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Abstract: Modern wireless communication systems rely heavily on multiple antennas and their
corresponding signal processing to achieve optimal performance. As 5G and 6G networks emerge,
beamforming and beam management become increasingly complex due to factors such as user mo-
bility, a higher number of antennas, and the adoption of elevated frequencies. Artificial intelligence,
specifically machine learning, offers a valuable solution to mitigate this complexity and minimize
the overhead associated with beam management and selection, all while maintaining system per-
formance. Despite growing interest in AI-assisted beamforming, beam management, and selection,
a comprehensive collection of datasets and benchmarks remains scarce. Furthermore, identifying
the most-suitable algorithm for a given scenario remains an open question. This article aimed to
provide an exhaustive survey of the subject, highlighting unresolved issues and potential directions
for future developments. The discussion encompasses the architectural and signal processing aspects
of contemporary beamforming, beam management, and selection. In addition, the article exam-
ines various communication challenges and their respective solutions, considering approaches such
as centralized/decentralized, supervised/unsupervised, semi-supervised, active, federated, and
reinforcement learning.

Keywords: artificial intelligence; beamforming; machine learning; MIMO; 5G; 6G

1. Introduction

Artificial Intelligence (AI) comes in handy when the configuration of a communica-
tion link becomes complex, such as when the number of antennas increases considerably.
The use of Multiple-Input and Multiple-Output (MIMO) antenna systems in wireless
networks is becoming increasingly typical as the number of users and frequency band-
width increase each year significantly [1]. When employed, MIMO techniques provide
spatial reuse (i.e., multiplexing), increase the gain of the received signal, and decrease
co-channel interference. Such factors increase the sum-rate spectral efficiency of the whole
network [2,3].

A challenge of utmost importance in MIMO antenna arrays is directional Beamforming
(BF). Beamforming is performed through the interaction of the signals radiated by each
antenna element of the antenna array to modify, through constructive and destructive
interference, the radiation pattern for a certain purpose. Changing the gain and phase of
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the signals transmitted in each element of the antenna array makes it possible to change
the direction and shape of the array’s radiation pattern. For example, a transmitter can
increment by a constant factor the phase of the transmitted signal at each element of its
antenna array and, thus, direct the antenna’s main beam towards a single receiving device,
increasing the directivity and reducing the multipath effect [4].

A beamforming system can assume three types of architectures: analog, digital, and hy-
brid. In analog beamforming, phase adjustments are applied to the signal in the Radio
Frequency (RF) chain to steer the resulting beam towards the receiver and/or transmitter [5].
The phase adjustment is applied to the digital baseband signal in digital beamforming
architectures [6]. Finally, hybrid beamforming combines digital and analog beamforming
architectures [7].

However, finding the optimal direction to perform transmission or reception in a
MIMO system is a complex problem, especially to achieve the maximum performance
of a MIMO system. To do so, it is necessary to estimate the channels for each pair of
antennas between the receiver and transmitter to increase the system gain and circumvent
the adverse effects of the channel. The channel estimation process becomes more expensive
and may become unfeasible as the number of antennas increases [8]. In addition, steering
the beams of a MIMO system also depends on the hardware limitations of the transceiver
and the scenario and application these devices are intended for [9]. Therefore, it is common
to use codebook mechanisms that pre-define which radiation patterns can be used by an
antenna array [10]. The codebooks are matrices, and each column of these matrices, also
called codewords, has a different radiation pattern.

Although the space of possibilities is reduced when adopting a codebook, the process
of selecting codewords or beams, as is commonly adopted in the literature, is still considered
costly. Let us take as an example the naive method of beam selection, also called Exhaustive
Search (ES). The exhaustive method searches each beam, one by one, for the combination
between the transmitter and receiver that will result in the maximum value of a given
criterion, such as the transmitter/receiver channel gain. Assuming that the transmitter
and receiver have the same number of antennas, N, the complexity of selecting beams
with the ES method is on the order of N2. Although the ES method always guarantees
the optimal result, it becomes impractical due to both the exponentially increasing search
time as the number of beams or radiation patterns increases [11] and the ultra-low-latency
requirements, which are forecast to be around 1–10 µs for the Sixth-Generation of Mobile
Telecommunications Technology (6G) [12,13].

The MIMO problems reported above become even more noticeable in the millimeter
Wave (mmWave) and Terahertz (THz) bands. These two bands are located in the frequency
spectrum ranging from 30 to 300 GHz and from 0.1 to 100 THz, respectively. They are
considered promising technologies due to the extensive amount of frequency spectrum
barely used in these bands [14]. However, the benefit of occupying a large and still
unexplored part of the spectrum comes with a high attenuation cost in free space. To address
the high attenuation, some literature approaches use highly directional MIMO antennas,
whose gain compensates for the path loss. Nevertheless, this demands precise and efficient
beam selection methods to ensure the required application data rate and demanded delay
requirements [15]. Another challenge such bands pose is the low diffraction capacity
and severe blocking caused by most materials. The measurements in [16] showed that
the attenuation in stained glass could reach 40.1 dB and in bricks 28.3 dB. Furthermore,
blocking caused by human bodies can cause attenuation between 30 and 40 dB and reduce
the data rate on mobile networks in outdoor environments by up to 32% [17,18].

Currently, Machine Learning (ML) algorithms allow wireless networks to learn how
to extract information when interacting with large amounts of data. These algorithms
become a potential tool in cases where there is no known solution through the traditional
analytical approach or where the solution requires the manual configuration of many
parameters, allowing some of the ML techniques to contribute to the estimation of these
parameters. Academics and industry consider these algorithms essential for communication
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networks, applying them to detect anomalies and failures in the network and predict unseen
scenarios. In addition, these algorithms allow the network to: adapt itself to environments
that vary frequently, gain insights into complex problems with large amounts of data,
and generally discover hidden (or latent) patterns [19]. ML techniques are often studied in
MIMO applications [20,21], which, as already mentioned, are of fundamental importance
for modern wireless communications and demand many network resources (time and
bandwidth), which must be used efficiently.

Beam management is an essential aspect of 5G networks that enables the steering of
directional beams to improve the efficiency and reliability of wireless communication. This
is achieved through a combination of techniques such as beamforming, beam tracking,
and beam selection and is critical to achieving the high data rates, low latency, and high
reliability that 5G promises to deliver [22]. Thus, guided by AI techniques, beam manage-
ment can work based on context information, which is obtained as an alternative to the
conventional use of pilot signals for channel estimation. Images, geopositioning coordi-
nates, and data from other users are examples of context information that can be used to
manage beams [23,24]. Simply put, for a given input dataset, Artificial Intelligence (AI)
models map this information into the beam domain; that is, they map several input pieces
of information into the most-appropriate beam. The availability of information to be used
with such AI models can be questioned. However, the network itself already has several
indicators, such as Key Performance Indicators (KPIs), which can be analyzed together
instead of using only link-level data. Other information formats, such as user location and
images, are becoming increasingly plausible despite user privacy concerns. The junction
between AI and beam management allows a potential reduction in the time to perform
the operations related to the selection of beams and the optimization of the mechanisms of
beamforming according to the scenario [25].

6G brings a promising scenario for both AI and beamforming technology exploita-
tion. Due to the high dynamics and flexibility foreseen for 6G, the existing beamforming
and beam selection techniques still have not achieved the requirements of agile response,
adaptability, and modeling of the environment. With the help of ML techniques, beam man-
agement acquires more dynamic characteristics, such as online adaptation of codebooks,
and effective ones, such as beam selection performed in a fraction of the time taken by the
ES and with performance comparable to that technique.

Therefore, the literature requires in-depth studies on how AI techniques shorten edges
in beamforming management. To fill this gap, we raised research questions and conducted
a systematic review to understand taxonomically how AI techniques support beamforming
and are promising towards 6G network realization. Our systematic review allowed us
to delve into relevant state-of-the-art approaches, surveying them to find answers to the
research questions raised. Figure 1 depicts a tree diagram summarizing the detected
problems and the most-used AI techniques to tackle each one.

The remainder of this paper is organized as follows: Section 3 presents a background
of beamforming architectures, followed by Section 2, where we present the rationale for the
systematic review that guided our survey. In Section 4, we contrast our survey with those
found in the literature. Later, Section 5 brings the efforts towards beam selection in MIMO
systems. Section 6 provides the mobility and handover state-of-the-art review. Section 7
delves into the codebook design, and Section 8 details the precoding and combining in
MIMO with hybrid or digital architectures. In Section 9, we present the security of AI
models’ issues, and in Section 11, we present open problems and future research directions,
closing with Section 12, where we draw some concluding remarks.
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Figure 1. Detected beamforming and beam management problems and related AI techniques.

2. Systematic Review

In this paper, we propose and followed a consistent and systematic review protocol
according to Figure 2. This systematic review aimed to survey the works that tackle
beamforming and beam management problems using ML and AI solutions. This section
describes the steps taken in searching for and selecting these papers.

RESULT REVIEW
 The papers review, organised by 
the relevant challenges found, 
open problems, and the authors' 
directions for future research

FINAL 
SELECTION
Selection of the 125 
studies to be reviewed

INCLUSION 
CRITERIA 

Specify the criteria for 
paper inclusion or 

PRIMARY 
STUDIES

Identification of the 
181 preliminary 

DATA 
BASES

Determining the relevant and 
well-accepted digital libraries 

for article collection

SEARCH 
STRINGS

Appointing the search 
queries

RESEARCH 
QUESTIONS

 Definition of the questions 
that guided the central theme 
investigation and the 
reviewing process

NEED OF 
THE REVIEW

Describing the aspects that 
motivated this review

START

END

Figure 2. Process of the systematic review.

2.1. The Need for This Review

Beamforming is in the spotlight of current and future communication standards,
although it is still a work in progress. In fact, how beamforming will be implemented and
massively deployed is not yet completely defined. Exhaustive search and Discrete Fourier
Transform (DFT)-based codebooks have been playing this role until now, working well
for small antenna arrays. However, it is common sense that the number of antennas is
about to scale up. This increase in the number of antennas is why the exhaustive search
cannot be the straightforward choice regarding the beamforming algorithm. Likewise, DFT
codebooks are limited, considering the numerous applications and environments where
antenna arrays will be deployed.

In the literature, we found some surveys and reviews on beamforming, beam man-
agement, and AI algorithms for wireless network applications, such as [26–28]. However,
to the best of our knowledge, there are no works that combine both themes together and
consider a wide range of aspects, for instance mobility, different beamforming architec-
tures, and Radio Access Technology (RAT). Furthermore, ML and AI emerge as enabling
technologies for many fields in telecommunications. Thus, beamforming and beam man-
agement can significantly benefit from ML’s generalizing capabilities. In this survey, we
point out several beamforming and beam management AI-aided applications, use cases,
and future directions.
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Furthermore, we aimed at the modern and future generations of communication
standards, e.g., Fifth-Generation of Mobile Telecommunications Technology (5G) and
6G. Although we included some papers focusing on other wireless communications
technologies, we dove into 5G and beyond and the full support to the cloud, which
will lead to AI’s full integration. For 6G, AI will play a key role, enabling a myriad of
applications and ambitious performance indicators, such as augmented reality and the
Industrial Internet of Things (IoT) with 10−7 reliability and a 1 Gbps user perceived data
rate on dense urban scenarios [29,30].

2.2. Research Questions

Our research questions stem from the main challenge of beamforming and beam
management, which is to realize beamforming with the highest accuracy and lowest
complexity possible. This challenge involves generating the beams and associating the best
pairs for the communication between Base Stations (BSs) and users. As a tool, AI techniques
show potential to solve many problems in the wide wireless networks field of research,
with promising integration with the network in the 6G. Thus, combining beamforming
and beam management challenges with AI becomes a popular trend for academics and
industry, confirmed by the number of works published recently. Below, we enumerate the
Research Questions (RQ) that guided our study:

RQ 1: What are the beamforming and beam management challenges to face, and which
are amenable to AI solutions?

RQ 2: What ML techniques are adequate and often applied for beam-related problems?
RQ 3: What are the benefits and downsides of applying ML algorithms to beamforming

and beam management problems?
RQ 4: How were the datasets composed and used for ML training and simulation?
RQ 5: Which are the future directions of research for AI-based beamforming and beam

management?

2.3. Search String Definition

We searched digital libraries using the search strings according to Table 1. The queries
were repeated throughout the surveying process to include recently published papers.
The chosen strings are reflected in the outline of this survey such that the beamforming
and beam management challenges, such as beam selection, codebook design, and mobility,
were covered. It is important to point out that the papers returned by the queries were just
the starting point of our literature survey. Papers mentioned in those articles and not in the
set of papers returned by our search were also added to our surveyed list of works.

Table 1. Database and search string table.

Database Date of
Search Search Strings

Number of
Selected
Papers

Google Scholar

March 2021 “machine learning”, “beam selection” 36

April 2021 “machine learning”, “codebook”, “mimo” 21

April 2022

“beamforming”, “machine learning” 7

“beamforming”, “artificial intelligence” 5

“beam selection”, “machine learning” 6

“machine learning”, “beam selection”, “mmwave” 16

“machine learning”, “handover”, “mmwave” 29

December
2022 “Beamforming”, “Beam-selection”, “machine learning”, “artificial intelligence” 25

IEEE Explore April 2021 “Beam selection”, “machine learning”, “artificial intelligence” 36
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2.4. Criteria for Inclusion and Exclusion

The first criterion for including or excluding a paper was the year of publishing. We
included papers published from 2017 to the end of 2022 that encompassed the seminal and
most-popular works on beamforming, beam management, and AI, also guaranteeing that
this survey was aligned with the state-of-the-art. Furthermore, by the abstract and title, we
excluded the papers that did not explicitly mention one of the challenges listed, machine
learning or artificial intelligence. In order to exemplify this, we considered some papers
outside the criteria to exemplify concepts.

2.5. Identify Primary Studies

We considered papers with a two-year window behind the current state-of-the-art.
The number of selected papers from each search and the date of search are summarized
in Table 1, totaling 181 papers in this preliminary stage. We first organized the papers by
title, author, and year of publishing. Finally, after reading them in their entirety, the papers
outside of the already mentioned criteria or lacking quality were eliminated, narrowing
down the paper compilation to 137 papers.

Then, after reading the articles, we also identified some remarkable works and research
groups, which led us to investigate the bibliography they produced. Additionally, some
articles that were well criticized in one of the surveys listed in Section 4 or a related article
were included in this survey to provide completeness and enrich the discussions. Therefore,
we identified 125 articles matching the criteria mentioned in this section.

2.6. Review Results and Contributions

From Sections 5–9, we classify and summarize the key contributions of the included
papers. In addition, in each section, we include a table with overviews of the cited papers
to guide the reader and to address the raised research questions. Thus, we attempted to in-
dicate for each added paper which type of dataset was used, how the data were interpreted,
what ML technique was applied, how the technique was assessed and compared with other
techniques and the available ground truths, and how it was related to real applications.
Finally, we would like to highlight Sections 11 and 12, where we give our outcomes and
conclusions about the state-of-the-art, previous research, and what we think are the future
research directions for AI-aided beamforming and beam management.

2.7. Scope of This Review

While the mathematical foundations of machine learning algorithms are essential
to comprehending their functionality, our survey article will not explore the intricate
mathematical background of each algorithm. Instead, our focus is to provide a compre-
hensive overview of the current state-of-the-art techniques, their applications, advantages,
and drawbacks. We believe that this approach will be more beneficial to our readers inter-
ested in understanding the broader landscape of machine learning, rather than diving into
the technical details of each method. However, we acknowledge the significance of the
mathematical foundations of machine learning and encourage readers who are interested
in learning more about the mathematical underpinnings of these algorithms to refer to the
numerous excellent texts and articles available on this topic, such as [31–35].

3. Beamforming Architectures

The evolution of mobile networks usually arises from the demand for higher trans-
mission rates, lower energy consumption, massive connection of devices, low latency,
and communication with high reliability [36]. In 2010, with the arrival of the Fourth-
Generation of Mobile Telecommunications Technology (4G), it became possible to have
systems capable of supporting MIMO communication, enabling multiple antennas at the
transmission and reception chains [37]. By using MIMO technology, multiplexing and
diversity gains can be provided, further improving the capacity and quality of the wireless
links [38].
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With the growing demand for even higher data rates, mmWave- and THz-frequency
bands have emerged, along with MIMO technology, as potential candidates for future
wireless communication systems [39]. In contrast with systems operating at frequencies
below 6 GHz, these bands offer large available bandwidths, allowing for high data rates,
but their propagation characteristics (i.e., high attenuation in free space, absorption by
atmospheric gases, and blockages) pose significant challenges [40]. To overcome these
challenges, highly directional antennas must be employed, and beamforming techniques
become essential. Beamforming allows for the creation of highly focused beams, enabling
communication between devices even in the presence of obstacles [10]. With the develop-
ment of beamforming techniques, it is now possible to exploit the potential of mmWave
and THz frequencies, leading to the emergence of 5G and beyond wireless communication
systems [41].

Beamforming is a technology capable of modifying the radiation pattern of an antenna
array, making it more directive if necessary or modifying the direction of the main beam [42].
To maximize the Signal-to-Noise Ratio (SNR), beamforming technology modifies the beam
by controlling the power and phase of each element of the antenna array.

In massive MIMO systems, unlike the traditional way (i.e., Single-Input and Single-
Output (SISO)), beamforming might provide spatial multiplexing depending on the imple-
mented architecture, as we discuss next. As shown in Figure 3, the spatial multiplexing
technique aims to increase the transmission capacity of the channel, transmitting different
signals by different antennas or groups of antennas. These signals can be transmitted
simultaneously and at the same frequency, thus multiplying the number of bits transmitted
over the channel per second [42,43]. This technique imposes a high complexity on the
receivers due to its need to separate multipath components and the need to know the
channel [44,45].

Beamforming can be performed at either baseband frequencies or at Intermediate
Frequencys (IFs), and its implementation is accomplished by analog, digital, or hybrid
architectures [46,47].

Figure 3. Beamforming system.
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3.1. Analog Beamforming

The main idea of analog beamforming is to use low-cost phase shifters to control the
transmitted signal’s phase at each element of the antenna array [48].

The block diagram of the analog beamforming system architecture is shown in
Figure 4a. The system comprises only one set of baseband processing, Analog-to-Digital
Converter (ADC) and RF chain connected to phase shifters and antennas. In this architec-
ture, the same signal is fed (through the RF chain) to each antenna after having its phase
adjusted by analog phase shifters, which are used to steer the signal emitted by the array
of antennas.

In this architecture, each antenna array element is connected to a phase shifter. The pur-
pose of this phase shifter is to control the phase of each element of the antenna array so
that the transmitted signal is constructively added to the receiver. Adjusting these phase
shifters makes it possible to modify the beam pattern shape and direction.

One can also control the amplitude of the input RF signal using a Variable Gain
Amplifier (VGA) [49], for instance. As the main advantages, this architecture consumes less
energy than the others, and the beam benefits from the antenna array’s total gain, obtaining
greater coverage [50,51].

However, for applications that employ high frequencies or broadband operation, these
architectures, in addition to being bulky, have high costs and are not capable of transmitting
multiple streams simultaneously to achieve spatial multiplexing diversity, limiting the
transmission rate and flexibility of the system.

To mitigate these limitations, other architectures with digital generation of the trans-
mission signal are sought.

(a) (b)

(c)

Figure 4. Beamforming architectures. (a) Analog beamforming. (b) Digital beamforming. (c) Hybrid
beamforming.

3.2. Digital Beamforming

In the 1980s, Barton proposed Digital Beamforming (DBF) [52]. This system is based on
transmitting digitally generated signals in each antenna array element. With this, the shape
of the beams is controlled in the digital domain [53].

In this architecture, each antenna element has a dedicated ADC and RF chain, and the
signal feeding it suffers independent baseband processing [54]. DBF can be divided into
fixed and adaptive [55]. In fixed DBF, each amplitude and phase control is predefined
and cannot be changed during communication. However, in adaptive DBF, the control
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changes according to the system’s needs, such as increasing the SNR and directivity at
certain positions, modifying the beam shape due to obstacles, etc.

To obtain the appropriate beam pattern for communication, the amplitude and phase
of each element is digitally controlled by the signal processor in the baseband before the
conversion into the pass-band [56].

