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Abstract: Ransomware is a type of malware that employs encryption to target user files, rendering
them inaccessible without a decryption key. To combat ransomware, researchers have developed
early detection models that seek to identify threats before encryption takes place, often by monitoring
the initial calls to cryptographic APIs. However, because encryption is a standard computational
activity involved in processes, such as packing, unpacking, and polymorphism, the presence of
cryptographic APIs does not necessarily indicate an imminent ransomware attack. Hence, relying
solely on cryptographic APIs is insufficient for accurately determining a ransomware pre-encryption
boundary. To this end, this paper is devoted to addressing this issue by proposing a Temporal Data
Correlation method that associates cryptographic APIs with the I/O Request Packets (IRPs) based on
the timestamp for pre-encryption boundary delineation. The process extracts the various features
from the pre-encryption dataset for use in early detection model training. Several machine and deep
learning classifiers are used to evaluate the accuracy of the proposed solution. Preliminary results
show that this newly proposed approach can achieve higher detection accuracy compared to those
reported elsewhere.

Keywords: crypto-ransomware; data-centric; process-centric; event-based detection; early detection;
I/O Request Packet (IRP); malware; Application Programming Interface (API)

1. Introduction

Ransomware attacks, involving the encryption of victims’ files and subsequent de-
mands for payment in exchange for decryption keys, have emerged as a major concern for
organizations. This is due to their escalating sophistication and destructive potential [1].
The common types or ransomware are crypto-ransomware and locker-ransomware each
posing unique threats and necessitating different detection, prevention, and response strate-
gies [1–3]. Driven by their profitability and cybercriminals’ growing expertise, ransomware
attacks have become more widespread and sophisticated, targeting a diverse range of
organizations [1,2]. As a result, organizations must remain vigilant and adopt proactive
measures to protect themselves from these devastating attacks.

Ransomware uses the operating system’s own cryptographic libraries to encrypt the
files on a victim’s device [1]. It can target several environments and platforms including
cloud-based systems, Internet of Things, wireless sensor networks, power grid SCADA
(Supervisory Control and Data Acquisition (SCADA)), and intelligent transportation sys-
tems [2–6]. Although the nature of the ransomware infection process is similar to other
malware categories, the employment of cryptographic means makes the effect of an attack
irreversible if the decryption key is not available [7]. Therefore, detection solutions for
malware are not necessarily suitable for ransomware because the nature of the target as
well as the attack behavior is divergent from that of most other forms of attack [8]. As
ransomware attacks target user-related files instead of system-critical resources, existing
malware solutions might not be able to detect ransomware due to the different processes
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and focus [9]. Moreover, as stated above, after the ransomware encryption phase, the attack
displays a message to the user asking for a ransom amount promising this is the only way
to resolve the unavailability of computational resources and services [1]. Consequently, late
detection is not useful after the encryption has completed. Consequently, early detection,
also called pre-encryption detection, before the data and executables are encrypted is the
lone effective means to protect systems and data against ransomware attacks.

1.1. Pre-Encryption Detection

Early detection of ransomware attacks, also called pre-encryption detection, is crucial
in minimizing the damage caused by these attacks and reducing the likelihood of successful
ransomware infections. By detecting an attack in its early stages, organizations can take
steps to isolate the affected systems, prevent the spread of an attack to unaffected resources,
and minimize the impact on critical data and systems. Figure 1 shows the stages that
ransomware goes through during the pre-encryption phase of its characteristic lifecycle,
starting with the Portable Executable (PE) file execution on the victim’s device. The
ransomware is unpacked, and the source code is extracted. During this unpacking step, the
ransomware could use one or more cryptography-related APIs to decrypt the encrypted
payload. This could also involve opening a backdoor comms channel with the Command
and Control (C&C) server [10].
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dependency patterns.

Subsequently, the ransomware begins the installation of the malware by exploring
the environment on the victim’s device(s). Targeted resources are identified. Finally, the
ransomware can then encrypt the identified resource files and data. The assumption that the
first call of any cryptographic API is highly unlikely. Accordingly, existing solutions are unable
to delineate the boundary of the pre-encryption phase accurately. This negatively affects the qual-
ity of ransomware activity warning (RAW) data as it does not capture sufficient ransomware
pre-encryption attack patterns, which are necessary for early (pre-encryption) detection.

