuator, the av-
erage CW intensity was 687.2 µW with a variance of 0.00891, the average CCW intensity was
686.4 µW with a variance of 0.00430, and the average CW and CCW intensity was
686.8 µW.

Figure 11 shows the CW and CCW intensity difference before and after adding the
non-reciprocal optical attenuator; blue indicates the condition without the attenuator, red
indicates the condition with the attenuator added and adjusted close to the power position,
and the dotted line indicates the average value of the difference between the two conditions.

The average CW and CCW intensity difference before adding the non-reciprocal optical
attenuator was 183.2 µW relative to an average power ratio of 26.7%, with a variance of
0.10417. After adding the non-reciprocal optical attenuator, the average value decreased to
32.9 µW relative to an average power ratio of 4.8%, with a variance of 0.00749. The peak CW
and CCW intensity difference also decreased from 395 to 115 µW after the non-reciprocal
optical attenuator was added.

Manual adjustment can suppress the difference between CW and CCW laser inten-
sity to a certain extent. Through comparison, it can be seen that the manual open-loop
adjustment is inaccurate; there is still a large difference between the CW and CCW intensity,
and the significant intensity fluctuation cannot be suppressed. Moreover, the intensity
difference between the two directions will gradually expand when external conditions
change over time, so better adjustment logic needs to be considered.
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3.3. Closed-Loop Test of Bidirectional Fiber Laser

In order to overcome the defects of open-loop control, a closed-loop control system
was built (Figure 12) to detect the difference between CW and CCW intensity using two
80 MHz photoelectric detectors (PDs) and calculate the control quantity according to the
difference and PID algorithm in MCU, with a control cycle of 1 ms. Finally, the solenoid
current was controlled to change the Faraday rotator’s rotation angle, and then different
attenuation values were introduced to the CW and CCW directions to achieve the purpose
of intensity equalization.
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Figure 12. Block diagram of closed-loop control system.

As shown in Figure 13, the control effect is evident after the closed-loop control is
started, and the difference between CW and CCW intensity is well suppressed. During the
observation, the intensity difference between CW and CCW directions remained constant
and did not drift over time.
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Figure 13. CW and CCW intensity change before and after start of closed-loop control; effect of
closed-loop control is obvious.

It can be seen from Figures 14 and 15 that CW and CCW intensity are very close at 50
and 500 s, which suppresses the power fluctuation with large amplitude and the expansion
of the power difference caused by the long operation time of the system and achieves a
good closed-loop control effect.

The average CW intensity after introducing closed-loop control was 685.1 µW, with a
variance of 0.00054. The average CCW intensity was 686.6 µW, with a variance of 0.00051.
The average CW and CCW intensity was 685.9 µW. It can be seen from Table 1 that average
CW and CCW intensity difference before introducing closed-loop control was 32.9 µW
relative to an average power ratio of 4.8%, with a variance of 0.00749. After introducing
closed-loop control, the average difference decreased to 1.89 µW relative to an average
power ratio of 0.28%, with a variance of 0.00002. The peak value of CW and CCW intensity
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difference also decreased from 115 to 17 µW after introducing closed-loop control. It can be
seen from Figure 16 that after adding closed-loop control, not only the average difference
decreased significantly, but also the variance decreased significantly. Closed-loop control
can suppress differences as well as improve the stability of optical power.

Table 1. Comparison of results under various conditions.

Condition Average Intensity
(µW)

Average Intensity
Difference (µW)

Percentage of
Intensity Difference

Variance of
Difference

Non-reciprocal attenuator is not added 686.2 183.2 26.7% 0.10417

Closed-loop control is not introduced 686.8 32.9 4.8% 0.00749

Closed-loop control is introduced 685.9 1.89 0.28% 0.00002
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Figure 16. Change curve of difference between CW and CCW light intensity with and without
closed-loop control. Dv-B: difference in light intensity without closed-loop control. Dvm-B: average
of Dv-B. Dv-C: difference in light intensity with closed-loop control. Dvm-C: average of Dv-C.

4. Conclusions

In this paper, a bidirectional non-reciprocal optical attenuator was designed based on
the Faraday optical rotation effect, and the influence of various parameters of the device on
the overall performance was calculated, guiding subsequent experiments and design. The
device was built and tested according to the simulation results, and its characteristic curve is
consistent with the simulation results. The device was integrated into the bidirectional fiber
laser to verify the balance effect of the bidirectional non-reciprocal optical attenuator on
the output intensity of the laser through experimentation. In the case of manual open-loop
control, the average bidirectional optical intensity difference decreased by about 5.6 times,
the ratio of average intensity decreased by about 5.6 times, and the variance decreased
by about 13.9 times. On this basis, closed-loop control was introduced. Compared with
manual open-loop control, the average bidirectional light intensity difference decreased
by about 17.4 times, the ratio of average intensity decreased by about 17.2 times, and the
variance decreased by about 374.5 times. The non-reciprocal optical attenuator realized
non-reciprocal attenuation control of CW and CCW light simultaneously on the same
optical path structure. Combined with closed-loop control, it can achieve a stable, long-
term bidirectional power balance, which is conducive to the follow-up application of
bidirectional fiber lasers.
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