Because the control is performed in the baseband through digital signal processing,
this architecture allows the implementation of beamforming algorithms to have greater
flexibility than analog ones. One of the advantages of DBF over its analog counterpart is
the possibility of having several simultaneous beams, which allows spatial multiplexing.
Moreover, this architecture allows adaptive beamforming with digital control [54]. How-
ever, as shown in Figure 4b, this architecture has the disadvantage of increased energy
consumption and high cost due to the need to have an RF chain for each element of the
antenna array [10].

3.3. Hybrid Beamforming

Hybrid beamforming is based on a combination of analog and digital beamforming
to overcome their disadvantages [57]. Its objective is to improve the performance of the
analog beamforming technique by allowing more streams and to decrease the complexity
presented by the digital one in the form of several independent ADCs and RF chains.

The block diagram of a typical hybrid beamforming architecture is shown in Figure 4c.
The architecture consists of a digital precoder, ADCs, RF chains, phase shifters, and N
elements. The figure shows that each RF chain is connected to a set of antenna elements,
making it less costly and complex than the fully digital architecture [10]. In addition,
each user’s data are pre-encoded and fed into a dedicated RF chain. Thus, the signal is
transmitted using a set of antenna elements with individual phase shifters [10,58]. Hybrid
beamforming also allows the implementation of spatial multiplexing [51].

Concerning the digital architecture, hybrid beamforming has the advantage of a lower
hardware cost, reducing the number of RF chains. Furthermore, compared to the analog
architecture, it does not interfere between users, as it has several beams and is able to obtain
greater precision in beam formation [51]. Moreover, hybrid beamforming also allows
spatial multiplexing if the system is equipped with distinct ADC and RF chains, and the
feeding signal suffers independent baseband preprocessing.

4. Related Works

In recent years, beamforming techniques have received much attention due to their
important role in establishing and maintaining communication links. Many studies have
organized these efforts to shed light on how these methods are evolving and being used
and how other technologies such as AI and combinatorial methods play a pivotal role
in this trend [7,10]. There are approaches to organizing these efforts in a binary way
considering digital and hybrid beamforming techniques and others that take into account
energy efficiency maximization [51,59]. Recently, some works surveyed beamforming
technologies for 5G networks [57,60]. Our survey organized the beamforming technologies
considering emerging technologies such as machine learning, frequency, antenna, radio
transmission paradigm, mobility support, and antenna array type. Hence, we highlight
some of those efforts that shed light on beamforming technologies.

Araujo et al. [26] survey new topics that have gained attention recently in the research
community, such as hybrid beamforming, ADCs with low resolution, signal detection
complexity in massive arrays, and deeper discussions on the Time Division Duplexing
(TDD) and Frequency Division Duplexing (FDD) paradigm. Our contribution relies on
organizing the beamforming technology considering the AI methods.

Zardi et al. [61] overview AI applications in adaptive and reconfigurable antenna
arrays. They present five AI applications: adaptive nulling, wireless localization, MIMO
communications, element failures, and array calibration. Their work relates to ours as it
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deals specifically with antenna arrays. However, they do not address the use of ML algo-
rithms to configure the antenna array and to ensure reliable communication over mmWave.

Pham et al. [27] bring an overview regarding intelligent processing signal radio, wire-
less physical layer, modulation classification, signal detection, beamforming, and channel
estimation. Furthermore, they dive into the theme of AI applied to MIMO systems and
channel estimation concerning the beamforming contribution. Moreover, the authors pro-
vide a consistent comparison of beamforming techniques and how they are used to tackle
beamforming challenges. Differently, we took an approach to the matter in this work
by surveying the beamforming state-of-the-art considering different approaches such as
applications, beamforming architectures, and machine learning paradigms.

Murray et al. [56] present a survey of various cognitive techniques for beamforming.
They organize and categorize techniques based on their application in Multiple-Input and
Single-Output (MISO) and MIMO systems. The survey treats the problem of defining
the antenna array coefficients as an ML problem. Additionally, it reports using neural
networks, Genetic Algorithms (GAs), and game theory in issues such as interference
reduction, noise suppression, power allocation, capacity, etc. Unlike our work, they do not
discuss challenges such as beam selection, codebook design, channel estimation, and the
use of ML to tackle them.

Naeem et al. [28] survey the integration of Reinforcement Learning (RL) and Deep
Learning (DL) techniques into MIMO systems. They present RL and DL applications for
different MIMO problems: detection; classification, compression; channel estimation, posi-
tioning; detection and location; Channel State Information (CSI) acquisition and feedback,
security and robustness; mmWave communication; and resource allocation. It addresses
the use of AI for beamforming in mmWave bands and its use for managing and allocating
resources. However, our paper goes beyond that, providing a classification taxonomy of
how AI-based solutions enhance beamforming techniques and architectures.

Considering the MIMO system’s challenges, Rajarajeswarie et al. [62] bring a short
survey and discuss the main issues present in these systems, namely pilot contamination,
channel estimation, modeling, beamforming, and precoding. Furthermore, they present
the main challenges and some solutions for MIMO, but do not consider mmWave bands.
Our paper thoroughly reviews the state-of-the-art contributions considering the frequency
bands at which the beamforming systems operate.

ElHalawany et al. [63] propose a taxonomy based on the availability of CSI for beam-
forming and the application of ML techniques. Their work reviews the use of beamforming
for Non-Orthogonal Multiple Access (NOMA), energy transfer, coordinated beamform-
ing, and beam tracking and presents a case study using Multi-Armed Bandit (MAB) for
beamforming training. Our work fills the gap left by their work by organizing and clas-
sifying state-of-the-art beamforming algorithms into ML technique, frequency, mobility,
and antenna array type.

Wu et al. [64] discuss adaptive antennas and survey AI methods applied to antenna
arrays and beamforming systems. Their paper compares the configurations carried out
by adaptive intelligent antenna arrays and those carried out by traditional methods. Fur-
thermore, they show how ML algorithms can enhance the performance of this technology.
Moreover, the paper surveys antenna selection strategies, categorizing the adopted ML
approaches into different learning paradigms. However, their work briefly discusses and
compares the different works found in the literature, presenting a short table comparing
works. On the other hand, our paper provides extensive analysis and comparisons of
different works, diving into how ML algorithms and different learning paradigms are
applied to support mobility, different frequencies, and codebook design.

The article [65] provides a comprehensive and detailed analysis of the recent state-of-
the-art AI applications in beamforming. First, the paper briefly overviews beamforming
techniques and Direction of Arrival (DoA) estimation methods. Then, it explores the most-
essential and -efficient Deep Neural Network (DNN) topologies in depth. Next, the authors
provide several examples of how DNNs can be used as standalone beamforming and



Sensors 2023, 23, 4359 11 of 61

DoA estimation techniques or combined with other implementations, such as ultrasound
imaging, MIMO structures, and intelligent reflecting surfaces. The article also highlights the
realization of beamforming or DoA estimation via DNNs topologies. Finally, the authors
conclude with significant findings and an exciting discussion on potential future aspects
and promising research challenges. However, one limitation of this article, covered by
our work, is that it primarily focuses on DNN-based beamforming and does not provide
a comprehensive overview of other ML techniques that can be used in beamforming.
Additionally, differently from what we present in this survey, the article does not provide
a critical analysis of the limitations and challenges of DNN-based beamforming, which
could limit the practical application of these techniques.

In their study [66], the authors conduct a survey of various beamforming training
schemes for mmWave communication systems. The article concentrates on the utiliza-
tion of positioning information to simplify and ease beamforming training complexity.
The authors analyze multiple studies that propose diverse mmWave beamforming training
schemes based on positioning information, which can be categorized into two groups:
straightforward positioning-based schemes and positioning-based schemes utilizing ML
techniques. Additionally, the article investigates the effect of positioning and orientation
errors, the presence of obstacles, user mobility, and information storage on beamforming
training performance. Moreover, the authors compare the various studies taking into
consideration multiple factors such as implementation cost. Lastly, the article presents the
challenges associated with these schemes and proposes several possible future directions.
However, unlike our survey, the article solely focuses on the use of positioning infor-
mation in mmWave beamforming training and, thus, does not provide a comprehensive
overview of all the techniques and factors that influence the performance of mmWave
communication systems.

We built Table 2 to summarize our contributions in contrast to the state-of-the-art. We
used the marker (○) to refer to a survey that systematizes a given criterion. On the other
hand, we used the marker (+) to refer to a related survey that does not systematize its
analyses according to the established criterion. Thus, the ML-Enabled column refers to the
surveys that systematize their works considering the AI techniques that can be used in
beamforming. The Frequency column checks whether the related survey systematizes its
works considering the frequency standards. The Antenna column aims to judge whether
the related survey provides any taxonomy of antennas for the works surveyed. The Radio
Transmission column aims to verify if there was any taxonomy from the perspective of
radio transmission and its implications. The Mobility Support column aims to verify which
related surveys evaluated the literature proposals according to mobility support, and the
Array Type column seeks to verify if there is any work that systematizes the array types.

Table 2. Related Work Comparison.

Paper ML-Enabled Frequency Antenna Radio Transmission Mobility Support Array Type

Araujo et al. [26] + ○ ○ ○ ○ +
Zardi et al. [61] ○ ○ + + ○ ○
Pham et al. [27] + ○ + ○ + +

Murray et al. [56] + + ○ ○ + ○
Naeem et al. [28] ○ + + + + +

ElHalawany et al. [63] ○ + + + + +
Wu et al. [64] ○ + ○ + + ○

Kassir et al. [65] ○ + ○ + + ○
Nor et al. [66] ○ + + + ○ +

Ours ○ ○ ○ ○ ○ ○
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5. Beam Selection in MIMO Systems

The beam selection problem consists of finding the best pair of beams so that the
transmitter and receiver can communicate, exploring the best-possible antenna configura-
tion for a given scenario. For this, one possible approach is to use pre-defined codebooks
on the transmitter and receiver sides. From these codebooks, the codewords that lead to
the most-significant gain for the existing channel between the transmitter and receiver
should be selected. Figure 5 illustrates the process of beam sweeping from a predefined
codebook and the selection of the beam that attained the highest Reference Signal Received
Power (RSRP). As mentioned before, this problem becomes unfeasible to be addressed
exhaustively, requiring a long time of beam training, consequently delaying the communi-
cation of valuable data. Other approaches besides the exhaustive one were raised in the
literature, such as the hierarchical one, as well as several heuristics and those using AI.

In 5G New Radio (5G NR), there is a period for transmitting control messages in
the downlink. During this period, training sequences are sent on each one of the beams,
and the mobile station decides which beam should be used for the communication between
them based on the received power [22]. This procedure becomes more complex if the
receiver also employs beamforming, meaning it also has to select the best beam. With an
ML approach, once the model was trained in the BS, the optimal transmission beam can be
chosen faster than the exhaustive approach while optimizing different parameters, as we
will see later.

Figure 5. Illustration of a codebook-assisted beam sweeping and the further beam selection.

In 6G, with the significant increase in the number of connected devices and the even
greater demand for capacity and low latency, MIMO systems should present efficient so-
lutions to meet this new demand. From 4G to 5G, there was an increase in the maximum
number of antennas from 4 to 64, which will enable up to a 1000× increase in data trans-
mission capability [67]. Given the greater dynamism and stricter requirements in terms of
performance, the 5G New Radio (NR) exhaustive approach will become inapplicable to 6G.
Then, 6G will depend even more on the union between MIMO and ML.

The AI-based approaches for the beam selection problem categorize it as a classifica-
tion or regression problem. When the variables involved in the problem are discrete, it is
a classification problem; otherwise, when the variables are continuous, it is a regression
problem. Supervised learning approaches predominate for this kind of problem. In super-
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vised learning, several instances of a data vector, x, are associated with a known output, y
(also called a label), which belong to a set of classes (or labels), C. The adopted ML model
is trained to determine a general rule f (x) that maps the inputs and outputs of a training
dataset D = {(xi, yi)}N

i=1, with N examples. Later, in the testing phase, the ML model must
predict the outputs for unseen inputs. Some classifiers are able to estimate the probability
p(y|x) or particular properties of the probability distribution existing between these two
vectors [68]. For probabilistic classifiers, the prediction outputs ŷ are determined by the
maximum a posteriori estimate, given by

ŷ = f̂ (x) = arg max
c∈C

p(y = c|x,D), (1)

which is the optimum solution in case the probability distributions are correct.
There are several other methods for finding the mapping function, f (x), for both

classification and regression problems. Consider the regression case where an input vector,
x, is mapped into an output value, ŷ, by a linear function, h(x, w), which is represented by

ŷ = h(x, w) = w0 + ∑
j

wjxj. (2)

We can change this model with a non-linear basis function, φ(x), to give more flexibility
to the model. This way, Equation (2) can be rewritten as

ŷ = h(x, w) = w0 ∑
j

wjφ(x). (3)

The goal here is then to find the weights, w, that minimize the error between the
model’s output, h(x, w), and the known label, y. A commonly used error metric is the
Euclidean distance between h(x, w) and y. By minimizing the Mean-Squared Error (MSE)
given by

ε(w) =
1
2

N

∑
n=1
||h(xn, w)− yn||2, (4)

with respect to w, we shall find the optimal values for w.
This approach is largely applied in supervised learning [35], as in linear regression

and neural networks. The weights, w, can be determined using different methods, such as
the gradient descent algorithm, as shown in Equation (5), which iteratively updates the
weights’ values every iteration, τ, according to a learning rate, η.

wτ+1 = wτ − η∇ε(wτ). (5)

For instance, Neural Networks can follow this learning paradigm. Neural Networks
(NNs) are composed of nodes, which are called neurons. The neurons might be placed
at the input, hidden, or output layers of the NN and are connected to the previous and
next layers of neurons. Each link between neurons has a numerical associated weight,
Wi,j, and has the purpose of propagating the result of the i-th neuron to the j-th neuron.
The neuron j computes the weighted sum of the K inputs xi, i = 0, 1, 2, . . . , K, as shown
in Equation (6). Figure 6 depicts the operations realized by one neuron of a neural network.

f j(x) =
K

∑
i=0

Wi,jxi. (6)
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Figure 6. Detail of a Neural Network neuron.

Each neuron has an activation function, g(·), assuming particular types of non-linear
functions, such as the sigmoid, step, hyperbolic tangent, or Rectified Linear Unit (ReLU)
functions. In Equation (7), the output ŷj of the j-th neuron is the result of the activation
function applied to the linear weighted sum of the inputs, xi.

ŷj = g{ f j(x)} = g

(
K

∑
i=0

Wi,jxi

)
. (7)

The link’s weights define a hyperplane in the input space, activating the neurons if
the input is on one side of this hyperplane. Therefore, we fall again into the problem of
adjusting weights to minimize the error, and the gradient descent algorithm can be used to
iteratively adjust the weights and, so, train the NN. The gradient descent algorithm widely
used to update the NNs’ weight can be described by:

Wi,j ←Wi,j + η(y− ŷj)g′{ f j(x)}xi. (8)

In the beam selection problem, the input vector, x, is usually composed of data such as
the user position, environment configuration, and network situation, to name just a few.
The output labels, y, are the beam index. From the input dataset, which is composed of
several instances of the input vector x, the ML algorithms estimate a set of beams for the
transmitter or receiver in order to optimize some parameters. Traditional approaches to the
problem are limited to received power or Signal-to-Interference plus Noise Ratio (SINR),
such as the initial access procedure of 5G NR or the hierarchical beamforming of Institute
of Electrical and Electronics Engineers (IEEE) 802.11ad.

For instance, in [69], the authors approach the beam selection problem in vehicular
networks by exploring variations in a dataset containing context information. Context
information can be position coordinates or the geolocation of the mobile station, its displace-
ment, and information about the environment in which the station is located, among others.
In this work, the set of context information has different types of coordinates and noise in-
sertion in the location of vehicles. They tested different antenna array sizes and the number
of recommended pairs of beams. In that case, the proposed RF-based method can reach up
to 99% of the maximum throughput. Even with arrays equipped with 16× 16 antennas,
if compared to other ML methods, such as Gradient Boosting (GB), DL, and Support
Vector Machine (SVM), it achieves an accuracy of 95% in recommending the three best
transmitter/receiver beam pairs for all tested antenna arrays.

The selection of beams from context information is a highly non-linear classification
problem. DNNs can handle this problem adequately because their multiple layers are
composed of highly non-linear neurons. Rezaie et al. [70] use this technique, where the
beam selection problem is treated as a multi-label classification problem. The authors
trained a deep neural network using receiver position and orientation for beam selection.
Other types of context information that can be exploited by ML methods for the beam
selection problem are the received power, the Angle of Arrival (AoA) [71], the DoA [72],
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the gains of the multiple paths that reach the mobile station [73], the context and social
preference information of vehicles and passengers [74], and images [75].

The most-popular approach to deal with the beam selection problem is to exploit
location and positioning information, which has become widely available in recent mobile
devices through Global Positioning System (GPS) systems. For example, the fingerprinting
technique associates beamforming-related data, such as the beam index, SNR, and AoA,
with user coordinates, forming a database, which is queried with the User Equipment (UE)
every time a new UE needs to beamforming with an Access Point (AP). In [76], the training
dataset is generated using the fingerprinting technique for each AP deployed in a city
area. Besides, location information can also leverage knowledge about the environment
and surrounding users using prior information about buildings’ and vehicles’ positions
and dimensions [77,78] and also use historical data as a first estimation of the beam to be
used [79]. However, GPS coordinates from domestic devices have inherent inaccuracies due
to the limited implementation. For example, in [80], the authors consider errors in the GPS
coordinates, preventing severe beam selection inaccuracies during the learning process.
Besides, the shortcomings of fingerprinting techniques are the database information out-
dating in an intensive dynamic context and the time to query the database in a user-dense
urban scenario.

ML methods are also very efficient and widely used for processing and extracting
information from images. In [81], context information, such as the shape, position, and even
the materials of surrounding buildings, cars, and trees around, is used. These data are
obtained by multiple images taken by offline cameras in order to build a 3D image. This
image is the input of a deep neural network, which aims to adapt itself to different en-
vironments. The network outputs vectors with the optimal beamforming indices of the
transmitter/receiver. Another approach presented in [82] uses two cameras in two stages.
In the first stage, the camera images are used to reconstruct a 3D image and locate the
transmitter and receiver. In the second stage, a one-channel image derived from the first
stage is given as the input to a Convolutional Neural Network (CNN) to predict the best
communication beam. In [83,84], images are formed from the power received by the differ-
ent beams and treated as a problem of searching for peak heat in an image. The image is
created from the reception power matrices, which are transformed into a power heat map.
Therefore, each matrix associated with different received beams has a unique power map.
In [85], the user positioning is converted into a 96× 96 low-resolution image. Once a CNN
analyzes the images, the available best beams are given as the output of this neural network.

Another possible strategy that can be employed is the generation of training data
at frequencies below 6 GHz, known as sub-6 GHz bands. Due to the multipath effect,
the sub-6 GHz bands are not often explored in channel probes and massive MIMO systems,
but knowledge about the network can be established even in these bands. Jagyasi et al. [86]
consider a heterogeneous communication network, where small BSs operating at mmWave
coexist with sub-6 GHz macro-cell BSs. Through basic signals extracted from the sub-6 GHz
channel, a deep neural network model is applied in order to divide the problem into two
sub-problems, one for BS selection and another for beam selection. In [87], the Power Delay
Profile (PDP) of the sub-6 GHz channel is used for beam selection estimation in indoor
and outdoor scenarios. BS selection is treated as a classification problem, while beam
selection is mapped into a regression problem. Alrabeiah et al. [88] used a deep neural
network to estimate the occurrence of blockages in the mmWave band and determine which
pairs of beams would optimize communication between devices. Similarly, but also using
images from cameras close to the BSs, Alrabeiah et al. [89] apply a neural network with the
same objective of detecting blockages and estimating the best beam pairs for transmission
between BSs, also for users spread in an urban scenario.