The first step for early detection (pre-encryption detection) is to identify the pre-
encryption phase of a ransomware attack Existing studies pertaining to ransomware pre-
encryption detection follow two approaches to determine (delineate) the boundary of the
pre-encryption phase, i.e., static and dynamic [11].
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1.1.1. Static Pre-Encryption Boundary Delineation

The static pre-encryption studies set a predefined boundary for the pre-encryption
phase of the ransomware lifecycle based on a fixed time threshold [12,13]. However, the
static approach for defining the pre-encryption boundary is not suitable for detecting
sophisticated, evasive ransomware that uses obfuscation and polymorphic techniques to
deceive detection. Such obfuscation invalidates the fixed time-based threshold due to
encryption start time variability (i.e., ransomware encryption start times can significantly
differ, some start earlier, while others start later [11]). There are two implications for using
the fixed-time thresholding approach. First, static thresholding may miss the beginning of
encryption if the ransomware starts later, and, consequently the pre-encryption data will
not be fully captured. This leads to data insufficiency, which negatively impacts the training
of early detection models. Second, the static thresholding could exceed the pre-encryption
boundary and capture data irrelevant to the pre-encryption data [14]. The inclusion of
irrelevant data negatively affects the ability of the detection model to discriminate attack
behaviors at the early stages of the ransomware lifecycle [15].

1.1.2. Dynamic Pre-Encryption Boundary Delineation

Dynamic thresholding is another approach used for delineating the pre-encryption
boundary of the ransomware attack lifecycle [11,14,16,17]. Unlike the static approach, the
dynamic pre-encryption definition does not rely on fixed predefined thresholds for all
ransomware samples. Instead, the dynamic approach tracks the boundary of ransomware
pre-encryption during the runtime based on the calling of the cryptographic APIs [17]. The
existing solutions that follow this approach build pre-encryption boundary vectors that
contain the cryptographic-related APIs. This vector is used as a reference from which up-
coming API call events are compared. When a match occurs, the end of the pre-encryption
phase is marked accordingly.

However, calling a cryptographic API does not necessarily indicate the beginning
of a malicious encryption cycle [17]. For example, benign applications commonly call
cryptographic APIs for purposes other than encryption involving packing, unpacking,
and obfuscation, which are typically seen from malicious activities. Such nonencryption
activities always occur at the very beginning of the ransomware installation. This is
a warning signal that occurs way before the malicious use of encryption takes place.
Consequently, relying solely on crypto-APIs to define the boundary of the pre-encryption
phase results in an early, premature cutoff of data collection. This limitation deprives
the detection model of essential early attack patterns necessary for accurate ransomware
detection. As a result, the data used for training the model become inadequate, leading to a
decline in detection accuracy.

1.2. Accurately Defining Pre-Encryption Boundaries

As discussed above, the inability to capture the proper amount of pre-encryption
data leads to insufficient training data. To address such an issue, this paper characterizes
the utilization of the temporal correlation between the API data and the I/O Request
Packet (IRP) data for accurate pre-encryption boundary delineation. Temporal correlation
between APIs and I/O Request Packets (IRPs) in ransomware analysis refers to the degree
of association between the usage of specific APIs and the appearance of corresponding IRPs
over time [17,18]. A high temporal correlation between APIs and IRPs would imply that
when a particular API is used, the corresponding IRP tends to appear with a consistent time
lag or lead. This can help analysts identify patterns in ransomware behavior and potentially
develop more effective detection and mitigation strategies. By studying the temporal
correlation between APIs and IRPs, we can gain insights into the relationships between
ransomware’s technical execution and its observable effects. This understanding can
improve the ability to delineate the pre-encryption phase of ransomware more effectively.