In addition to supervised learning, beam selection is also often modeled using RL
algorithms. RL comprises an agent interacting with an environment and receiving positive
or negative reinforcement responses, called rewards, from the environment due to its
experiences. These algorithms are composed of two phases. In the first phase, the agent
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explores the environment by taking actions and receiving rewards obtained from these
interactions. In the second phase, the agent creates a strategy based on the rewards
collected in the previous phase to maximize the upcoming rewards. In [90], the authors
describe a framework for reinforcement learning applications on user scheduling and beam
selection, integrating virtual world components with mobile elements including Unmanned
Aerial Vehicles (UAVs), and ray-tracing generated channel samples. This framework offers
some possible agent inputs, such as 3D coordinates and orientation, packet and buffer
information, bit rate, and channel magnitude, composing a thorough environment for
experiments on reinforcement learning. In [91], a Q-learning agent has to learn the optimal
beam, i.e., the action, that maximizes the overall system throughput, i.e., the reward, based
on channel, user, and buffer states in a massive MIMO system, where RF slices with the
help of subsets of antennas are subleased for Mobile Virtual Network Operators (MVNOs).
Shafik et al. [92] apply this same approach in selecting 3D beams for UAVs using traffic
data from Google Maps. The results showed that the proposed approaches outperform the
classical ones.

An emerging technology that is strongly reported by the literature as a beamforming
enabler is the Light Detection and Ranging (LiDAR) sensor. LiDAR sensors use a laser
for scanning the surrounding area, and by the delay of the reflections, they can measure
the distances to each surface and re-construct the points in a three-dimensional image.
In [93], emulated LiDAR data and mmWave signals via ray-tracing feed a DNN com-
bined with vehicles’ positioning information, achieving 91% accuracy for a LiDAR-aided
distributed architecture. Similar joint applications of LiDAR and GPS coordinates are
found in [94,95]; in the latter, the Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) link
identification through the LiDAR aided the beam selection, and in the former, the LiDAR
improved the accuracy of beam prediction when compared with GPS-only beam selection.
Likewise, an autonomous vehicle measurement campaign conducted in [96] exploited the
use of camera images, LiDAR, and GPS on a vehicle achieving 99% top-1 beam accuracy
with a 54% drop in latency if compared to IEEE 802.11ad beam selection. The challenge
is the price of LiDAR sensors, which are very expensive and have a very restricted imple-
mentation currently, but sound very promising in the near future with the evolution of
self-driving cars.

Despite the high accuracy achieved by the ML algorithms, the beam selection per-
formance is arguably tied to the overhead of the beam-sweeping process. Indeed, it is
crucial for beam selection algorithms to focus on reducing the overhead, and in terms of ML
algorithms, the result of the online training or the online learning process must reduce the
complexity of the beam sweeping compared to the other approaches. The training phase
of ML algorithms is usually executed offline, where the results of an analytical optimal
solution [97] or exhaustive search [98] are used as the training dataset. After the training,
in the testing phase, the ML algorithm reduces the complexity compared with the former
solutions. For example, in [99], the authors achieved lower overall complexity using a
biased version of the Singular-Value Decomposition (SVD) compared to a sub-optimal
method for analog beam selection. Then, compared to the exhaustive search, its goal is
to have a comparable beam accuracy or SNR and reduce the computational complexity,
as in [100,101], which significantly reduces the complexity even for a large number of UE.
In the same way, a prediction method analyzes a sample of the available beam pairs, so
reducing the overhead compared with an exhaustive search, and a DL predicts the RSRP of
all beam pairs to choose the best one [102].

To increase the algorithm’s accuracy, some approaches estimate a set of m beams
instead of a single best beam [103]. However, such an approach reduces the efficiency,
as the m beams need to be tested via beam sweeping, though with less overhead than the
exhaustive search, since a smaller number of beams need to be verified. In [104], when
compared to an optimal solution, the time of running solution of the learning algorithm is
less 10%, while the traditional Zero-Forcing (ZF) beamforming is 80%.
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The input data and extra information required by some ML algorithms may cause
overhead in the network or, sometimes, be unavailable due to connection restrictions or
privacy matters. For example, an UE with a lack of power might not have the GPS system
running to save battery. Consequently, the location information would not be available
to aid the ML algorithm. In this way, some authors consider the use of ML methods
with constrained input data availability, for example the KPI already available at the UE
device or at the BS, such as the RSRP, Receive Signal Strength Indicator (RSSI), or SINR.
In [105,106], the authors use only the received signal to infer the better beam to align
and also LoS/NLoS status. In [107], a limited feedback channel is assumed in order to
reproduce real-world scenarios, so a limited CSI is used by a DNN regression for beam
allocation, resulting in near-optimal performance in the −10 up to 20 dB SNR regimen.
The authors in [108] propose the use of standard ACK/NACK messages transmitted by
the UE to the BS during the Hybrid Automatic Repeat Request (HARQ) procedure as the
input to an online RL scheme to lower the signaling overhead required for beam tracking
and rate adaptation. In [109], the RSRP reported by the UE is used to feed an ML-assisted
beam change prediction scheme based on Long Short-Term Memory (LSTM) and helps
saving more than half the power used by the UE for Beam Management (BM) compared to
other methods.

ML’s versatility is highlighted by the myriad of scenarios and architectures that can
benefit from ML. For example, in [110], a human pose dataset is used for beamforming
on a Wireless Body Area Networks (WBAN), relying on an external camera, a Generative
Adversarial Network (GAN), for generating additional data, and deep learning for beam
prediction. As mobility is an important feature of wireless networks, it is of utmost
significance to invest in architectures that can support proper user mobility, as proposed
in [111]. In the urban canyon scenario, with lamp-post-mounted BSs and blockage caused
to the moving UE by elements also traveling in the scenario, the deep learning algorithm
showed robustness to the intermittent blockages. Furthermore, cloud-based architectures
are necessary for data and computational offloading and also for centralizing decisions,
having a bigger comprehension of the network status, as proposed in [112]. Another
possible architecture is to apply dual-connection schemes, which can increase the data rate
and provide transparent handover. In dual-connection schemes, the UE stays connected
to two BSs simultaneously, reducing the overhead when a context transfer is needed
and increasing the data rate. However, dual-connection also increases the overhead and
complexity, which is tackled in [113] using an SVM classifier for codeword selection from
the available CSI samples.

The authors of [114] propose a method to enhance the performance of classification
algorithms such as K-Nearest Neighbors (KNN) and RF by increasing the quantity of data
used during their training. The lack of datasets with a wide variety of scenarios motivated
this work. Furthermore, the need for extensive and assorted datasets hinders training
more complex algorithms such as deep learning. Their method applies an algorithm based
on the Synthetic Minority Over-sampling Technique (SMOTE) to generate synthetic data,
augmenting the training dataset. The proposed method increases the dataset used for
training classification models for beam selection. Their results showed that the proposed
method confers higher F1-scores to the classification algorithms compared to the same
algorithms using the original data only.

In [115], the authors propose a computer-vision-aided beam selection algorithm for
mmWave indoor multi-user communications. The motivation for their work was the sig-
nificant overhead in selecting very narrow beams in a multi-user environment. Therefore,
they propose equipping a BS with a camera, which is used to predict the angles to the users,
facilitating the beam selection process. Their algorithm, based on the predicted angles and
the number of available RF chains at the BS, employs two NNs for joint beam and user
selection. Their numeral simulations show that the proposed algorithm outperforms con-
ventional beam selection techniques regarding multi-user angle prediction, the achievable
sum-rate, and computational complexity.
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The article [116] proposes a novel method for optimizing flight trajectory and power
allocation in UAV communication systems using Computer Vision (CV). In addition,
the paper addresses the challenge of accurately localizing the UAV and ground receivers in
complex scenarios where mmWave communication is used. The proposed scheme relies on
cameras equipped at the UAV to capture visual information for accurate target localization,
eliminating the need for costly radio frequency transmissions, i.e., pilot transmissions.
Moreover, the authors propose a joint optimization scheme for flight trajectory and power
allocation. Finally, the paper presents simulation results that demonstrate the efficiency
of the proposed schemes, showing promising performance improvements compared to
traditional approaches.

In [117], the authors propose a DL-based approach for beam selection and power
control in mmWave massive MIMO communication systems, where obtaining an accurate
CSI is challenging. The proposed framework leverages the beam-steering technique to
estimate the signal strength from the BS to the user. Furthermore, it employs a novel
learning approach to determine the suitable beam for a specific user and the transmit
power to minimize the cost, including the transmit power and the unsatisfied rate when
the channel is unknown. The article also addresses the missing data problem and employs
LSTM to select the suitable beam. The proposed learning framework was validated using
the Deep MIMO dataset, constructed based on accurate ray-tracing channels. The numerical
results show that the proposed framework outperforms state-of-the-art prediction strategies
and approximates the best performance when the CSI is available.

In [118], the authors use an approach of deep learning for beam selection. Theirs uses
contextual information (location and orientation user) to select pair beams. The authors
propose the use of neural networks with three different structures: Single-Task (DNN-
ST), Multi-Task (DNN-MT), and Extended Multi-Task (DNN-EMT). In this work, they
consider 8, 8 and 4, 4 Uniform Planar Arrays (UPAs) at the TX and the RX, respectively.
The transceivers sense and select the pair of beams that provides the highest RSS, from the
candidate list. For data collection, they use ray-tracing (Altair Feko-Winprop software) in
an indoor environment. The authors compare the performance between strategies proposed
against baseline strategies (generalized inverse fingerprinting method and hierarchical
beam search), and the results are presented in terms of misalignment probability. Their
results show that the DNN-ST method has less misalignment probability andLoS blockage
probability (0.5 and 0.2) followed by DNN-MT and DNN-EMT. However, the DNN-ST has
the best performance, but is necessarily the largest dataset. On the other hand, the DNN-MT
and DNN-EMT networks have much less computational complexity.

ML techniques have shown great promise in solving the beam selection challenges in
wireless communication systems. Among these techniques, DL, NN, and RF stand out as
particularly effective. In fact, in 35%, 24%, and 11% of the surveyed papers, DL, NN, and RF
are the most-commonly used techniques, respectively. Moreover, these three techniques
consistently outperform other ML methods in terms of beam selection accuracy and top-1
beam accuracy in similar scenarios. Specifically, all three techniques achieve average beam
selection accuracy above 80% and top-1 accuracy above 60%. It is worth mentioning that
SVM is also a recurrent technique in the surveyed papers due to the classification nature
of the beam selection problem, although its performance is poor compared to the three
others mentioned. Figure 7 summarizes the assessment of ML techniques’ beam selection
efficiency. The five most-used techniques are shown in Figure 7a, with the percentage of the
total number of beam selection papers. Additionally, we assessed the techniques regarding
their beam accuracy in Figure 7b for top-1, top-3, top-5, and top-10 beam accuracy, when
available. The assessment considered the most-similar conditions between the papers,
such as the SNR and training dataset size, as well as the 95% confidence intervals around
the mean.
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Figure 7. ML techniques for beam selection. (a) Top-5 most-used ML techniques. (b) Beam accuracy
results by ML techniques.

However, there are some limitations to be considered with the aforementioned tech-
niques. Neural Networks (NNs) are generally prone to overfitting, and the computational
time required during the training phase is usually high. Therefore, powerful machines
equipped with Graphics Processing Units (Graphics Processing Units (GPUs)) are com-
monly used to compute NN solutions in parallel. Additionally, NNs have many parameters
to tune, such as the number and dimension of the hidden layers, activation functions,
and drop-out layers, which require significant knowledge of the technique and the problem
being solved. Random Forest (RF), on the other hand, is more robust to overfitting due
to feature randomization, but is also computationally demanding. Thus, the need for
re-training and the interval between training are practical trade-offs for these techniques.
If the training duration is longer than the interval between training, then it is not efficient
for the application. Furthermore, the choice of the dataset is crucial for selecting the appro-
priate machine learning technique. For instance, images and LiDAR data are commonly
matched with an NN-based system, while the coordinates, SNR, RSSI, and Channel Quality
Information (CQI) are more suitable for NNs and other machine learning techniques such
as RF.

The beam selection problem is relevant for the evolution of wireless networks, es-
pecially in terms of mobility, as in vehicular networks and networks for UAVs, which
will be even more common in 6G. The beam selection mechanism must adapt to these
networks’ dynamic blocking and traffic patterns, as in [72]. Despite the significant number
of works dedicated to this topic, the selection of beams is still seen as an isolated problem,
focused on optimizing metrics such as the received power, capacity, and data rate. The lit-
erature is still lacking approaches that, for example, use power-constrained transmission
antennas [119], minimize interference [120–122], perform beam tracking [123], or allow
concurrent transmissions [124]. In addition, the use of emerging technologies, such as
LiDAR [93] and Intelligent Reflecting Surface (IRS) [125,126], can provide further support
to address the beam selection problem. Finally, creating datasets with MIMO channels can
facilitate the application of ML in MIMO systems, providing data to be used during the
training phase [127,128]. Table 3 compiles the beam selection papers.
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Table 3. Beam selection.

Challenges Algorithm Highlight (Pros) Limitations (Cons) Key Contribution Ref.

• RBF-SVM
• GB
• RF
• FNN

Leverages situational awareness, such as
vehicle coordinates, type, and speed.

• Requires the neighboring vehicles to
be connected to the network for best
accuracy.
• Localization at the BS can be outdated
or incomplete due to mobility, limited
location reporting frequencies,
and being connected to the BS.

This paper evaluates different coordinate
systems and several levels of available
side information.

[69]

• Regression
• SVM
• RF-R
• GB

• Leverages situational awareness.
• Requires low overhead.

The lack of information on trucks’
positions has a large impact on the
method’s performance.

Proposes predicting the received power
with different beam power quantizations
using regression models through
situational awareness.

[77]

• RF-C
• MLP
• SVM
• Adaboost

The classification models have smaller
feedback and better overall performance.

• Regression models require feedback.
• Reliance on ray-tracing may limit the
generalizability of the results to other
scenarios.
• Accurate UE localization may not
always be feasible in practice.
• It does not consider other factors that
may affect the overall performance of
mmWave systems, such as interference
and mobility.

Proposes optimal access point and beam
pair predictions for establishing
communication by exploiting the UE’s
localization and machine learning tools.

[76]

Situational
awareness CSML

• Shows that context and social
information of vehicles and passengers
are relevant for beam allocation.
• The results show improvements in the
received data.

• Only permanent blockage is
considered.
• It does not evaluate or compare the
proposed algorithm with existing
methods or benchmarks.

This paper brings a double-layer online
learning algorithm based on user context
and social preference information.

[74]

RL

Using only GNSS data, the ML
algorithm has a good beam prediction
accuracy. The accuracy is improved
further when LiDAR data are
considered.

• The reliance on GNSS and LiDAR for
context information may be limited in
some scenarios, affecting its
performance.
• Beam prediction with LiDAR data is
computationally demanding.

Investigates the use of GNSS and GNSS +
LiDAR data for beam selection with NN
using Raymobtime datasets.

[95]

FML

• Low-complexity and scalable online
learning algorithm.
• Does not require either accurate or
previous information.
• Proposes a real scenario protocol for
supporting the mechanism.

• The algorithm relies on GPS
coordinates, which can be inaccurate in
domestic devices.
• A standard-compliant protocol may
not be available or compatible with all
types of mmWave vehicular systems.

An online learning algorithm based on
CMAB is proposed, enabling the
mmWave BS to learn from the context
autonomously, and it provides a scalable
solution to increase the deployment
density of mmWave BS.

[78]

MAB

• Defines an exploration and
exploitation algorithm for each
algorithm layer.
• Criticizes the model limitations.
• Efficiently broadcasts content to UEs
with the same interest, maintaining the
SNR.

• Does not specify the control functions
for exploration timing.
• The content is only related to movies,
which might be of limited scope for real
scenarios.

• Uses a two-layer RL online algorithm to
learn surrounding blockages from context
information instead of using the CSI.
• The algorithm aggregates UEs with
interest in the same content through beam
broadcasting.

[72]

DNN • Reduced outage and beam
misalignment probability.

• Having access to user data might be
difficult.
• Needs large training datasets.
• Depends on precise and consistent
receiver location and orientation
information, which might not be
consistently or always accessible.

The results vary with the number of
obstacles for training and test datasets,
highlighting the robustness of train–test
mismatch.

[70]

MAB

• The algorithm assumes errors in the
positioning coordinates.
• Two mechanisms are proposed for
beam pair selection, greedy and
risk-aware.
• The authors also propose a beam pair
refinement based on hierarchical
optimization.

• The paper lacks a discussion on
practical implementations and the
algorithm’s computational complexity.
• Simulated evaluation may not reflect
real-world scenarios with varying
conditions and user behaviors.

Proposes an online method for beam
selection to speed up the process. [80]Position-aided

LtR

• The authors define the scoring and
ranking functions to determine the best
beam pairs.
• A communication concise protocol is
described as an example for
implementing the technique in a real
scenario.

• The offline training requires careful
data updates and periodic re-training.
• The baseline algorithm is not
well-explained.

Authors use context information and past
beam measurements to determine
potential beam pointing directions.

[79]
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• CNN
• DNN

The algorithm presents high accuracy for
low-resolution images.

• No comparison with other ML
techniques is provided.
• The images used as the input are
unusual.
• The positioning info, when available,
could be used instead for a simpler
system.

Proposes a CNN algorithm for beam
selection and switching using
low-resolution images as the input.

[85]

Angle-of-arrival-
aided

• KNN
• DNN
• Singular vector
class

Evaluates the impact of using imperfect
and realistic information for the AoA
and received power estimation by using
Capon and MUSIC estimation methods.

• The BS performance degrades for a
low number of UEs compared to the
available antennas.
• The performance of the proposed
approach is heavily dependent on the
quality of the CSI estimates, specifically
the AoAs and powers.

Proposes the use of AoA and received
power as the input of a DNN to select the
best beamformer on a codebook rather
than the complete channel matrix, which
is a realistic approach.

[71]

Vehicular
networks SVM Higher sum-rate and lower complexity

than channel estimation-based method.

The training depends on the link density,
which is hard to estimate and may vary
substantially in real scenarios.

Proposes a tailored SVM/SMO algorithm
for beam training. [73]

3D-scene-based DNN
The 3D scene reconstruction achieves
better accuracy than LiDAR, which is
more expensive.

• The UE coordinate estimation can be
erroneous.
• Computational complexity is not
evaluated.

In this paper, a 3D scene reconstruction is
used to identify the best beams. [81]

Beam domain
image
reconstruction

• CNN
• DNN

Reduced beam selection overhead
without degrading the beamforming
performance.

• The training is based on historical
data.
• Simulated evaluation may not reflect
real-world scenarios with varying
conditions and user behaviors.

This paper treats the beam selection as an
image reconstruction problem without
requiring channel knowledge.

[83]

Low overhead LSTM

The proposed scheme finds the narrow
best beam based only on wide beam
measurements, reducing the beam
training overhead.

• Only a DFT codebook is tested as both
a high and low-resolution codebook.
• Lacks a thorough investigation of the
proposed deep-learning-based model’s
generalization, which may limit its
applicability in real-world scenarios.

This paper proposes a DL-based
low-overhead analog beam selection
scheme.

[84]

DNN • Detailed DNN description.
• Good accuracy with a partial dataset.

Lacks comparisons with other
algorithms using the same scenario (i.e.,
DeepMIMO O1).

This paper relies on sub-6GHz channel
information to deduce the resources in the
mmWave band.

[86]

Sub-6GHz
channel
information

DNN • Compares the results with prior work.
• Robust to NLoS conditions.

• Marginal gain increasing the number
of neurons.
• Implementation cost and energy
efficiency not taken into account.

A dual-band scheme to predict beam and
blockage from the sub-6GHz band to aid
in the mmWave band.

[88]

DNN

Presents a prototype validation of an
indoor scenario, which shows that the
ray-tracing and the beam selection
method are very close to the real
scenario.

• The sub-6GHz channel was modeled
like a SISO channel.
• Although there is a prototype
validation, the results are not compared
with any other ML-based beam selection
approaches.

The PDP of the sub-6 GHz channel, which
is highly available and does not demand
beamforming, was used as the input of a
DNN for beam selection estimation in
indoor and outdoor scenarios.

[87]

Blockage
prediction CNN

The use of RGB images reduces beam
selection and blockage prediction
overhead.

• High training complexity.
• Simplistic scenario.
• It does not work in dynamic
environments.

Joins images and sub-6GHz channel
information to identify mmWave blocked
users.

[89]

ICI Mitigation DNN Low computation time, yet
high-spectral-efficiency algorithm.

The paper lacks profound analysis for
more users and if the grouping is
effective.

This paper proposes an optimal user
group beam selection scheme aiming at
the spectral efficiency maximization. [120]

Small cell
networks SVM Reduced complexity with quick and

high ASR in the BS.

• Though the paper assumes analog
beamforming, the side-lobe interference
is ignored.
• Assumes the Poisson point process for
small-cell BS distribution, which may
not accurately represent all scenarios
and limit applicability.

This paper aims to maximize ASR for
concurrent transmission on an analog
beamforming mmWave network by
analyzing the BS spatial distribution.

[124]
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DNN High accuracy for top-M beam selection
classification.

• The one LiDAR per vehicle premise is
not feasible due to LiDAR cost.
• Assumes that the LiDAR data are
perfect, but in reality, LiDAR data may
be noisy or incomplete, which can affect
the performance of the proposed
approach.

Proposes using LiDAR information to
select beams in vehicular applications
using deep learning, comparing
centralized and distributed LiDAR.

[93]

LiDAR data CNN The use of LiDAR data reduces beam
selection overhead for LoS situations.

• Overhead increases on NLoS
occasions to maintain a tolerable
throughput ratio.
• Assumes that the LiDAR data are
perfect, but in reality, they may be noisy
or incomplete, which can affect the
performance of the proposed approach.

The use of LiDAR data with CNN reduces
the beam selection overhead for V2I
communications.

[94]

DL

• Uses multiple sensors, such as
cameras, LiDAR, and GPS
• Accuracy improved and delay
decreased when compared to IEEE
802.11ad

The measurement setup is complex and
hard to reproduce.

Establishes guidelines for beam selection
dataset generation and releases its dataset
and paper results

[96]

IRS-assisted
beam selection DL

• The beam management mechanism
utilizes user positioning information and
environmental information to build
reliable beam selection.
• Enabling mobility is approached
through updates on the historical
database.

• The algorithm depends on BS-UE and
UE computational capabilities to
provide full mobility awareness.
• Lacks real-world evaluation, which is
crucial for validating its effectiveness.

This work presents an IRS-assisted
mmWave network to improve coverage,
handover, and beam-switching.

[125]

Channel data
generation

• SVM
• Adaboost
• DNN
• DQL
• Decision tree

Beam selection performance is simulated
for several classification methods.

• Focuses only on data generation and
classification methods for beam
selection.
• Relies on a combination of vehicle
traffic and ray-tracing simulators to
generate channel realizations, which
might affect the performance of the
proposed methodology.

Describes a methodology for generating
mmWave channel data, including realistic
traffic simulation.

[127]

SVM

The computational complexity of the
proposed data-driven approach is
significantly lower than the
sub-optimization method.

• The number of analog beams
considered is too small.
• Algorithm requires a diverse and large
mmWave channel training dataset,
which may not be obtainable or
representative, limiting its applicability.

The authors propose a novel method,
called biased-SVM, that determines the
optimal parameter of the Gaussian kernel
function to achieve optimal beam
selection with low computational
complexity.

[99]

RF-C

The model complexity decreases as the
number of users increases and is lower
than the other compared methods,
which is an advantage for
delay-sensitive applications.

The simulation tool is not mentioned,
which inhibits the results’
reproductivity.
• The algorithm only tackles hybrid
beamforming-based beam selection for
THz systems, ignoring other THz
communication challenges such as
interference, mobility, and handover.

• Authors compared the computational
complexity with a large number of users.
• The results show a better trade-off
between computational complexity and
system performance compared to
exhaustive and SVM approaches.

[100]

Low-complexity DL

The authors propose a sampling method,
reducing the number of seeped beams,
and the DL predicts all beams,
increasing the search space for the beam
selection

• The beam combination method cannot
be generalized, so in practice, each
scenario may require a different
combination.
• Does not consider the robustness of
the proposed approach to channel
variations, such as changes in the
environment, mobility, or interference.

A method for sampling a fraction of the
beam pairs is proposed, combined with a
DL for predicting the RSRP of all beams
from the samples.

[102]

RBF

Reduces complexity by several orders of
magnitude, with near-optimal
performance, compared with
conventional methods.

• Needs large training datasets.
• Performance depends on the dataset
size.
• Does not provide a detailed analysis
of how the size of the training data
affects the performance of the proposed
approach.

• In this work, the authors propose using
an RBF-NN model to perform the beam
selection procedure.
• Reduction in the complexity, beam
selection overhead, and latency.

[101]

Q-learning The performance is close to the optimal
solution, but takes fewer iterations.

• Depends on knowledge of the channel
matrix.
• Assuming codebook-based analog
beamforming may limit algorithm
flexibility.

The paper minimizes the training time for
beam selection using Q-learning to find
the best-quantized analog precoders.

[97]

DNN

This approach is appropriate for
practical massive MIMO systems due to
the complexity of the algorithm, which
is not proportional to the number of
beamforming vectors, using only one
pilot signal.

• Good accuracy is only achieved for a
large number of training epochs.
• The capacity comparisons do not
include other beam selection
mechanisms.

This work proposes a novel algorithm
(named Deep Scanning) based on deep
Q-learning. [103]
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CNN

• The model-driven solution proposed
in this work reduces the computational
complexity and execution time of the
data-driven technique.
• Authors include optimal solutions,
providing upper bounds for the
simulation.

• Assumes perfect complex channel
matrices as the input, which can be hard
to obtain in a real scenario.
• Relies on simulations to demonstrate
its effectiveness, and its performance in
real-world scenarios is unknown.

Proposes a novel model-driven technique
based on CNN, which calculates only the
essential and passes it through a
low-complex beamforming recovery
algorithm.

[104]

Body area
network GAN

Authors generated a dataset for WBAN
based on a human pose dataset used for
computer vision.

• Does not address how the beam
prediction would be made without an
external camera, and only one set of
sensors’ location is provided.
• Only considers a limited number of
body types and poses, and it is not clear
whether the approach can be generalized
to different body types and poses.

Proposes employing a non-intrusive
beamforming method in the WBAN with
the use of the GAN method for mmWave
beam predictions using human pose
images.

[110]

Highly mobile
systems DNN

Authors develop low-complexity
mmWave coordination strategies for
coverage coordination and latency
reduction using omni-directional +
directional beams in the offline training
phase and only omni-directional
transmission in the testing phase.

• Single user and simplistic channel
scenario.
• Although the effective achievable rate
is greater than the baseline,
the proposed method is more sensible to
NLoS scenarios as the rate variation in
such scenarios is larger.

To reduce the overhead, the BSs use a
DNN to determine the best beams using
quasi omni-directional patterns during
the online test phase.

[111]

Out-of-band
information CNN

• The dataset generated is of academic
and industry interest.
• The proposed technique reduced the
beam sweeping time by 93% in different
scenarios.

• The proposed method was not
compared with other algorithms.
• Only one transmitter and receiver
positioning was tested, as well as only
one camera location.

The authors create an experimental setup
with mmWave hardware, obstacles,
and cameras, which originated a dataset
of images and beam pairs. Furthermore,
the dataset is used for image-based beam
prediction.

[82]

Large-scale
MIMO Q-learning Outperformed the state-of-the-art in

terms of capacity.

• Assumes Rayleigh fading channel
only.
• Performance of the proposed
approach in scenarios with varying
network conditions or different types of
MVNOs is unclear.

Beam scheduling method for enhancing
the RF spectrum utilization by subleasing
RF slices.

[91]

Limited feedback DNN The method achieves high sum-rates in
low SNR regimes and Rician fading.

• Uses a MISO system only.
• The operating band is not described in
the paper.
• Only considers Rician fading, and it is
not clear whether the proposed
approach can be generalized to other
fading models, such as Rayleigh fading
and Nakagami-m fading.

• The beam allocation problem is treated
with two different strategies, classification
and regression.
• The time prediction of the proposed
approach is 6-times shorter than the
optimal solution prediction time.

[107]

Interference
rejection CNN

• No prior knowledge of the DoA is
required.
• The computational complexity is
reduced for both space and space–time
processing.

• Needs large training datasets and
offline training.
• Lack of implementation/validation,
limited comparison with other
approaches, and limited NN architecture
explanation.

The CNN is employed for space and
space–time processing, evaluated in two
scenarios with different interference and
DoA configurations.

[121]

Power
restrictions CNN The intensive computational training

phase is performed offline.

• Considers perfect CSI only.
• It only tackles downlink beamforming
in multiuser MISO systems with
per-antenna power constraints and
ignores other wireless communication
challenges such as interference, mobility,
and handover.

The goal of this paper is to maximize the
downlink SINR based on power
restrictions per antenna at the base station
and improve the performance complexity
trade-off.

[119]

Cloud-assisted Conv-LSTM

The proposed solution improves
positioning prediction accuracy while
reducing storage costs by using the
cloud and edge collaboratively.

• The load added to the backhaul and
the cloud service is not taken into
account.
• Does not consider the impact of
different traffic patterns on the
performance of the proposed approach,
such as varying user densities, mobility
patterns, and traffic types.

This paper proposes a collaborative
cloud–edge architecture. The BS uses
Conv-LSTM to predict the user
distribution and, through this, decide on a
better set of beams.

[112]

Scheduling RL

• B-BeamOracle RL agent presents the
best performance
• The proposed environment emulates a
variety of scenarios.

• Poor agent modeling.
• B-RL performs close to B-Dummy,
which simply uses random actions.
• Lacks exploration of other RL
algorithms for scheduling and MIMO
beam selection.
• Lacks exploration of alternative
reward functions for the RL agent.

It uses the CAVIAR methodology for
communication systems combined with
the AI models and the virtual world
components for terrestrial and aerial
beam selection.

[90]
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Dataset
generation GRNN

Provides a baseline solution that
predicts future beams based on the
sequence of previous ones.

• The baseline solution does not take the
generated images into account.
• Assumes a specific camera and sensor
setup, and unclear how it performs with
varying configurations such as the
resolution, field of view, and sensor
noise.

This work uses computer vision with AI
algorithms to predict blockage through
image-classification-aided beam selection. [128]

Beam
alignment KSBL-LTS

• Beam selection policies are employed
using both theoretical and real-world
channel models.
• The proposed algorithm obtains a
faster learning rate when compared with
omnidirectional training with slowly
time-varying channel support.

• Only MISO systems are used.
• The algorithm’s complexity is not
evaluated.
• Assumes a specific antenna array
configuration, and it is not clear whether
the proposed approach can be
generalized to different antenna array
configurations.

Development of an algorithm for
mmWave beam alignment and selection
policy to validate which policy results in
the most-efficient beamformer: linear
Thompsom sampling, omnidirectional,
random, or greedy.

[123]

No reference
signal

NN Does not depend on prior knowledge.

• The proposed technique only works in
LoS conditions.
• The algorithm relies on the availability
of a diverse dataset of simulated
environments based on the mmWave
channel model, which may not be
representative or easy to obtain.

• Authors propose an AMPBML
algorithm for beam alignment and beam
training reduction.
• Partial beams are used to predict the
beam distribution vector.

[105]

DL More efficient and accurate than MUSIC,
but with comparable performance.

• Requires parameter tuning.
• As it is based on AoA estimation, it is
limited to LoS.
• Relies on the assumption of angle
reciprocity, which may not always hold
true, especially if the base station and
mobile devices have different antenna
configurations or positions

• A two-step NN model is proposed to
estimate the uplink signal’s AoA with
high accuracy.
• Compared with MUSIC, the results
show the same or similar estimation
performance in terms of the data rate in
moderate to high SNR regimes and
outperforms it in low SNR ones.

[106]

Dual-
connectivity SVM • Low computational complexity.

• Memory-efficient approach.

• Training time significantly increases
with the dataset size.
• The algorithm assumes a
homogeneous Poisson point process for
base station distribution, limiting
applicability to diverse scenarios.

• An SVM algorithm is used with the
Sequential Minimal Optimization (SMO)
algorithm in each iteration.
• The proposed method based on channel
parameters and transmitted power is
compared to the optimal codeword,
and the results show a reduction in the
beam selection complexity with a high
ASR.

[113]

Non-ideal
channel
conditions

NN
Reduced overhead compared to the
exhaustive search and model-based
approaches.

• Marginal post-alignment
beamforming gain loss of 1 dB.
• Neglects NLoS channels.
• Latency, jitter, or throughput
improvements are not directly
measured, which could mask other
relevant limitations.

• This work proposes a
compressive-sensing-based method for
reducing the number of channel
measurements.
• An NN model addresses the CS
dictionary mismatch issue caused by
radio hardware impairments.
• The results show a 90.2% reduction in
the overhead compared to an exhaustive
search approach.

[98]

Beam tracking
and rate
adaptation

MAB

• The proposed online RL method
achieves significant throughput gains
compared to other methods.
• Uses ACK/NACK messages that are
part of the HARQ procedure instead of
explicit control messages, thus reducing
signaling overhead.
• Both real and simulated indoor and
outdoor data are used.
• The method selects both the best beam
and Modulation Coding Scheme (MCS)
without making assumptions about the
channel model or mobility pattern.

• The proposed RL method
performance degrades at high speeds.
• Only a single UE is considered.
• Implementation issues around channel
estimation, beam selection parameters,
HARQ feedback integration, etc., are not
discussed in depth, limiting the
assessment of feasibility and scalability.
• The approach assumes
ACK-/NACK-based HARQ feedback is
always available and sufficient for beam
tracking decisions.
• Packet losses or limited feedback
scenarios are not addressed, potentially
reducing accuracy.

• Proposal of a novel restless MAB
framework for beam tracking for
mmWave cellular systems using
ACK/NACK messages instead of explicit
control signaling.
• The method implements an online RL
technique called adaptive Thompson
sampling, which selects the best beam and
MCS pair.

[108]

Data
augmentation SMOTE

• Offers a solution to the lack of datasets
containing complete 5G scenarios.
• Evaluates the performance of several
classification models, providing insights
into which models are best-suited for
beam selection.

• Lack of comparison of the
SMOTE-based method with other
algorithms found in the literature.
• Generating synthetic data to expand
limited datasets may introduce biases or
inaccuracies, worsening model
performance.
• Generalization ability is unclear due
to limited datasets and simulation-based
evaluation. Real-world performance,
especially for complex 5G scenarios,
may differ significantly and pose
additional challenges.

• Proposal of a method to augment
datasets with synthetic data.
• Demonstrates that including synthetic
data can improve the performance of
machine learning algorithms in selecting
beamforming in 5G MIMO scenarios.

[114]
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Angle estimation
and user
selection

DL

• Reduction of the beam selection
overhead and consequent reduction of
the computational complexity involved
in this task.
• Good performance in terms of
achievable sum-rate and multi-user
angle estimation with a single camera.

• The angle estimation accuracy is
limited by the single camera’s field of
view and resolution and the quality of
the image-processing algorithm used for
angle estimation.
• No experimental validation is
provided. Numerical simulation may
not capture all the real-world factors
that can impact system performance.

A computer-vision-based method to
estimate the beam angle, consequently
selecting the beam and user. [115]

CV-based UAV
localization CNN

• Compared to traditional schemes,
their proposal significantly saves
implementation costs and overhead (e.g.,
pilot transmission and consequent
bandwidth waste).
• The proposed joint optimization
scheme can help improve the efficiency
of the system.

• Assumes the UAVs can obtain
accurate visual information from the
cameras, which may not always be
possible in real-world scenarios.
• Requires prior knowledge of the
locations of the grounded receivers,
which may not always be available or
may be subject to errors, especially in
dynamic scenarios where the receivers
may be moving.
• Simulation results are based on
idealized assumptions and may not fully
capture the real-world challenges and
complexities of mmWave UAV
communication systems.

A CV-aided joint optimization scheme of
flight trajectory and power allocation for
mmWave UAV communication systems. [116]

Power control
and beam
alignment

LSTM

• Proposes a novel learning framework
for beam selection and power control in
mmWave massive MIMO
communications.
• Addresses the missing data problem
and employs LSTM for temporal
processing of inputs.
• Designs a learning agent to predict the
proper transmit power based on the
required transmission rate.

• The proposed framework is only
evaluated through simulations and not
tested on real-world data.
• The proposed framework requires
accurate ray-tracing channels for
training, which may not be easily
available.
• The complexity of the proposed
framework may be high due to the use
of deep learning techniques.
• The proposed approach assumes that
the user locations are known, which may
not be the case in some scenarios.

Proposal of a DL framework for beam
selection and power control in massive
MIMO mmWave communications to
optimize transmit power and beam
selection for users with unknown channel
state information.

[117]

Beam change
prediction LSTM

• The proposed scheme uses
LSTM-enabled models to predict
whether a beam change is likely to occur
during the next measurement cycle.
• Training and test data are generated
using 5G-NR-compatible hardware in an
outdoor environment.

• Only a single outdoor scenario is
measured.
• Low mobility, as the measurements
are performed during walks.
• Assumes a specific beamforming
algorithm, and it is not clear how the
proposed approach would perform with
different beamforming algorithms, such
as time-division multiplexing,
frequency-division multiplexing,
and hybrid beamforming.

The LSTM-based beam change prediction
scheme can achieve over a 58% power
reduction regarding beam management
compared to deployed commercial
schemes.

[109]

Beam alignment DNN

• Reduction of the overhead compared
to ES and improves the accuracy
compared to hierarchical beam search.
• Uses a uniform planar array on both
sides of the link, with the goal of
analyzing the effects of rotation in 3D
space.

• The solution presents high
computational complexity.
• It relies on precise location and
orientation information, which may not
always be available or accurate in
practice.
• The method could be sensitive to
errors or inaccuracies in the contextual
information.

This approach proposes using contextual
information (position and orientation of
user) for the initial beam alignment
procedure through deep learning
techniques.

[118]

6. Mobility and Handover

Mobility management is a great challenge not yet fully covered by 5G, but that will be
a technological milestone for 6G systems. It ensures users do not lose connection with the
network. Wireless networks have the range of their cells limited by the maximum allowed
transmission power. Therefore, due to this limited coverage area, a user moving across
the network undergoes several cell changes, known as handover. A handover requires the
network to manage a connection from a serving base station to another base station, known
as the target base station. Ideally, handovers are transparent to the user, which should not
notice the service interruption caused by the cell change.

To make matters worse, when wireless networks operate in mmWave and THz bands,
blockages become complex to overcome. As millimeter and THz waves propagate solely
by LoS links, a blockage of the link between the user and the base station implies the



Sensors 2023, 23, 4359 26 of 61

disconnection of the communication session, which affects the overall system’s quality
of service and reliability. Among the surveyed papers, 44% focused on the 28 up to
30 GHz band and 33% on the 60 GHz band, and 23% did not specify the band of operation.
Moreover, re-configuring the user’s session to another base station imposes beam selection
overhead and latency issues [129].

Besides the intrinsically high propagation loss of such bands, surrounding obstacles
also impose losses (i.e., attenuation) to the transmitted signal, further reducing the cell range
or causing unnecessary handovers. As a result, traditional handover algorithms based
on received power differences do not perform satisfactorily in mmWave and THz com-
munications scenarios [130]. Usually, these algorithms lead to unnecessary or anticipated
handovers, increasing the probability of a user having access to the network interrupted.

Thus, the application of ML techniques has been studied as a way to minimize and
optimize handovers, which increases the throughput and decreases latency, consequently
improving the Quality of Service (QoS) and Quality of Experience (QoE). Furthermore, ML
techniques can use data already available, such as CSI, received power, and throughput
measurements [131]. ML aims to assist in the decision-making process that performs
handovers, making it more efficient and offering more significant support to users who are
on the move.