Ransomware that encrypts user data utilizes the cryptography-related APIs of the
underlying operating system [19]. Naturally, the ransomware would access the system
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files where the targeted files are located summoning IRP functions that can be captured
by monitoring the invoking process(es). As the calls of the IRP and API happen nearly at
the same time, the temporal correlation that relates the IRP and API data is determined
based on their timestamps. By accurately defining the pre-encryption boundary for the
ransomware lifecycle, more data can be captured, and sufficiently early attack patterns can
be recorded, which will certainly improve early detection accuracy.

1.3. Research Contribution

Herein, the temporal correlation was integrated into the feature extraction stage of
ransomware early detection modeling. To this end, the contribution of this paper is three-
fold. We

• propose a Temporal Data Correlation (TDC) method that associates the cryptographic
APIs with the IRPs based on the timestamp for pre-encryption boundary delineation,

• incorporate the TDC method into the Improved Pre-encryption Feature Extraction
(IPFE) technique, which focuses on pre-encryption features,

• evaluate the accuracy of this early detection model trained using the pre-encryption
data as well as using the common performance evaluation metrics.

Note that in this paper, crypto-ransomware and ransomware are used interchangeably,
unless stated otherwise. The rest of this paper is organized as follows. Section 2 details
the design of the methods and techniques proposed. Section 3 explains and discusses the
results obtained by the proposed technique as well as a comparison with related works.
The paper closes with a summary and conclusion.

1.4. Related Works

As pointed out above, ransomware can be classified into two types: locking-ransomware
and crypto-ransomware [8]. Unlike locking-ransomware, which can be easily bypassed,
the effects of crypto-ransomware are permanent because it uses encryption on user files.
Without the decryption key, it becomes difficult or even impossible for the victim to regain
access to their data [12]. Therefore, it is essential to detect this type of malware before it
begins encrypting user files and data.

Various studies have examined the irreversible impact of ransomware attacks and
suggested methods for identifying them. These methods can be classified into two groups:
data-centric and process-centric. Data-centric ransomware detection keeps track of dig-
ital assets on the victim’s computer and triggers an alert when an unusual change is
observed [8]. Techniques, such as decoy, entropy, and similarity, are used by data-centric
solutions to monitor file structure before and after access [20–23].

However, this approach cannot distinguish between changes made by ransomware
and those made by harmless programs, leading to a high number of false alarms [24–26].
More significantly, this method does not provide complete protection against ransomware
attacks because it sacrifices some files that may be more valuable than the remaining
data [8,25]. As a result, the data-centric approach is not effective for the early detection
of ransomware.

In contrast, process-centric research monitors the behavior of active processes to
gather various types of behavioral data. These data are then used to train different machine
learning classifiers, such as Random Forests and Naïve Bayes [27–29]. However, these
solutions rely on complete runtime data, including pre-encryption and post-encryption
data, to train the detection model [30,31]. This approach assumes that complete attack
patterns are available at the time of detection, which is not true for the early detection of
crypto-ransomware when attack data are not fully available [3].

Another type of process-centric ransomware detection involves monitoring various
resources on the local machine, such as CPU, network, I/O buffer, and memory [20,32–34].
When encryption-related events are detected, an alarm is triggered by the detection system.
However, relying on ad hoc events to detect crypto-ransomware attacks increases the
rate of false alarms because these events are not exclusive to crypto-ransomware. Some
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normal programs also trigger similar events [14]. Furthermore, these ad hoc events may
be triggered after encryption has occurred making this approach ineffective for early
detection [14]. Therefore, effective detection must take place during the early stages (pre-
encryption) before ransomware begins its primary sabotage, i.e., encryption.

Identifying the pre-encryption boundary is crucial for effective early detection so-
lutions. Several studies [8,12,13,30] have been conducted to investigate how such a
boundary could be determined. They rely on fixed thresholds as a cut-off to separate
the pre-encryption phase from the later phases. These thresholds fall under two categories:
time-based (temporal) and API-based. Time-based thresholds [13,30] define a fixed time
for each ransomware to run and collect data before execution is interrupted. API-based
thresholds [8,30] rely on a set of pre-defined cryptography-related APIs and use them to
label the pre-encryption boundary.