There is an extensive number of papers on mobility and handover that employ Re-
inforcement Learning. RL techniques are based on the actions that a learning agent takes
interacting with an environment and the responses to these actions. Actions are given by a
set of limited actions A = {a1, a2, . . . , an}. Every time step t, the agent picks an action A(t)
based on the state of the t-th time step, S(t). For each action, there is a reward, calculated
by a reward function rt = R{A(t), S(t)}, and the ultimate goal of the agent is to find the
combination of the action–state that maximizes the accumulated reward. Consider a limited
number of time steps for the agent to act in the environment. At the beginning, it is possible
to explore the environment and randomly pick an action with the goal of observing the
next states and rewards. When the exploration is performed, the acquired knowledge
can be used to take only the actions that maximize the accumulated reward. This method
is called Multi-Armed Bandit, in analogy with slot machines (also known as one-armed
bandits). Besides, Q-learning is a RL technique that stores in a table the action–state pair
associated with a quality indication. The Q-learning agent accumulates quality values in
the Q-table and, after the table is full, only takes the most-rewarding actions for each state.
The Q-function, which is used to assess and action and fill the Q-table, derives from the
Bellman optimality equation, given by Equation (9) [132]:

V∗(s) = max ∑
(s′ ,r)

P(s′, r|s, a){r + γV∗(s′)}, (9)

where P(s′, r|s, a) is the probability of each next state s′ and reward r and γ is a discount
factor, which defines the weight of the further states. The Q-function can be written as

Q∗(s, a) = ∑
(s′ ,r)

P(s′, r|s, a){r + γQ∗(s′, a′)}. (10)

RL methods are well-suited for dynamic applications such as wireless network mobil-
ity. A mobile user can be modeled as an agent, its trajectory as the environment, and han-
dovers as possible actions. If all states are known in advance, it is possible to optimally
solve Equations (9) and (10). However, in practical applications, it is not always feasible
to enumerate all states beforehand, and thus, the previous states, actions, and rewards
must be stored in memory to build a good approximation. Moreover, there must be a bal-
ance between the exploration and exploitation phases to avoid overfitting or underfitting.
The exploration should also be time-limited.

In [133], the authors propose using Red, Green, Blue, and Depth (RGB-D) cameras to
tackle blockage challenges. The images from these cameras are used to observe the BS’s
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coverage area and help it proactively conduct a handover before a blockage can cause
degradation to the quality of service experienced by the users. In this work, the authors
use an online ML algorithm called Adaptive Regularization of Weight Vectors (AROW) for
estimating throughout based on depth images. The estimation learned by the algorithm
enables the BS to start the handover procedure proactively. Figure 8 illustrates a camera-
assisted handover system, which proactively hands over when an incoming blockage is
detected.

Figure 8. Example of a camera-assisted blockage prediction DNN. The DNN predicts that the white
truck will potentially block the red car’s line of sight and proactively triggers a handover to the
nearest unblocked BS.

Approaches similar to the previous one are found in [134–137]. In [136], the authors
present a Q-learning-based solution that employs information on the location and veloc-
ity of a pedestrian to trigger a handover decision. The RL-based solution learns how to
optimize handover decisions by maximizing the expected future throughput based on a
pedestrian’s current location and velocity. The work in [134] develops a method for proac-
tive performance prediction to improve handover management. The proposed method uses
Deep Reinforcement Learning (DRL) to choose the best base station and performs handover.
The input to the DRL agent is augmented with video from RGB-D cameras. The authors
of [135] propose a proactive image-to-decision handover framework that directly maps
camera images to a handover decision, avoiding temporal degradation in the link quality.
The proposed framework employs DRL for creating optimal mappings between images and
handover decisions, showing that proactive handovers outperform reactive ones. In [137],
the authors employ information from multiple cameras and DRL to proactively make a
handover decision. The images from several Red, Green, and Blue (RGB) cameras are
used to predict blockages so that the network controller can start a handover process
preemptively. Furthermore, the idea behind using multiple cameras is due to possible blind
spots a single camera might present. As a result, the proposed multi-camera operation
outperforms a system with only a single camera.

Aimed at vehicular networks, the authors of [129] propose using a Gated Recurrent
Unit-Neural Network (GRU-NN) model for improving reliability and decreasing latency
in high-mobility applications without requiring cooperation among BSs. In their work,
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the model at the serving BS utilizes the history of beam indexes used to serve a user over
the past coherence interval to calculate the probability of a blockage happening in the
next interval. This strategy allows the serving BS to proactively hand the user over to
a BS with a better link. Their results show that it is possible to predict blockages with
95% accuracy, reducing the chances of service interruption, which improves reliability and
decreases latency.

In [138], the authors use a Extreme Gradient Boosting (XGBoost) classifier to make BSs
predict handover success rates from prior measurements collected from both sub-6 GHz
and mmWave bands. The proposed approach learns the relationship between sub-6 GHz
and mmWave measurements and employs it to determine whether a handover will succeed
or not. Using this approach, the handover decision made by the BS can be overridden,
if needed, based on the users’ handover success history. Compared to standard handover
algorithms, their results show that the proposed approach improves inter-RAT handover
success, maintaining user sessions in the optimal band/technology for longer periods.

The dual-band approach is also adopted in [139]. In this work, the authors employ
CSI, acquired at sub-6 GHz frequencies, as the input to a KNN model, which is trained to
predict vehicles’ positions. With the predicted position information, BSs operating in the
sub-6 GHz bands proactively inform mmWave BSs close to vehicles requiring handovers.
This scheme overcomes the beam discovery problem caused by the coverage blindness
phenomenon (i.e., a situation where beams radiate somewhere the handover vehicle is not
in). Furthermore, they propose using the KNN to speed up handovers. Finally, they employ
past handover information to determine relationships between the status information sent
by vehicles requiring handovers and the final handover decision.

The authors of [140] tackle the problem of handover and power allocation in a two-tier
(i.e., macro and small base station) heterogeneous network by employing a multi-agent
DRL solution. They model the problem as a fully cooperative multi-agent problem, where
the proposed solution aims to maximize the network’s throughput while reducing the
frequency of handovers. The solution leverages centralized training and decentralized
execution of actions to solve the problems at hand. They use global information such as
signal measurements, the number of UEs served by a BS, etc., to train individual policies for
each UE; then, after training is over, each UE receives a policy that it uses to make decisions
based on local observations. The centralized training approach makes the decentralized
agents work more cooperatively, mitigating potential instability and vicious competition
issues, which are common to this kind of approach. Their simulation results demonstrate
that the proposed solution outperforms existing solutions.

To maximize the throughput and minimize unnecessary handovers in mmWave com-
munication systems, the authors of [141] propose a proactive handover solution based on a
DRL model. The proposed solution employs decentralized multi-agents to make a proac-
tive handover decision. From their trajectories, the proposed solution learns the optimum
mapping between UEs and BSs. The optimal mapping is achieved when the connectivity
between a UE and a BS is the longest-possible among all possible BSs. Every UE acts as
a single agent in this work. Their results show that the proposed solution minimizes the
number of handovers and maximizes the overall throughput, outperforming a heuristic
handover approach.

With the minimization of common handover problems such as the ping-pong one,
the authors of [142] propose a two-stage DL-based handover mechanism that allows for
the dynamic optimization of handover performed by the network based on the users’ past
behavior and their RSRP. Moreover, the proposed solution is also trained to predict users’
locations. Their results show that the number of handovers is significantly reduced without
penalizing the network’s throughput. Additionally, it is shown that the predicted user’s
location has an accuracy of a few meters.

In mmWave frequency bands, due to the blindness coverage phenomenon, it is hard
for both BSs and UEs to identify the correct direction of beams, which renders the handover
process quite complex. Moreover, when considering the communication of IoT devices,
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it is essential to consider minimizing the energy consumed by such devices during the
handover process. With this in mind, the authors of [143] use the XGBoost algorithm to
predict the handover success rate through channel state information. As a result, the pro-
posed approach reduces handover failures and improves the energy efficiency of the
network. Consequently, the XGBoost-based solution proves to be better than a previously
implemented KNN-based handover solution.

The authors in [144] propose jointly optimizing resource and handover management
to provide seamless connectivity for multi-user mobile mmWave systems. The handover
algorithm selects a set of backup BSs for each set of UEs and allocates the resources to
maximize the sum of achievable rates of the UEs while minimizing the number of handovers
and the number of outage events. The problem is modeled as a non-convex optimization
problem, where minimizing the number of outage events and frequent handovers is more
important than maximizing the sum-rate. A Deep Deterministic Policy Gradient (DDPG)
method is employed to approximate the solution to the optimization problem, as it is
capable of dealing with a large number of states and action spaces. The numerical results
show that the proposed method achieves higher sum data rates and prevents frequent
handovers compared to the benchmark, namely the random BS backup allocation and the
worst connection swapping algorithms.

The most common 5G handover method is based on RSRP measurements of access
beams, such as wide beams used for sending control and synchronization signals. In con-
trast, user data are carried over link beams. Therefore, the actual throughput depends on
the link beam gains. These beams are narrower than access beams and have deeper cell
penetration. Hence, in order to improve throughput, the authors in [145] propose including
the link beam gain information in the handover optimization. The adopted formulation for
the RL problem is called the Contextual Multi-Arm Bandit (CMAB) problem. Each serving
BS collects measurement data from UEs and then forwards the data to a centralized CMAB
agent, which will then decide the handover actions. The objective of the RL agent is to
maximize the average link beam gain for all UEs and, hence, their throughput. A major
advantage of this method is that it relies solely on current 3GPP signaling, but additional
information such as location, speed, and antenna configurations can be provided to the
CMAB agent.

The adoption of mmWave systems imposes the use of directional communication
between BSs and UEs, which in turn requires the use of beamforming to improve channel
gain. Besides, the need for dense deployment of BSs to provide better coverage increases
the handover management problem. The authors in [146] propose jointly optimizing
beamforming and handover. On the one hand, channel estimation and beamforming are
performed more efficiently by only sending pilot signals through a set of pre-calculated
paths called path skeletons. On the other hand, the downside of this approach is the need for
a path skeleton database. RL is then used to select the best backup BS for a given location
and predicted path, minimizing the number of required handovers while maintaining
an almost constant data rate. The simulation results using outdoor environments show
superior performance compared to other methods.

In order to reduce the number of handovers and still maintain the QoS requirements
of the user, the authors in [147] propose an algorithm based on RL called SMART for
mmWave HetNets. The algorithm is divided into two parts. In the first part, the algorithm
uses the data about channel characteristics and QoS requirements to perform a handoff.
In the second part, two algorithms are used: SMART-S and SMART-M. Based on the Upper
Confidence Bound (UCB) algorithm, SMART-S selects the BS for a single user, and SMART-
M selects the BSs for multiple users. As a result, the proposed method reduces the number
of handovers by 50% compared to traditional methods.

In [131], the authors propose an RL method to reduce unnecessary handovers due
to frequent short-term LoS blockage in mmWave cellular networks. The aim is to choose
the next BS so that the connection can last as long as possible. To achieve this, the method
exploits the empirical distribution of the UEs’ trajectories and LoS blockages post-handover,
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which is learned online through a multi-armed bandit framework. One of the advantages
of the method is that it uses Received Signal Strength (RSS) signals from surrounding BSs
to obtain a coarse location of the UE. This eliminates the need to use GPS information
and reduces overhead. The numerical results show that the method performs better than
similar methods regarding the number of handovers and connection time, mainly when the
UE trajectories follow regular patterns emulating the movement on sidewalks. However,
the UEs move at a relatively low speed (1 m/s), leaving questions about performance in
higher mobility scenarios open.

The consequence of having a large number of handovers is the deterioration of user
data rates and a decrease in the UE’s battery life. To minimize this issue, the authors in [148]
propose a multi-agent-based deep reinforcement learning solution, calling it Reinforced
Handover (RHando). The proposed solution is fully distributed, thus limiting signaling
and computing overhead, rendering RHando a candidate to meet the latency requirements
of 5G networks. Furthermore, taking into account the collisions that occur when the number
of users is greater than the number of possible connections in the BS, the authors propose
two solutions. The first one is the Fully cooperative RHando (RHando-F) solution. In this
approach, users receive the same reward, favoring the optimization of the global network.
The second solution, called Self-interest RHando (RHando-S), considers only the perceived
data rate for each user’s reward. As a result, the proposed algorithm can reduce the number
of handovers by up to 70% and increase the average network throughput by up to 18%,
compared to the solution based on the maximum RSS.

Mobility and handover are decision-making problems well-suited for RL. Typically,
mobility is modeled in RL as follows: the environment state set is defined by the input
dataset; actions correspond to selecting a BS and its beams; the reward is the KPI to optimize.
For example, given an input state, the RL algorithm determines whether to handover and
to which base station to handover, resulting in a reward equivalent to the link capacity after
the handover. Figure 9 shows the number of papers that apply ML techniques to mobility
and handover problems, with RL algorithms accounting for over 50% of the surveyed
papers. However, in highly dynamic scenarios, such as a high-speed UE or abrupt changes
in the environment, the exploration–exploitation trade-off may hinder handover if the
exploration phase ends. In such cases, supervised learning approaches can also be a viable
solution for mobility beam management, such as predicting handover-triggering situations
or classifying the UE’s current state to a specific beam or BS. Table 4 provides an overview
of the handover and mobility papers.

Figure 9. ML techniques for mobility and handover.
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Table 4. Handover and mobility.

Challenges Algorithm Highlight (Pros) Limitations (Cons) Key Contribution Ref.

Beam selection
and blockage
prediction

Kernel-based
KNN

Employs sub-6 GHz CSI to predict
vehicle’s positions and, consequently,
pre-activate the target BS as a way to
speed up handovers preemptively.

• As it is a lazy learner algorithm, KNN
requires the whole dataset to be stored
in memory, consuming a large portion of
it if the dataset is large.
• The cost of calculating the distance
between the new input and each existing
example is huge, and sub-optimal
solutions may degrade the performance
of the algorithm.

• Uses sub-6 GHz CSI and a kernel-based
ML algorithm to predict vehicles’
positions.
• Use historical handover data and the
KNN algorithm to accelerate handovers
without complicated target selection and
beam training processes.

[139]

Handover
success
prediction

XGBoost

• Performs preemptive handover
procedures based on estimates of the
mmWave channel conditions taken from
collocated LTE cell measurements in the
sub-6 GHz band.
• The proposed approach has the
potential to decrease latency and
increase the QoS and QoE.

• The proposed solution only works if
the mmWave and sub-6 GHz cells are
collocated.
• The XGBoost algorithm is required to
be retrained if any of the cells operate at
different frequencies.

• Introduces the concept of partially blind
handovers.
• Employs XGBoost to predict handover
success rate from sub-6 GHz to mmWave
frequencies.
• Shows that the combination of XGBoost
and partially blind handovers improves
the handover success rate.

[138]

Throughput
estimation AROW

• Employs a time- and memory-efficient
online ML algorithm.
• The BS does not need to transmit any
control frame, reducing the overhead
and increasing throughput.

• The experiments are carried out with
static mmWave BS and devices, which
makes the results less useful.
• Online learning algorithms suffer
from noisy updates, which might affect
the proposed solution’s performance.

Estimates mmWave throughput using
depth images and the AROW algorithm. [133]

DRL

Uses received power signals and video
from depth cameras to train a DRL agent
to overcome the computational
complexity of learning the optimal
handover policy, decreasing handover
time.

• Only two base stations are used,
and the experimental setup is rather
contrived, which makes the results
complicated to be extrapolated to other
cases.
• Requires some time for the DRL
algorithm to converge as it learns from
trial and error attempts.
• The experimental setup is rather
contrived.

Shows that blockage prediction is
improved by augmenting the input to the
DRL agent with video from depth
cameras.

[134]

Blockage
prediction and
preemptive
handover

DRL
Improves blockage prediction and
handover reaction time by using depth
images from multiple cameras.

• Blockage caused by pedestrians being
out of the camera’s coverage is hard to
avoid, requiring a greater number of
cameras to be solved.
• Assumes a specific camera and sensor
configuration, and unclear how the
approach performs with different
configurations (e.g., resolution, field of
view, noise).

Employs DRL with received signal
powers and images from multiple
cameras as states to predict blockage and
proactively initiate handovers.

[137]

GRU

• Decreases the latency caused by
handovers as the current serving BS
proactively knows the next serving BS,
and then, it can start off the handover
procedure before the UE loses the
connection with the serving BS.
• Does not require cooperation among
multiple BSs, which decreases the
overhead associated with coordinated
transmissions, consequently reducing
power consumption.

• The proposed model does not account
for mobile blockages, only working for
stationary blockages.
• Requires a relatively large dataset to
achieve reasonable accuracy.
• Assumes specific antenna array
configuration, and unclear how the
approach performs with different
configurations (e.g., uniform linear,
circular, non-uniform).

Presents a blockage prediction and
proactive handover solution that reduces
latency and increases the system
reliability in high-mobility applications
without requiring high cooperation
overhead of coordinated transmission.

[129]

Load-balancing
handover DDPG

Maximizes the sum-rate of all UEs
moving along different trajectories while
minimizing the number of handover and
outage events.

• Does not consider interference from
other active UEs, only from other BSs.
• Assumes the UEs’ trajectories are
deterministic (perfect mobility
prediction).
• The decision process requires
estimating the channel capacity and its
backup BSs, thus requiring the CSI
between the user and multiple BSs.

Maximizes the sum data rate of all users
and minimizes the number of handovers
and outage events using the DDPG
algorithm.

[144]

Beam gain
maximization CMAB

• Traditional 3GPP signaling can be
used. There is no need for special
measurements or new signals. However,
information such as the location, speed,
and antenna setup can be used for
context.
• Link beam performance gain of 0.3 to
0.7 dB compared to the methods in
practical propagation environments.

• A centralized RL agent is required to
handle measurement reports from UEs.
• The UE mobility model used for the
numerical results is simple (UEs only
move on vertical lines).

The handover mobility optimization
considers current 5G deployment aspects
and uses current 5G signaling. [145]
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Table 4. Cont.

Challenges Algorithm Highlight (Pros) Limitations (Cons) Key Contribution Ref.

Joint handover
and
beamforming
optimization

Q-learning

• Channel estimation uses a set of
location-based path skeletons, which are
defined according to the channel gain,
AoA, and AoD.
• Pilot signals are sent only through the
path skeleton sets, thus reducing
overhead.
• Minimizes the number of handovers
by using Q-learning to decide the best
backup BS for each UE location and
using a link quality threshold to trigger
the handover.

• Assumes perfect trajectory
information.
• Requires keeping and updating a path
skeleton database, which can be costly
for a dense and highly mobile scenario.
• Only a few UE location points are
considered for the UE trajectories.

Beamforming can be performed using a
low number of pilots due to the use of
path skeletons. Handover optimization
uses Q-learning to determine the best
backup BS for handover based on each UE
location and trajectory.

[146]

MAB

• Uses received signal strength
information collected from the
surrounding environment to obtain a
coarse UE location estimate to feed the
RL algorithm.
• UE location information allows for
better trajectory and LoS blockage
prediction.
• The proposed method achieves a
lower handover number and higher
average time of connection in different
simulation environments compared to
other RL-based handover methods.

• Low mobility, as UEs are simulated
always moving at 1 m/s.
• Does not present data rate results.
• Assumes a specific mobility model,
and it is not clear how the proposed
approach would perform with different
mobility models.
• Assumes a specific type of blockage,
and it is not clear how the proposed
approach would perform with different
types of blockages.

• Achieves a lower number of handovers
than other methods using current 3GGP
signaling (i.e., RSS).
• Does not require accurate location and
trajectory information.

[131]

Minimization of
handovers

DRL

• SMART’s computational complexity is
much lower than that of the brute-force
algorithm to calculate the optimal
solution.
• The algorithm can be implemented in
a distributed way.

• The UE may not stay around a specific
BS for a sufficient time. Therefore, it
cannot have enough historical
information to estimate the reward
accurately.
• It is not always possible to select the
BS with the highest reward.

Reduces the number of handovers and
maintains the user’s QoS. [147]

DRL

RHando-F and RHando-S adapt their
policies to the channel fading
characteristics, providing the robustness
of the proposed framework.

• The method selection is not discussed.
• The two proposed methods perform
differently depending on the number of
connection requests.

Reduces the number of handovers
and increases the average network
throughput.

[148]

Handover
success rate
maximization
and power
allocation

DRL

• Tackles the joint problem of handover
minimization and power allocation.
• The proposed solution addresses
instability and vicious competition
issues, which are common to
decentralized cooperative multi-agent
approaches.
• They employ the counterfactual
baseline to mitigate the credit
assignment problem, achieving better
performance.

• Higher overhead since information
such as individual UE states must be
sent to the central model.
• Overhead is also increased due to the
transmission of policies to the individual
UEs.
• Assumes a specific user behavior
pattern, and it is not clear how the
proposed approach would perform with
different user behavior patterns.
• The proposed approach involves a
complex DRL algorithm, which may
require significant computational
resources and may not be practical for
implementation in real-world systems.

Employs a fully cooperative multi-agent
DRL approach to optimize handover
success and power allocation jointly. [140]

Maximization of
handover
success rate and
user localization

DL

• The proposed solution improves the
network’s throughput, reduces signaling
overhead, and improves the overall
network’s energy efficiency.
• Performs better than 3GPP models
under the presence of uncertainty.

• As it employs a DL model, it requires
a large training dataset, which requires a
more prolonged training phase.
• Does not consider delayed (outdated)
channel information.
• As it employs the RSRP as the input to
the DL model, it loses the phase
information, which might negatively
impact the performance of the handover
and localization mechanism.

Usage of DL with users’ RSRP signals as
the input to implement a handover and
localization mechanism.

[142]

Maximization of
handover
success rate

XGBoost

• The proposed solution minimizes the
signal overhead and improves the
success rate of handovers.
• Reduces energy consumption due to
reduction of signaling overhead.

• XGBoost is very sensitive to outliers
since every classifier is forced to fix the
errors in the predecessor learners.
Therefore, pre-processing is required,
which might increase the proposed
solution’s computational complexity
• XGBoost is hardly scalable.

Usage of XGBoost and the CSI to
implement a handover mechanism. [143]
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Table 4. Cont.

Challenges Algorithm Highlight (Pros) Limitations (Cons) Key Contribution Ref.

Handover
prediction

DRL

• The multi-agent solution is based on
UEs’ trajectories.
• Agents share their policies, speeding
up the learning process.
• The agents use image-like states,
presenting the location of UEs, BSs,
and obstacles at a given time, as the
input to the DRL models.
• Differently from other works, they
consider the issue that UEs might
handover to the same BS, which
decreases the system throughput.
The proposed multi-agent solution
ensures handover minimization and the
system’s throughput maximization.

• It is based on the trajectories of UEs.
Therefore, it requires the transmission of
such information, which increases the
overhead.
• As it is based on the trajectories of
users, it cannot be applied to the initial
access phase.
• It is an offline learning framework that
requires data to be collected before any
training is performed.
• As the agents share policies, it might
increase the transmission overhead,
decreasing the network’s performance.

Multi-agent DRL approach that employs
image-like states as the input and takes
the maximization of the system’s
throughput into consideration as well.

[141]

Q-learning

• Improves handover decisions by
predicting human blockages based on
pedestrians’ locations and velocities.
• Maximizes the throughput of users.

• If the number of access points
increases considerably, Q-learning will
not be able to learn an optimal handover
policy.
• The states, namely location and
velocity, are discretized, which discards
part of the information conveyed by
them.

Usage of pedestrians’ locations and
velocities to maximize their throughput
by predicting the necessity of handovers.

[136]

Proactive
handovers DRL

Employs DRL to map images into
handover decisions, improving the QoS
perceived by users since handovers are
proactively triggered.

• Since it is a DRL-based solution
(learns by trial and error), it may present
a long learning curve until convergence,
which might hinder its deployment.
• As it uses images, it requires a
relatively large number of images to
achieve reasonable performance.
• The delay to obtain an image might
impact the performance of the proposed
framework.

Usage of camera images to proactively
trigger handovers. [135]

7. Codebook Design

MIMO systems rely on directional beamforming schemes, which encode or decode
signals to be transmitted through multiple antennas and take advantage of this feature to
increase network performance. To generate an appropriate beam pattern, the transmitter
needs to obtain information about the state of the channel (with or without feedback).
The process by which beamforming directs the radiation pattern of the MIMO system
using channel estimates is also called beam training, i.e., the process of discovering the best
beam configuration.

The high cost and energy consumption of high-frequency circuits make the digital
beamforming architecture unfeasible for antenna arrays with many elements. Therefore,
most MIMO systems tend to follow analog or hybrid beamforming architectures. These
beamforming architectures, due to their hardware restrictions, are used with the aid of
previously defined beam codebooks, usually with one beam per codeword. However, these
codebooks may not be efficient in all scenarios to which a MIMO transceiver is applied.
In order to increase network performance, it is desirable for a codebook to adapt itself
to the conditions under which the transceiver will be exposed [149]. We summarize the
expressive codebook works in Table 5, in which we emphasize the main purposes of each
research with its limitations and contributions.

A generic codebook is the DFT codebook, based on the Fourier transform property
that a translation in space becomes a phase shift in the Fourier domain. With progressive
phase weights applied to each element of each codeword, the DFT codebook steers the
beams around the angular space according to these weights and the antenna elements.
Despite being simple and robust, this codebook has some limitations: although it may
cover all directions, many of them may not have direct use and increase the time of the
beam training [150]. Because they are generic, these codebooks may have their performance
compromised by imperfections in the hardware of the transceiver [149]. These factors then
lead academia and industry to research adaptive codebooks, generated with the help of AI.
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Another method for finding a codebook for a given set of channel samples is the
Generalized Lloyd Algorithm (GLA) [151], also known as K-means. This algorithm pro-
vides a local minimum solution by successively partitioning the search space into K clusters
and measuring the distance of each cluster element to the cluster centroid. Suppose we
have a set x comprised of N input sample of a D-dimensional space. In the beginning,
the initial partitioning must be provided by the user, which is altered by the algorithm each
iteration until the stopping condition is reached. If a sample xi is assigned to a cluster k,
we set an indicator variable yi,k = 1, otherwise, yt

k = 0. A sample is assigned to a cluster,
k, if the square distance between the sample xi and the centroid, ck, is minimal. We can
express this as an objective function, also designated by the distortion measure, given by
Equation (11):

min
N

∑
i=1

K

∑
k=1

yi,k||xi − ck||2. (11)

Every iteration of the algorithm consists of two phases: assigning the samples to the
clusters and recalculating the means. The algorithm finishes when there is no change in
the clusters. For the beam codebook problem, the resultant clusters’ centroids are taken as
codewords to form a codebook. Usually, this algorithm takes many iterations to converge
to a good solution, and the initialization and the distance function have a strong influence
on the algorithm’s efficiency because the partitioning may lead the solution to a poor
local minimum.

The most direct way to adapt the codebook is to use existing indicators or estimates
from the channel itself. Jiang et al. [152] use a deep neural network to extract propagation
features from the channel samples, using these features to classify the samples through the
K-means algorithm. After the clustering, the centroids for each channel characteristic are
combined as coordinates of vectors in a multi-dimensional space, in which the axes are the
characteristics. Finally, to reduce the dimension of the total space and the feedback over-
head, the authors remap the channel sequences in the total space and discard combinations
of centroids that do not satisfy a minimum criterion of mapping probability.

Furthermore, from this perspective of adaptation, not only to the scenario, but also
to the hardware limitations, an artificial neural network is proposed in [153] to generate
codebooks, whose phase adjustments reflect the neural network weights. The proposed
neural network performs better than the DFT codebook, especially in situations with
more than 16 beams and when multiple beams were activated simultaneously. A similar
approach is illustrated in Figure 10, with users sending their CSI to the ML algorithm to
update the BS codebook.

Due to limitations in the storage and acquisition of information that feed the meth-
ods mentioned above, the authors in [154] propose an offline learning algorithm that
trains from artificially generated samples. The output generated by the training with the
current sample is used to generate a new channel sample and train again. This incre-
mental process converges to a quasi-optimal solution for the precoding and combining
optimization problems.

Alrabeiah et al. [149] uses a neural network to derive an optimal codebook using
complex values, together with a self-supervised neural network that does not require
pre-existing channel information, enabling the online learning process. Based on the pilots
received in an uplink transmission, with the proposed architecture, the codewords that
generate the highest gain for the received pilot are chosen and adjusted according to the
back-propagation algorithm. To maximize the normalized average gain of beamforming,
Bhogi et al. [150] propose a beamforming codebook generation model where learning
adapts to propagation conditions. Using the K-means model, the results showed improve-
ments in beamforming compared to CSI quantization techniques and still managed to
reduce the codebook size.
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Figure 10. ML optimized codebook design system, using different sources of CSI.

To solve the problems of the complex wireless environment and the high-dimensional
data of the massive MIMO channel, the authors in [152] propose a codebook project based
on a Deep Cluster (DC). With this, the DNN learns the propagation characteristics of
the channel, and then, the algorithm generates the centroids of each propagation char-
acteristic. The results of the proposed algorithm are superior to the traditional methods.
Zhang et al. [153] develop a new architecture based on neural networks to learn beamform-
ing codebooks for MIMO systems. The model can adapt to user locations and takes into
account hardware restrictions. Regarding traditional works, the results demonstrate the
ability to reduce the codebook and learn multi-lobular bundles.

Seeking to solve the challenges of the ES, Chen et al. [154] propose a low-complexity
algorithm based on Cross-Entropy Optimization (CEO) in which the results show an almost
ideal performance, reaching 98% of the results obtained through ES. Zhang et al. [155]
use a deep learning algorithm with the received power as the input and no other data
about the channel. In the first phase, this method defines an optimal action in terms of the
phase changes for each antenna element, regardless of the constraints. In the second phase,
using the KNN algorithm, the optimal action is approximated to the most-viable actions,
which will be evaluated in the next phase. Then, the codeword is defined, and the learning
strategy is updated.

Another way to employ AI in codebook design is to optimize a performance metric.
Jiang et al. [156] design codebooks to increase the data rate by minimizing the sum of dis-
tances from the actual channel information to the channel statistical information. The clus-
tering process is based on the well-known K-means algorithm. Then, different methods can
be used to assemble codebooks from the obtained centroids. Lee et al. [157] aim, through
deep reinforcement learning methods, to define a precoder belonging to a predefined set in
order to minimize the Bit Error Rate (BER), giving the method greater adaptability.

The adaptability provided by the various techniques of ML to the design of codebooks
meets the 6G objectives. However, there are still a few works that assume stricter premises,
such as those that will be found in commercial devices. Even so, ML can still be integrated
into existing codebook design algorithms in order to optimize the parameters of these
algorithms when applied to specific environments. These approaches make these algo-
rithms more efficient, adaptable, and simple. For example, the works by Takabe et al. [158],
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He et al. [159], and Balatsoukas-Stimming et al. [160] use deep neural networks to adjust
the parameters of the biConvex 1-bit PrecOding (C2PO) algorithm.

Jiang et al. [161] propose an algorithm for codebooks based on the clustering of Self-
Organizing Maps (SOMs) for MIMO systems with limited feedback. This algorithm can
adaptively learn an arbitrary environment, so the proposed model adapts according to
the CSI. The results show that real-world channel data could improve the performance of
achievable data rates.

Kang et al. [162] develop an algorithm adaptable to any Rician factors. The proposed
work seeks to solve the complexity of traditional models, which require an infinite number
of optimal codebooks. The Rician channel consists of a deterministic LoS component and a
Rayleigh-distributed NLoS component. Regarding quantization distortion, the proposed
model is superior to conventional models. To overcome the overhead introduced by CSI
estimation in FDD communication, the authors in [163] propose an unsupervised learning
model based on RSSI feedback. As a result, the spectral efficiency of the system is improved.
It is known that the use of unsupervised learning models improves training time and cost.
In their work, they use a deep MIMO model for evaluation, and the results are similar to
the hybrid pre-encoder HSHO.

In [164], the authors propose a deep-neural-network-based algorithm for a MISO
system using the combination of two beamforming schemes to solve the challenges in
interference channels, the Maximum Transmission Ratio (MRT) and Zero-Forcing (ZF).
As the input to the deep neural network, they use the transmission powers, achieving a
99% sum-rate. Furthermore, using the MISO system, Xia et al. [165] propose a model to
optimize the downlink beam formation. The model in that work is based on convolutional
neural networks. The structure is composed of three neural networks to solve three typical
problems, the SINR balancing problem, the power minimization problem, and the sum-rate
maximization problem. The results obtained for the first two problems can reach almost
optimal solutions, and the performance of the third problem is close to the solution using
the weighted minimum-mean-squared algorithm.

To maximize the Weighted Sum Rate (WSR) in a MISO channel, the authors of [166] de-
velop a model based on deep learning named the beamforming neural network. The model
is based on LSTM layers. Different versions of the proposed model are used to tackle three
optimization problems: SINR balancing, power minimization, and sum-rate maximization.
The results of the proposed model outperform the Weighted Minimum Mean-Squared
Error (WMMSE) model at high SNR and are comparable when the SNR is low.

Off-the-shelf devices with pre-installed codebooks are commonly assumed to be
appropriate for wireless communication systems. However, the papers surveyed in this
study support the premise that well-designed and adaptive codebooks can significantly
enhance the network spectral efficiency and data rate. Once the codebooks are stored in the
device’s memory, their complexity is not a major concern. To address the high complexity of
codebook design, NNs have been successfully employed. However, the dataset used must
have low sample correlation to ensure good useful codewords and mitigate overfitting.
Figure 11 shows the percentage of codebook design papers and the ML techniques used in
each one. Apart from NN techniques, DL, and DRL, the K-means algorithm is commonly
applied to this problem. As we mentioned earlier, the Generalized Lloyd Algorithm
(GLA) is considered the fundamental codebook design technique. Therefore, variations
of the K-means algorithm that enhance convergence speed, make it more robust to initial
partitioning, or avoid poor local minima are promising directions for GLA-like codebook
design. Table 6 provides more details on the codebook design papers, including the
operating frequency and types of antennas used.
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Figure 11. ML techniques for codebook design.

Table 5. Codebook design.

Challenges Algorithm Highlight (Pros) Limitations (Cons) Key Contribution Ref.

Hardware
and
deployment
awareness

NN

• Robust to hardware impairments.
• Decouples learning process from
communication.
• The codebook is refined while
communication goes on.

• The offline learning process can be
time-consuming and requires
accurate channel state information.
• For a reduced number of
codewords, the performance is not
satisfying.

• Online machine learning
framework.
• Adapts the codebook and avoids
the need for explicit channel state
information.

[149]

K-means
• Adapts well to the underlying
channel distribution.
• Reduces the feedback overhead.

• K-means clustering does not work
well with high-dimensional vectors.
• The method utilizes
uninterpretable Grassmannian
clustering to find optimal codebooks
in a black-box manner.

Reduces the codebook design
problem to an unattended clustering
problem in a Grassmann collector. [150]

Limited
feedback

• DNN
• K-means

• Networks could learn the key
propagation characteristics of the
CSI.
• Clustering algorithms acquire the
centroids of the corresponding
characteristic.

• The offline learning process can be
time-consuming and requires
accurate CSI.
• Network performance for smaller
antennas is lower than for larger
antennas.
• The number of spatial lobes affects
the accuracy of the alignment
direction.

• Reduces the dimension of the full
space and the feedback overhead.
• Proposes a deep-clustering-based
codebook design for massive MIMO
systems.
• Improves the performance of
limited feedback massive MIMO
systems.

[152]

SOM • Simple implementation.
• Better than the DFT codebook.

• Initial codebook depends on prior
massive channel data.
• Ignores the impact of noise over
the channel samples.

The proposed method can update
the codebook adaptively according
to the instantaneous channel state
information.

[161]

Grassman-
nian line
packing

• Codebook adaptive to any Rician
factors.
• The proposed codebook
substantially outperforms
conventional methods.

When the Rician factor is small,
the impact of the NLoS components
is greater. As a result, the average
quantization distortion increases.

Deduces the angle distribution
between the channel vectors and the
LoS component and a precisely
approximated angle distribution in a
tractable form.

[162]

Environment
awareness NN

• Proposes an ML model that
adapts codebook beam patterns
based on the surrounding
environment and user distribution.
• The developed NN architecture
takes into account hardware
constraints found in analog-only
mmWave/THz transceivers.

• With only 3 bits, the learned
codebook reaches more than 85% of
the upper limit with 64 beams and
90% of the upper limit with 128
beams.
• A 16-beam DFT codebook
performs comparably to a 64-beam
DFT codebook.

• Proposes an NN-based framework
for learning environment-aware
beamforming codebooks that takes
hardware impairments into account.
• The solution is important when
the resolution of the analog phase
shifters is limited.

[153]
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Table 5. Cont.

Challenges Algorithm Highlight (Pros) Limitations (Cons) Key Contribution Ref.

Beam
selection CEO

Guarantees a result within 98% of
that obtained by ES with
substantially lower complexity.

• Limitations due to the use of finite
resolution phase shifters.
• Results rely on the simulation of a
single static scenario with idealized
assumptions.
• Performance could differ
substantially in realistic dynamic
conditions with unpredictable
changes and channel effects.

• Proposes a low-complexity,
near-optimal algorithm for
identifying an optimal analog
precoder and analog combiner pair in
mmWave massive MIMO systems.
• Demonstrates the effectiveness of
the proposed algorithm in achieving
near-optimal performance.
• Addresses the hardware
complexity challenge of mmWave
massive MIMO systems.

[154]

Large
codebook
sizes

RL
• Does not require channel
knowledge.
• Evaluates hardware impairments.

• Proposes a complex deep
reinforcement learning architecture.
• The proposed
Wolpertinger-variant architecture is
selected based on heuristics rather
than rigorous analysis. Superior
alternatives may exist,
and performance could likely be
improved with principled design.

• Design of deep reinforcement
learning.
• Relies only on receiving power
measurements and does not require
any channel knowledge.
• Framework capable of learning a
codebook for users in the
surrounding environment.

[155]

Maximize the
achievable
rate

K-means
The proposed codebook design can
recognize and adapt to arbitrary
propagation environments.

• Large amounts of CSI are stored as
the input data.
• Key design choices, such a the
number of clusters (codebook size)
and clustering algorithm, are
selected based on heuristics, rather
than rigorous analysis.

Proposes using characteristics
extracted from the clustering
centroids used as the key channel
information.

[156]

Optimal
precoding
policy for
complex
MIMO

DRL

The proposed precoding framework
can outperform the conventional
approximation algorithm in the
complex MIMO environment.

• Does not compare with any other
solution in the literature.
• Questions remain around how the
agents might adapt their precoding
policies to non-stationary conditions,
including changes in channel
statistics, and whether the approach
could do so effectively while
maintaining near-optimal
performance.

DQN- and DDPG-based agents can
learn the near-optimal policy for the
precoder selection problem.

[157]

Balanced
MRT-ZF
combined
optimization

DL

• Outperforms MRT and ZF in terms
of data rate.
• Computational complexity below
the optimal solution.

• A small number of users is used in
the simulation results.
• Only considers Rayleigh channel
model.

This paper uses DL to build
beamforming vectors based on the
sub-optimal solutions provided by
the MRT and ZF methods.

[164]

Interference
mitigation (SI
and CCI)

MLP

The trained model presents lower
computational complexity than the
Optimization-Driven Design (ODD)
approach.

• Training dataset depends on
complex optimization problem
solution.
• The solution quality is coupled to
the dataset size.
• The proposed MLP-based solution
has scalability issues.

• The proposed solution presents a
sub-optimal solution that is
comparable to the traditional ODD
approach.

[165]

SINR
balancing and
power
minimization

BNN

Achieves high beamforming
accuracy when combining
supervised and unsupervised
learning.

• The beamforming prediction must
be trained previously.
• The approach ignores constraints
such as computational resources,
hardware limitations, or complexity
requirements for realistic
implementation. Practical feasibility
is not demonstrated.

• The framework is designed based
on the CNN structure.
• Proposes a hybrid two-stage BNN
with both supervised and
unsupervised learning.

[166]
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Table 6. Detail of antenna, operation frequency, and presence of complexity analysis of the codebook
design papers.