Based on the literature discussed above, the existing works lack an effective mechanism
for the early (pre-encryption) detection of ransomware. They were built based on an
assumption that the pre-encryption phase of the attack is fixed and can be defined based on
static thresholds, such as time or APIs. However, fixed thresholding, whether time-based
or API-based, may not accurately detect the start of encryption in ransomware attacks. This
may result in an incorrect representation of the pre-encryption phase and hinder the ability
of detection solutions to identify attacks before encryption takes place. Fixed time-based
thresholding assumes that all instances begin encryption before a specified time. However,
this assumption is often incorrect due to obfuscation techniques that create varying attack
behaviors. Similarly, relying solely on the first cryptography API call to determine pre-
encryption boundaries can be misleading. For example, the first cryptography API call may
not be related to the user’s file encryption and could instead be used for standard tasks,
such as unpacking or decrypting metamorphic payloads, before malicious activities begin.

Our study aims to address the limitations of fixed thresholding in detecting the start
of encryption in crypto-ransomware attacks by investigating a more accurate method for
delineating pre-encryption boundaries. Unlike existing approaches, our solution does not
rely on fixed thresholds. Instead, it examines the correlation between cryptography APIs
and IRPs based on timestamps. This correlation allows for a more precise identification of
the starting point of actual file encryption. We expect that our model can more accurately
determine when actual ransomware encryption begins, regardless of the various APIs or
time constraints. This starting point serves as the boundary separating the pre-encryption
phase from subsequent phases of ransomware attacks.

2. Methodology

The methodology adopted here as well as the design of the proposed techniques
is detailed. The proposed model consists of three main components: (i) Temporal Data
Correlation, (ii) Pre-encryption Feature Extraction, and (iii) Training and Testing of our
early detection model. These components are designed so that the output of the preceding
step becomes the input to the succeeding step. The following subsections elaborate the
data and design of those components.

2.1. Dataset

The ransomware Portable Excitable (PE) files can be downloaded from the Virusshare
(https://www.virusshare.com) site, a public repository used by related studies includ-
ing [8,12,27,30,35–37]. The corpus consists of 39,378 ransomware samples representing
different families, such as CryptoWall, Petya, and WannaCry. Moreover, 9732 benign
applications were downloaded from https://www.informer.com, a popular application
repository used by many ransomware and malware studies including [1,12,27,38–40]. The
files were executed in the Cuckoo Sandbox (2.0.7) virtual platform one by one [12,30,41–43].
After running each sample in a guest virtual machine, which is used to represent a victim,
the sandbox hooks the process created by the program under observation and captures
the APIs and IRPs into a trace file.

https://www.virusshare.com
https://www.informer.com
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To collect attack patterns from the runtime data of samples in the dataset, each sample
was analyzed dynamically on an analysis platform called Cuckoo Sandbox (2.0.7). Figure 2
shows a diagram of the Cuckoo Sandbox analysis environment. Cuckoo Sandbox is an
open-source framework for dynamically analyzing malware in a controlled and isolated
environment. It creates virtual machines to emulate different systems and executes malware
samples inside them to analyze their behavior. Cuckoo Sandbox can analyze various types
of malicious files and websites and trace API calls and general behavior, including analyzing
network traffic. The Sandbox is highly customizable and can integrate additional tools for
enhanced analysis capabilities, such as advanced memory analysis through Volatility or
YARA. Cuckoo also has embedded scripts that simulate basic user activities.
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Like the related works [8,13,30] that adopted the same procedure as suggested by [44],
we used Cuckoo Sandbox to run the ransomware samples and collect the runtime data.
When a ransomware sample is submitted, the sandbox sends it to the guest machine, which
imitates the victim’s device. Then, the Sandbox’s agent within the guest machine executes
the submitted sample. When the sample executes, a process in the guest machine is created
for it. Then, the sandbox uses a hooking utility to intercept the ransomware running process
in the guest machine and captures its runtime data including API calls, which were stored
in a trace file designated for that sample. The following steps were used when conducting
the dynamic analysis:

1. A command line utility called ‘submit’ within the sandbox was used to submit the
malware sample to Cuckoo Sandbox.

2. Then, the Cuckoo Sandbox automatically began the dynamic analysis process. Cuckoo
created a new virtual machine (VM) instance from the clean snapshot, executed the mal-
ware sample within the isolated environment, and monitored the malwares’ behavior.