Paper ML Technique Antenna Type and Frequency Complexity Analysis

[149] NN 64 Uniform Linear Array (ULA) 28 GHz +
[150] K-means 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 8 × 8, 12 × 12 2.5 GHz +
[152] K-means 32, 64, 128 UPA 32, 64 ULA Not mentioned +
[153] NN 64 ULA 28 GHz +
[154] CEO 16 × 64, 32 × 128 28 GHz ○
[155] RL 32 ULA 60 GHZ 28 GHz +
[156] K-means 4 ULA, 16 ULA Not mentioned +
[157] DRL 4 × 2 MIMO Not mentioned +
[161] SOM 4, 16, 64 ULA Not mentioned +
[162] Grassmannian LP 32 ULA Not mentioned +
[164] DL 2, 3 ULA Not mentioned ○
[165] MLP 4, 2 ULA Not mentioned +
[166] BNN 2–12 ULA Not mentioned ○

8. Precoding and Combining in MIMO with Hybrid or Digital Architectures

Precoding and combining are techniques that exploit the spatial diversity and spatial
multiplexing of transmission when multiple antennas are used. First, the spatial diversity
techniques allow fading mitigation, improving reliability. Second, in spatial multiplexing,
the receivers at different positions in space receive different signals simultaneously during
the same transmission, increasing throughput.

Precoding (combining) works on the transmitter (receiver) side, encoding (decoding)
the transmitted (received) signals with amplitude and phase adjustments that maximize
the gain of the transmitted (received) information. When we refer to the precoder, we are
also referring to the combiner, which is its counterpart on the receiver side. We summarize
relevant beamforming approaches highlighting their strengths, weaknesses, and their main
objectives in Table 7.

The system model adopted in the majority of precoding and combining works consists
of a narrow bandwidth MIMO system with Nt transmitter antennas and Nr receiving
antennas. The channel matrix of such a system is H ∈ CNr×Nt and an Additive White
Gaussian Noise (AWGN) noise at the receiver n ∈ CNr×1. Thus, considering a digital
beamforming architecture with Ns data streams and a transmitted signal x ∈ CNs×1,
the received signal y is given by Equation (12):

y = WH(HFx + n), (12)

where W ∈ CNr×Ns is the combining matrix at the receiver side and F ∈ CNt×Ns is the
precoding matrix at the transmitter side. For hybrid beamforming architectures, the pre-
coding and combining matrices also depend on the number of RF chains operating at the
transmitter and receiver, respectively, NRF

t and NRF
r . Then, the precoding and combining

matrices are split in two, consisting of a baseband matrix and an RF matrix. We can rewrite
Equation (12) as Equation (13):

y = WH
BBWH

RF(HFBBFRFx + n), (13)

where WBB ∈ CNr×NRF
r and WRF ∈ CNRF

r ×Ns are the baseband and RF combining matrices;
FBB ∈ CNRF

t ×Ns represents the baseband precoding matrix, and FBB ∈ CNt×NRF
t is the RF

precoding matrix. AH denotes the conjugate transpose of the complex matrix A.
As a consequence of the more significant number of antennas required for communi-

cations in mmWave and THz bands, the known channel estimation techniques might be
prohibitive. Such channel estimation techniques depend on the probing and feed-backing
of each pair of antenna elements between the transmitter and receiver, establishing all the
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channels available. Thus, they are not feasible due to the overhead that channel estima-
tion would bring. Therefore, it is necessary to investigate low-complexity algorithms to
establish the precoding matrix, especially algorithms dealing with multiple users. For this,
a promising approach is the use of AI, which can, from different information about the
channel, user, or BS, determine the formation of an optimal precoding matrix according to
some criterion of interest, such as the spectral efficiency [167], for example.

Increasingly popular, neural networks are often employed in precoder designs, as neu-
ral networks can achieve highly accurate results even in non-linear and complex applica-
tions. For example, Ma et al. [168] use a deep learning neural network to generate samples
of artificial channels and train a hybrid precoder with these samples, comparing the results
with a simulated environment. On the other hand, Elbir et al. [169] generate the precoder
from artificial channels using a convolutional neural network, achieving better results
than the heuristic, deep learning, and Multilayer Perceptron (MLP) solutions that were
compared in the article. However, samples of real-world network indicators are abundant
in most cases, such as AoA and Angle of Departure (AoD) [170], the pilots present in
different frame configurations [171,172], and samples from the channel [173] and, therefore,
can also be used to train neural networks and result in more accurate precoders, tailored to
specific conditions.

Different strategies can be employed to generate precoder matrices. As the antenna
array has several radiating elements, it is possible to form sub-arrays in some cases. In [174],
the authors propose a two-step method for forming a hybrid precoder with sub-arrays
of dynamic arrays. In the first step, a hierarchical clustering algorithm is used to group
the array antennas in order to explore the characteristic variations of frequency-selective
channels. In the second step, an algorithm based on Principal Component Analysis (PCA)
generates an optimal low-dimensional precoder with a flat frequency response from a
frequency-selective precoder. In [175], the authors propose splitting a multi-user codebook
into inner and outer precoders. The inner precoder is focused on spatial multiplexing,
while the outer one is focused on spatial division, that is the inner precoder is divided into
user sectors, and the outer one divides the users within each cluster. The inner precoder
uses ZF beamforming to alleviate the interference among the users of a cluster. A DNN is
employed to solve the outer precoder problem. The article’s approach keeps the number of
groups fixed, and the performance is close to the established optimum, which uses ES for
the best codebook.

Some authors criticize the traditional method of estimating the channel and specifying
codebooks separately. Attiah et al. [176] propose a method employing a DNN that directly
uses the pilots received in the baseband for an end-to-end design of the precoding matrix.
Li et al. [177] propose the creation of a precoding matrix for beamforming with joint
optimization. First, the precoding matrix is created using a cross-entropy method. Later,
ZF or block diagonalization algorithms can be used to reduce interference between users
with one and multiple antennas, respectively.

The precoding and combining project aided by ML techniques proves to be a possible
way to provide the adaptability and performance necessary for high-frequency communi-
cations. In addition, it is possible to serve multi-user systems, contributing to the advances
towards 6G, whose planned network capacity is beyond the capacity achieved today.
Concrete steps are being taken so that ML techniques can be confirmed as a method for
designing precoding matrices, such as the integration with 5G NR and the interaction with
IRS [163,178]. However, there is still a lack of alternatives in the literature for real-time
learning that can be applied to real-world equipment, which are challenges to be explored
by academia and industry.

In [179], the authors propose using a neural network with a structure based on Ran-
dom Fourier Features (RFFs) to determine the most-appropriate precoder matrix based
on the user’s location only. Their approach is capable of handling both LoS and NLoS
channels [179]. They show that, depending on how the users’ locations are obtained, it is
possible to reduce or even eliminate the need for pilots.
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Huang et al. [180] propose a novel framework named extreme learning machine that
is capable of jointly optimizing transmitting and receiving beamformers of MU-MIMO
systems. They use hybrid beamforming algorithms based on fractional programming
and majorization–minimization techniques. They show that the proposed solution not
only outperforms the system sum-rate of conventional methods, but also has a short
computational time.

Due to high computational complexity and performance loss, Almagboul et al. [181]
propose a method based on the diagonal loading technique along with the phase only,
named Robust Adaptive Beamforming (RAB), using integration with deep learning for
analog and digital beamforming and spatially matched filtering to scale an appropriate
identity matrix. Furthermore, a DNN is used to find the digital beamforming weights
combined with metaheuristic particle swarm optimization.

Lee et al. [157] present a performance evaluation of two techniques based on RL for
precoding problems in single-user MIMO systems. Similarly, Li et al. [182] brought an
auto-precoder system targeting optimizing the compressive channel sensing vectors and
constructing the RF beamforming of hybrid architectures. Their numerical results surpass
conventional approximation algorithms in complex MIMO environments.

Figure 12 shows the most-commonly used machine learning (ML) techniques in the
papers surveyed. The non-linear nature of the precoding and combining problem makes
DL a very appropriate technique for this challenge, which is corroborated by almost
87% of the papers using DL. DL deals well with the non-convex optimization problem
of providing a precoding or combining matrix for MIMO systems. However, for a real
scenario deployment, imperfect CSI must be taken into account in the development of
the precoding and combining algorithm. Additionally, the complexity is an important
design factor in the MIMO precoding and combining algorithms, so the complexity must
be low enough for the model to respond quickly to the new CSI, usually faster than the
channel coherence time. The analysis of the computational time and algorithm complexity
can be found in [163,169,170,180,181]. Table 8 provides a summary of the details of the
precoding and combining papers, including their computational complexity and the types
of algorithms used.

Figure 12. ML techniques for precoding and combining.
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Table 7. Precoding and combining in MIMO with hybrid and digital architectures.

Challenges Algorithm Highlight (Pros.) Limitations (Cons.) Key Contributions Ref.

Channel
estimation

DL Solves two problems with a similar
approach.

• Large NN offline training
overhead.
• Based on artificial channel
measurements.

A comparison between a DL
compressed sensing channel
estimation for MIMO and deep
learning quantized phase hybrid
precoding.

[168]

DL

• Lower computational complexity.
• Imperfect CSI premise.
• Better than others state-of-the-art
greedy and sum-rate optimization
precoders.

• Needs a large training dataset to
provide robustness.
• The long-term stability and
robustness of CNN-MIMO are
uncertain since neural networks can
be prone to “catastrophic forgetting”
as environments change.
• The exhaustive search method
used to generate training labels for
CNN-MIMO may not provide
optimal hybrid precoding solutions,
limiting the performance
CNN-MIMO can ultimately achieve.

• A CNN that accepts an imperfect
channel matrix and outputs analog
precoder and combiners.
• A exhaustive search algorithm for
the analog precoder to feed the CNN
training.
• A solution that is capable of
training with large amounts of data.

[169]

DL

Good results with lower
computational complexity if
compared to SVD- and GMD-based
methods.

• The simulated communications
environment is poorly described.
• The method used to generate
training labels for the DNN is not
specified, so it is unclear if it can
provide optimal hybrid precoding
performance for the DNN to achieve.
• The limitations of the approach
regarding robustness against
parameter estimation errors, channel
estimation inaccuracies, or other
practical impairments are not
analyzed.

• A novel framework that
incorporates DL into hybrid
precoding.
• A DNN with lower computational
complexity requirements in the
training phase.
• The DNN provides accurate
hybrid precoding while supporting
channel feedback.

[170]

DL The proposed solution can be
generalized to unseen environments.

• The training time is not discussed
to assess the feasibility of the
proposed solution.
• As DL solutions are tailored for a
specific setup, the proposed
approach may not generalize well to
other network architectures and
duplexing modes.
• It does not provide a rigorous
mathematical analysis of the
approach’s performance gains,
complexity, and optimality.

• Joint DNN architectures for high
generalization.
• DNNs achieve outstanding
performance in scenarios where
downloading training datasets is
very limited.

[171]

DRL
The hybrid beamforming method
spectral efficiency that surpasses the
fully digital precoding

• As it is a new ML scheme, it lacks
a complexity assessment to fairly
compare it with the other algorithms.
• The impact of different RL
algorithms, such as actor–critic and
policy gradient, on the proposed
approach’s performance is unclear.

The authors propose a new way of
combining DL and RL for
beamforming, leveraging high
spectral efficiency and overall
beamforming effectiveness.

[172]

ine Dynamic
subarrays AHC

Proposed hybrid precoding, which
can efficiently avoid mutually
correlated metrics.

• The authors do not mention the
simulation tools used.
• The clustering algorithm misses
information about the training phase.

• Optimal hybrid precoder on PCA.
• Agglomerative hierarchical
clustering to group dynamic
subarrays.
• Energy efficiency for passive and
active antennas.

[174]

ine Two-stage
precoding DL

Proposes an ML-based approach to
finding optimal dimensions with
good accuracy and closer to the
brute-force solution.

• The authors do not describe the
dataset, nor its size and format.
• The training phase requires too
many iterations.

• A DNN algorithm to predict the
dimension output in MIMO.
• A customized DNN algorithm to
cope with the requirements.

[175]
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Table 7. Cont.

Challenges Algorithm Highlight (Pros.) Limitations (Cons.) Key Contributions Ref.

Hybrid,
analog,
and digital
precoding

DL

• Generalizable for many systems
with many parameters.
• Numerical results suggest the
performance of the proposed
approach is closer to optimal.

• Missing some ML algorithm
details.
• Simultaneous design of analog and
digital precoders using a neural
network is difficult.
• The approach is not generalizable
to systems with different numbers of
users.

• Proposes a joint channel sensing
and downlink precoding solution
that avoids explicit channel
estimation.
• Introduces an end-to-end design
that directly builds precoders from
the received pilots without the
intermediate channel estimation
step.

[176]

ine
BF-based on
IRS

DL

• The combination of BF-based on
IRS with BS enhances the system
sum-rate.
• Uses an NN to achieve the optimal
configuration.
• Good generalization rate achieved
by ML algorithm.

• The convergence time is not
discussed.
• Different DNN architectures could
be evaluated.

• A combined BF based on BSs and
IRS.
• An optimization method for
implicit channel estimation.
• A DNN performance assessment
for the BF.

[178]

Location-
based DL A method capable of handling LoS

and NLoS propagation.

• The solution does not predict the
user location in BF.
• The solution does not predict the
channel vector directly.

• A supervised learning method to
map user location to an appropriate
precoder.
• Reduces the need for pilot
symbols.

[179]

Complexity
reduction

DL
The proposed method has low
computation complexity when
compared with CNNs.

• The computational complexity
relies on the learning technology
design (CNN or ELM).
• ELM still requires a large amount
of training data to work effectively,
which is not specified in the paper.
• The work considers a single-cell
MU-MIMO system. Performance in a
multi-cell environment with
inter-cell interference would likely be
different and is not addressed.

• Novel, robust, and low-complexity
hybrid BF algorithms.
• An optimization method based on
fractional programming to provide
labels for the training set.

[180]

DL

Using PSO combined with DNN,
the authors reduce the
computational costs in managing
antenna arrays.

• Does not present accuracy, which
hinders the performance assessment.
• It lacks an analysis of the
robustness of the proposed method
against various parameter estimation
errors, channel estimation
inaccuracies, or other practical
impairments.
• It may not generalize well to
different system configurations,
antenna array geometries, or channel
conditions, as the performance
heavily relies on the training dataset.

• A novel DL with phase-only
digital BF for MIMO.
• A metaheuristic method based on
DL is used to reduce the
computational complexity.

[181]

DRL

• Online adjustment of parameters
to minimize the BER.
• Uses a bi-fold approach for finding
the optimal precoding policy and the
codebook and non-codebook-based
precoding.

• Does not compare with any other
solution in the literature.
• Does not discuss the convergence
time of the proposed algorithm.

Introduces a hybrid ML approach for
precoding policy for complex MIMO
systems. [157]

DL

• Lower baseband precoding and
combining training overhead.
• Detailed experimental evaluation
description supports reproducibility.

• Leveraging prior knowledge with
DL has an underlying training cost
to collect information about the
end-to-end channel and network
training.
• Assumes a specific channel model,
and it is not clear how the proposed
approach would perform with
different channel models.

• A reduction of training overhead
compared to classical (non-ML)
solutions.
• A novel DL-based approach to
optimize channel measurement
vectors.

[182]
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Table 7. Cont.

Challenges Algorithm Highlight (Pros.) Limitations (Cons.) Key Contributions Ref.

CSI feedback DL

• Can be implemented in a real-time
system due to low computational
complexity.
• Works in FDD mode.
• Short training time, as it is
unsupervised.

• Might not be as precise as
CSI-trained DL models.
• Assumes the availability of RSSI
measurements, which may be
difficult to obtain in practice or come
with their own costs, complexity,
and accuracy issues.
• Comparisons are only made to
conventional full-CSI solutions,
lacking consideration of other
learning, optimization,
or approximate approaches
proposed for this problem.

• Evaluation of unsupervised
learning to design the hybrid BF.
• Use of ray-tracing model in the
deployment environment.
• A loss function proposal that is
based on the sum-rate for
classification and regression.
• Evaluation of non-DL and DL
hybrid BF for the realistic channel
model.

[163]

Table 8. Detail of antenna, operation frequency, and presence of complexity analysis of the precoding
and combining papers.

Paper ML Technique Antenna Type Frequency Complexity Analysis

[157] DRL 4 × 2 MIMO Not mentioned +
[163] DL 64 Antennas Not mentioned ○
[168] DL 64 antennas Not mentioned +
[169] DL 36 BS antennas, 9 UE antennas mmWave ○
[170] DL 64 antennas 28 GHz ○
[171] DL 64 antennas Not mentioned +
[172] DL, RL 32 × 8 UPA mmWave +
[174] AHC 8 × 8 UPA transmitter, 2 × 2 UPA receiver mmWave +
[175] DL 64 ULA Not mentioned +
[176] DL 64 ULA mmWave +
[178] DL 4 antennas Not mentioned +
[179] DL 64 ULA 3.5 GHz +
[180] DL 36 antennas mmWave ○
[181] DL 64 Antenna mmWave ○
[182] DL 64 ULA mmWave +

9. Security of AI Models

The 6G network is the latest instance of next-generation wireless networks. This new
standard is expected to rely heavily on AI models, especially NN-based ones (e.g., DL),
for improved system performance [183]. However, potential security risks associated with
AI models are typically ignored. For example, NN-based models are susceptible to a set of
attacks known as adversarial attacks, being the most-common evasion attacks [184], data
poisoning attacks [185], Byzantine gradient attacks [186], and model extraction [187]. These
attacks can drastically impact the performance of networks employing AI.

The integration of ML with 5G and 6G technologies might lead to potential security
issues. Trained ML models can be tampered with to produce faulty results. In [188],
the authors show that ML models trained for mmWave beam prediction can be manipulated
to output the wrong predictions. In this work, the authors consider poisoning ML-based
beamforming prediction by using a technique known as an adversarial machine learning
attack. This technique tries to deceive ML models by feeding them with craftily designed
input signals so that they produce faulty predictions. The attack method adopted in this
work is the Fast Gradient Sign Method (FGSM), one of the most-straightforward and
-powerful attack types. It works by using the gradients of a neural network model to
develop an adversarial signal that is employed to evade the model. They propose an
adversarial learning mitigation method based on using the gradient of the victim’s model
and then retraining it with adversarial samples and their respective labels. By comparing
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the effective achievable rate, the proposed technique efficiently defends ML models from
such adversarial attacks.

Beam selection is a time-consuming and complex task performed by mmWave com-
munication systems. The issues associated with this task are mitigated by adopting DL
solutions. However, DL-based solutions are vulnerable to adversarial attacks. With these
vulnerabilities in mind, the authors of [189] study four different types of adversarial attacks
and propose two methods of counterattacking them: adversarial training and defensive
distillation. Their results reveal that the proposed methods effectively defend the DL
models against the studied adversarial attacks.

ML algorithms, especially neural-network-based ones, offer important benefits to next-
generation wireless networks. However, considering the security implications involved in
their adoption is of utmost importance and practically ignored by the research community.
Therefore, security is also a critical part of ML algorithms since attackers might be able to
poison and confuse the models. In this regard, the authors of [190] study how adversarial
attacks can deceive and confuse trained DL models employed in mmWave beam prediction
applications. Their study employs the fast gradient sign method attack, which adds
a specially crafted noise signal to the input data to fool the DL model. Furthermore,
the authors propose a method to mitigate adversarial attacks in mmWave beam prediction
applications using iterative adversarial training. The proposed method can be applied to
other adversarial ML attacks. The results show that the model employing their method
performs quite close to that of a model not being attacked.

Table 9 summarizes works found in the literature dealing with the security of AI
models. It presents the beamforming challenge involved, the algorithm employed to study
how the attack and counterattack measures affect the DL models’ performance, the benefits
and limitations of the proposed solutions, and their key contributions.

Therefore, as can be concluded from this section, it is of utmost importance to study
and develop secure AI solutions for 6G networks. This new attack surface poses enormous
risks to users and telecommunications companies if not adequately covered.

Table 9. Security of AI models.

Challenges Algorithm Highlight (Pros.) Limitations (Cons.) Key Contributions Ref.

Beam
prediction
under
adversarial
attacks

DL

The proposed counterattack
can be used against a variety
of different adversarial ML
attacks.

• To be effective, the attacker must have
access to the gradient of the loss function
for a given input instance, which in turn
implies having access to the model’s
weights, which is often unfeasible.
• It focuses on the fast gradient sign
method as the adversarial attack, but does
not consider other stronger attack
techniques.
• The evaluated threat model is limited,
and the proposed defense may not
generalize well to more advanced attacks.
• The proposed adversarial learning
approach is quite generic and not tailored
to the unique characteristics of 6G
mmWave systems.
• Domain-specific insights are lacking,
limiting the practical value.

Proposes a mitigation method that uses
the gradients of the victim’s model to
retrain it with adversarial samples and
their respective labels and mitigate
adversarial attacks, consequently
improving the security.

[188]

Proposes two methods for
counterattacking adversarial attacks:
adversarial training and defensive
distillation.

[189]

• Studies how adversarial attacks
confuse trained DL models used for
mmWave beam prediction.
• Proposes a method to mitigate
adversarial attacks using iterative
adversarial training.

[190]



Sensors 2023, 23, 4359 46 of 61

10. Limitations of AI-Based Beamforming and Beam Management

AI-based beamforming and beam management have some limitations that need to be
considered. Some of these limitations are:

• Limited applicability: AI-based algorithms may work well in specific scenarios, but
may not be suitable for other scenarios. For example, algorithms designed for pedes-
trian mobility may not work well for high-speed mobility scenarios such as trains or
urban vehicles. Additionally, algorithms optimized for indoor environments may not
perform well in outdoor settings with different propagation characteristics.

• Reliance on training data: AI-based algorithms require large amounts of training data
to learn the optimal beamforming and beam management strategies. If the training
data are not representative of the actual operating environment, the performance of
the algorithm may suffer. Furthermore, collecting and labeling these data can be time-
consuming and expensive, especially in dynamic and rapidly changing environments.

• Limited generalizability: The performance of AI-based algorithms can be heavily
influenced by the training data used to develop them. Therefore, the algorithms may
not generalize well to new scenarios or environments where the training data do not
adequately represent the target environment. Transfer learning techniques can help
mitigate this issue, but they may not completely overcome the problem.

• Complexity: AI-based beamforming and beam management algorithms can be com-
plex and require significant computational resources. This can increase the cost and
power consumption of the system, making it less attractive for energy-constrained or
cost-sensitive applications.

• Limited interpretability: AI-based algorithms often rely on complex deep learning
models, which can be difficult to interpret. This can make it challenging to understand
why certain decisions are being made or to identify errors or biases in the algorithm’s
output. Such limited interpretability can also hinder the adoption of AI-based beam-
forming and beam management in industries where explainability and regulatory
compliance are necessary.

• Limited robustness: AI-based algorithms may be vulnerable to adversarial attacks or
other forms of interference that can disrupt their performance. This can limit their
reliability in real-world applications, where security and robustness are critical factors.
Developing AI-based algorithms that are resistant to such attacks and can maintain
stable performance under a variety of conditions is an ongoing research challenge.

• Limited scalability: As the number of antennas and users in a massive MIMO system
increases, the complexity of AI-based beamforming and beam management algorithms
can become prohibitively high. This can limit their scalability and make them less
practical for large-scale deployment. Efficient algorithms that can handle the growing
demands of massive MIMO systems while maintaining high performance are needed
to address this challenge.

• Latency: The real-time processing requirements of beamforming and beam man-
agement may impose strict latency constraints on AI-based algorithms. Designing
AI-based methods that can perform fast computations and adapt to dynamic environ-
ments within these latency bounds is crucial for their practical implementation.

Overall, while AI-based beamforming and beam management have shown promising
results in certain scenarios, they are not a one-size-fits-all solution and must be carefully
designed and evaluated for each specific use case. Researchers and engineers must take
these limitations into account when developing and deploying AI-based techniques to
ensure their effectiveness and reliability in real-world applications.

11. Open Problems and Future Research Directions

This section discusses the challenges of AI-aided beamforming management solutions
and highlights various promising research directions.
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11.1. Centralized and Decentralized Learning

With the inception of Cloud-RANs (C-RANs), collaborative and centralized joint
processing of information became possible [191]. This joint processing can improve the
system capacity through the joint processing of the information gathered from several
different nodes [192].

Furthermore, in the context of AI-aided beamforming management, C-RANs offers
the possibility of enhancing the solutions to related problems by training AI algorithms
with data coming from several different and localized radios, which can hugely improve
the latency, QoS, and spectral and energy efficiency [193,194].

Centralized learning seems a straightforward and logical approach since massive
amounts and different types of information can be gathered and used to train the algorithms
better. Besides that, centralized processing means that enough storage and computing
power is available, which is a considerable advantage over the decentralized processing
occurring at radios with insufficient storage and processing power.

However, most of the surveyed works do not consider centralized processing or
training approaches, relying almost exclusively on non-collaborative distributed ones.
For instance, centralized processing can be used to solve the codebook design and beam
selection problems so that a given user can be served by multiple beams from different
radios, increasing the system capacity [195]. Additionally, considering centralized process-
ing, codebooks can be optimized to minimize the total transmit power subject to several
constraints, such as the users’ required rates [196].

Therefore, studying and proposing centralized training or processing approaches that
take advantage of the vast processing power, storage, and surplus of the data comprise a
promising research direction with several still open problems.

11.2. Reproducible Research

Reproducibility is the basis of the scientific method. Research is said to be reproducible
when all related information, including text, data, and code, is made accessible such that
interested researchers can reproduce the results. The reproducibility of published results
and the use of commonly available datasets for benchmarking are essential for creating
confidence and drawing precise conclusions [197].

However, even though the number of works on beamforming, including AI-aided
ones, increases daily, most of those works employ simulated and private datasets, making
it difficult to benchmark the proposed solutions. For example, in [198], the authors report
that only around a third of the considered papers share the dataset.

The IEEE Communications Society has created a study group called Machine Learn-
ing for Communications-Emerging Technologies Initiative (MLC-ETI) to increase research
reproducibility. The group is dedicated to promoting the utilization of ML in communica-
tions by providing the source code and datasets of several published works. Their main
objective is to define a set of common communications problems and their corresponding
source code and datasets with which researchers can benchmark their models consistently
and plausibly.

Therefore, openly available and widely spread datasets for benchmarking are of
utmost importance to advance not only AI-related studies, but also the research of the whole
scientific community. Furthermore, open-source initiatives are significant in accelerating
the embracement of AI-based solutions.

11.3. Semi-Supervised, Active, and Reinforcement Learning

Most works studied for this survey use supervised learning models trained with syn-
thetic datasets, which might not represent real-world environments. Adopting supervised
learning models in wireless communications is highly desirable since they present high
performance. However, as in other research areas, labeled datasets are usually unavailable,
cannot be accurately created, or are costly and time-consuming to create.
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In those cases where labeled samples are not available, unsupervised learning would
be the intuitive choice. Additionally, as shown in [199], the performance of unsupervised
learning models might be higher than that of supervised ones. If some labeled samples
are available, semi-supervised learning becomes a promising solution, exploiting the
advantages of supervised and unsupervised learning.

Another option is active learning, an exciting approach to solving the labeling problem.
With active learning, only a tiny fraction of samples are manually labeled and used to
train a classification model that will be used to label the remaining samples automatically.
During this process, automatically labeled samples can be used to retrain the model and
improve its classification accuracy. A few recent studies have started looking into and using
this kind of learning [200].

Yet another option is using reinforcement learning algorithms, which do not need a
training dataset and learn a mapping, called a policy in this context, between a given state
and the action that returns the highest reward based on trial and error attempts. With this
learning approach, it is possible to have a beamforming system that selects the best beams
based on the current state of the channel [155].

Therefore, future research works should focus on understanding and advancing the
use of unsupervised, semi-supervised, active, and reinforcement learning models.

11.4. Prototypes and Real-World Demonstrations

The necessity for prototyping beamforming and other technologies is paramount
to achieving the ideas envisioned for 5G and 6G systems. Additionally, prototyping is
necessary to assess whether these systems’ main performance demands on energy and
spectral efficiencies are satisfied.

Prototyping is vital since computer-based simulations cannot wholly capture the com-
plexity of the several unanswered problems, which might prevent AI-aided beamforming
from becoming a commercially viable solution. For instance, to thoroughly understand the
propagation aspects of the channel, researchers also have to understand the impairments
caused by the hardware (e.g., RF circuitry imperfections, synchronization issues, etc.) [67].
All these impairments must be well understood and accounted for to ensure effective and
seamless services to users.

The bulk of the works reviewed for this survey show a lack of real-world imple-
mentations and demonstrations. Instead, most works concentrate on simulation-based
assessments of the proposed algorithms and models and neglect the discussion of their
prototyping. Therefore, this gap highly suggests a vast potential for research on implement-
ing the proofs of concept that account for and propose solutions to the joint channel and
hardware circuitry impairments.

11.5. Privacy and Security

User data privacy is one of the most-, if not the most, essential worries of telecom
providers. However, on the other hand, as the use of ML becomes widespread in business,
telecom providers are finding that ML models can make the most of the enormous flow of
data they have in their possession.

ML models take advantage of the vast and rich datasets created by combining user
data. Therefore, one of the challenges met during the deployment of ML models is how
to train such models without exposing user data to privacy risks. Therefore, it is essential
to devise security schemes that allow these models to be trained with data from different
users without jeopardizing user privacy. One possible solution to this challenge is the use
of federated learning. In this approach, user data are not sent to a centralized entity (at the
BS) responsible for training the ML model. Instead, what is sent is the gradient information
data collected from the users, which is then used to update the ML model [201]. This way,
federated learning could be employed to avoid having users sending raw CSI back to the
BS for training, which mitigates both privacy and security risks [202].
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Another critical concern is the security of the ML models, mainly neural-network-
based ones, since they are subject to adversarial attacks [203]. In this kind of attack,
the performance of ML models, and consequently that of networks employing such models,
can be drastically impacted by the addition of fake data to the training dataset. Therefore,
in [204,205], the authors employ autoencoders, a kind of neural network, to tackle network
security problems since they have shown the ability to detect anomalies under several
different circumstances.

Unfortunately, the study of how adversarial attacks can affect the performance of
systems deploying ML-assisted beamforming is still in its infancy, requiring much more
attention as it poses high risks to such systems. However, a few works are already available
in the literature discussing such issues [189].

Therefore, there is considerable interest in studying and building privacy-preserving
systems and ML models that are robust against adversarial attacks.

11.6. Computer Vision

Computer vision is a subarea of AI dealing with how machines acquire high-level
understanding from data from optical sensors such as visible light and LiDAR cameras. Its
objective is to understand and reproduce the tasks the human visual system can carry out
through computers [206].

Due to their high directivity and high penetration loss, mmWave and THz communi-
cations are mainly carried out through LoS links. Moreover, they are highly susceptible to
blockages, requiring systems employing such bands to resort to beamforming techniques.
Nonetheless, selecting the optimal beams in mmWave and THz links often requires signifi-
cant beam training overhead, occupying necessary radio resources and decreasing spectral
efficiency. This challenge motivates the design of novel solutions to select the best beams
with low training overhead [207].

The reliance on LoS links and the employment of narrow beams at such frequencies
renders the information on the physical location of the devices and the geometry of the
surrounding environment particularly important. That prompts the use of sensors, such as
visible-light and LiDAR ones, that can provide information on the position of the devices
and a 3D representation of the surroundings so that the communication terminals can
allocate the best beams or even predict blockages and take preemptive handover actions.
Unlike traditional CSI-based methods, optical sensor-aided beamforming methods do not
require CSI measurements, and they can also simultaneously decide the best beams for
both transmitter and receiving devices. In addition, the accuracy of those methods can be
improved by adding GPS information or fusing it with optical and CSI data [208].

Optical-sensor-aided beamforming is a new and hot research topic attracting attention
recently. It has several open problems ranging from handover prediction, passing by
beam, and base station selection to received power prediction. The alliance between
computer vision and ML algorithms can make the most out of those optical-based data and
find models that mitigate or even solve all the problems mentioned earlier. To show the
potential of employing optical information, the authors of [209] use LiDAR data to train a
CNN-based model to predict blockages and preemptively initiate handover procedures.

Therefore, the initial results on this subject indicate that using computer vision, ML
algorithms, and optical data can bring huge gains to beamforming communications in
mmWave and THz frequencies.

11.7. Beamforming at Low-SNR Regimes and Joint Optimization

As can be concluded from this survey, beam selection, beam tracking, and blockage
prediction are the most-challenging tasks in beamforming. These tasks become more com-
plicated when beamforming systems operate in low-SNR scenarios. For instance, classical
eigen-subspace decomposition and projection methods suffer from severe performance
degradation at low-SNR levels [210]. Further, the high accuracy of MUSIC-based methods
is only achieved when many samples are available and the systems operate at high-SNR
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levels. On the other hand, some very initial works show that ML-based solutions can
outperform classical beamforming methods in low-SNR scenarios with a limited number of
channel information samples [106]. On the other hand, computer vision and ML algorithms
fed with sensor and GPS data seem better contenders to tackle this problem. Therefore,
the study and design of high-accuracy methods for beam selection and tracking in low-SNR
scenarios with limited samples remain an open issue.

Two quite exciting and still largely open issues beamforming systems face are the
joint optimization of parameters such as beams, transmission power, interference, etc.,
to maximize spectral and energy efficiency and joint beam selection and blockage prediction
tasks. Solutions to these issues are highly desirable features for mmWave and THz systems.
However, the extensive body of literature investigated for this survey lacks detailed studies
tackling them. For example, in [211], the authors propose an online learning approach to
optimize beam training, selection, and handover procedures. However, they do not study
the effects high mobility has on the system’s performance. Our research shows that today’s
models do not achieve high accuracy for such joint problems, and therefore, there still is
room for advancement.

11.8. Channel Estimation

Channel estimation in mmWave and THz systems employing beamforming and beam
management technologies is challenging due to several factors, such as the complexity of the
channel (estimation of a large number of channel coefficients accurately), limited coherence
time (short coherence time makes accurate channel estimation difficult), susceptibility to
impairments (signal propagation at these frequencies is more susceptible to attenuation,
scattering, and path loss), sparsity of the multipath components (signals at these frequencies
are directional and sparse with few dominant paths, requiring systems to capture and model
these paths), hardware constraints (limited hardware resources make channel estimation
more challenging since it needs to be performed efficiently and with low complexity),
and beam misalignment (misalignment might occur due to changes in the user location or
mobility, which can degrade the beamforming performance) [212–214]. Addressing these
challenges requires developing advanced channel estimation techniques that can accurately
estimate the channel parameters while also being computationally efficient and scalable.

Some open problems in this topic include:

• Developing robust and efficient channel estimation algorithms that can handle the
sparsity of the channel and limited coherence time.

• Investigating new channel estimation techniques that can take advantage of the hard-
ware constraints and limitations of mmWave and THz systems, such as low-resolution
Analog-to-Digital Converters (ADCs) and limited feedback bandwidth.

• Addressing the challenges of beam misalignment and developing adaptive channel
estimation algorithms that can adjust to changes in the user location or mobility.

• Investigating the use of machine learning techniques for channel estimation in mmWave
and THz systems, such as deep learning and reinforcement learning, which can poten-
tially improve the accuracy and efficiency of channel estimation.

• Multipath interference: In mmWave and THz systems, the multipath components can
arrive at the receiver with different delays and phases, leading to interference and
reduced signal quality. Channel estimation algorithms need to be designed to handle
the interference and accurately estimate the channel coefficients.

• Environmental effects: The mmWave and THz signals are highly sensitive to environ-
mental factors such as atmospheric absorption, scattering, and reflection. These effects
can cause significant variations in the channel characteristics, making it challenging to
estimate the channel accurately.

• Scalability: The use of a large number of antenna elements in mmWave and THz
systems can lead to scalability issues in channel estimation. Efficient channel estima-
tion algorithms that can handle a large number of antennas are needed to enable the
practical deployment of such systems.



Sensors 2023, 23, 4359 51 of 61

• Hybrid beamforming: In practical mmWave and THz systems, hybrid beamforming
techniques are often used, which combine digital and analog beamforming. Channel
estimation algorithms need to be designed to handle the complexity of such hybrid
beamforming architectures.

Artificial intelligence can be used to address these challenges. This includes develop-
ing efficient algorithms that can handle the sparsity of the channel, multipath interference,
and environmental effects. Machine learning techniques such as deep learning and re-
inforcement learning can be used to improve the accuracy and scalability of channel
estimation, especially in systems with hardware constraints and hybrid beamforming.

11.9. Definition of the Optimal ML Algorithm for a Given Beamforming Application

Determining the optimal ML algorithm for a specific beamforming application in
5G and 6G wireless networks is a challenging task that requires careful consideration of
multiple factors. However, one significant challenge that researchers face in determining
the optimal algorithm is the absence of standardized datasets that can be used to bench-
mark and objectively evaluate the performance of different ML algorithms [215]. This
lack of benchmarking datasets makes it difficult to compare the performance of different
algorithms and impedes the establishment of a consensus on the best algorithm to use in a
given application [20]. As a result, the development of standardized datasets for evaluating
ML algorithms in beamforming applications would be a crucial step in advancing research
in this area.

The availability of labeled data is a crucial factor that can limit the choice of algorithms
for supervised ML tasks. In some cases, obtaining labeled data may be challenging, thereby
restricting the choice of algorithms that can be employed [216]. Moreover, the performance
of ML algorithms is heavily reliant on the quality and quantity of training data available.
If the training data fail to capture real-world scenarios, the algorithm may not generalize
well and may underperform in practice, thereby limiting its applicability. In situations
where there is a dearth of training data, the options for selecting algorithms that can
learn with fewer data points are constrained [217]. Therefore, it is essential to ensure
that the available data are representative of real-world scenarios to obtain reliable ML
models. Furthermore, research in developing robust algorithms that can generalize well
with limited training data is crucial.

In addition, the performance of various algorithms can differ substantially across
various application scenarios, making it difficult to identify an algorithm that performs
optimally across all scenarios [218]. This variability in performance can be attributed
to several factors, including user mobility, a higher number of antennas, and the use of
elevated frequencies, which make beamforming a complex process that further complicates
the selection of the optimal algorithm [219].

Moreover, some ML algorithms require significant computational resources, and de-
ploying them on resource-constrained devices, where processing power, memory, and bat-
tery life are often limited, may not be practical. In such cases, algorithms must be
lightweight and efficient enough to meet these constraints [220]. Furthermore, in beam-
forming applications, decisions must sometimes be made in real-time based on the current
channel conditions, necessitating very fast optimization and inference. This requirement
rules out certain ML techniques, making it challenging to identify the optimal algorithm
for these scenarios [221].

Different ML algorithms may optimize different performance metrics, and achieving
a balance between these metrics may require a trade-off. This trade-off can make it chal-
lenging to determine the optimal algorithm for a specific application, requiring the careful
evaluation of multiple factors [222].

Finally, a definitive consensus on the optimal ML algorithm for beamforming appli-
cations in 5G and 6G networks remains elusive. Various researchers may express diverse
opinions depending on their specific application scenarios, as highlighted by Huang et al.
(2020) [223]. Future research in this area must prioritize addressing the aforementioned
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challenges, including the development of standardized datasets, enhancing the quality
of training data, and designing lightweight and efficient algorithms suitable for resource-
constrained devices. Furthermore, future research should emphasize the exploration of
novel ML techniques that can effectively cope with the intricacies and variability of beam-
forming in 5G and 6G networks.

12. Conclusions

The paper presented a comprehensive overview of beamforming, beam management,
and selection methods in the context of 5G and 6G systems. AI-aided beamforming and
beam management are among the most-active research topics at the interface between com-
munications and AI. While significant progress has been made in recent years, numerous
challenges remain before these technologies can be fully incorporated into communica-
tion standards. There is still no clear consensus on the optimal algorithm for any given
application. To address these issues, the article discussed promising research directions,
including increasing security and privacy, as well as leveraging larger, publicly available
datasets to rigorously evaluate new algorithms. Standardized evaluation methodologies
and open-source datasets will be crucial to compare algorithms objectively and accelerate
progress. Continued research in AI-aided beamforming, beam management, and selection
is critical to achieving the high data rates, massive connectivity, and low latency targeted in
5G and 6G networks. By gaining a deeper understanding of the problems and opportunities
in this space, this paper provides a valuable roadmap to guide future work. With con-
tinued innovation, AI-aided beamforming, beam management, and selection can enable
transformative changes in wireless communications.
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