3. The analysis progress could be monitored in real time through the Cuckoo web
interface or command line output.

4. Cuckoo logged the actions performed by the malware, such as file system changes,
network activity, and API calls into a JSON file.

5. Once the analysis was complete, Cuckoo generated a detailed report containing
information about the malware’s behavior and impact on the system.

6. The guest machine was then restored to its clean state, ready for analysis of the next
ransomware sample. This step ensured that the behavior of the next sample was not
influenced by any previous infections.
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Cuckoo generated comprehensive reports, in a JSON format, following malware
analysis, providing insights into the malware’s behavior and potential impact on a system.
The reports encompass both static and dynamic analysis information, including file details,
metadata, extracted strings, behavioral summaries, API calls, process trees, file system
and registry activities, network interactions, and memory analysis. Additionally, the
reports offer screenshots, dropped files, and extracted Indicators of Compromise (IoCs),
facilitating a deeper understanding of the malware’s functionality, characteristics, and
potential mitigation strategies. These JSON files comprise the corpus from which the
dataset was built, and features were extracted and selected before being used to train
the detection model. Figure 2 shows the architecture of the crypto-ransomware dynamic
analysis. After each run, the guest machine was reset to its original uninfected state to
ensure that subsequent samples would not be influenced by previous infections. From each
trace file’s runtime data, only API calls and their parameters were kept, while all other data
were discarded.

2.2. Temporal Data Correlation Method

Based on the dataset collected from executing the Portable Excitable (PE) files in the
Sandbox, the Temporal Data Correlation (TDC) method was developed. The method
extracted cryptographic APIs and IRPs by looking into the timestamp. The cryptographic
APIs and IRPs that shared the same timestamp were paired as a group (vector). This is
because multiple APIs and IRPs were called at the same timestamp. At the beginning, the
vector containing cryptographic APIs was built according to [8]. Then, this vector was
used as input to the TDC, which used it as a filter for selecting the cryptographic APIs and
filtering out the irrelevant ones.

As pointed out above, the temporal correlation was performed based on the timestamp
attached with both APIs and IRPs. As multiple APIs/IRPs could share the same timestamp,
the data were grouped based on the timestamp. After that, API arguments (input and
output parameters) were used to check whether a particular cryptographic API interacted
with the file system. This was performed by looking into the presence or absence of file
handlers. If the API used the file handlers, it would be kept in the API/IRP group and
removed otherwise. Based on such criteria, the first API/IRP match was considered as the
boundary that ends the pre-encryption phase and starts the encryption phase within the
ransomware lifecycle. Then, the set of APIs/IRPs that satisfy the criteria were combined
into a bidimensional pre-encryption vector, where the pre-encryption boundary for each
ransomware was determined.

2.3. Improved Pre-Encryption Feature Extraction (IPFE) Technique

After the pre-encryption vector was constructed, it was used to determine the pre-
encryption boundary for each trace file in the corpus. The data that came before this
boundary were extracted into another trace file called the pre-encryption trace (PT) file
such that each program in the original corpus had its own PT file. In the PT files, only API
calls were included, while other types of data were removed. These PT files were used as
input for the feature extraction stage.

During feature extraction, the annotated Term Frequency Inverse Document Frequency
(TF-IDF) technique [8] was used. The TF-IDF gives more weight to features related to the
pre-encryption phase of the ransomware lifecycle. The general formula used to compute
the Term Frequency-Inverse Document Frequency (TF-IDF) is expressed here [8]:

w(apij
k) = tf(apij

k)·log
N

idf(apik)
(1)

where apik represents the kth API and tf(apij
k) computes a term frequency at the ran-

somware’s PT file level, rj. Moreover, idf(apik) computes the inverse document frequency
on the corpus level to determine the number of ransomware samples, rj, that used an apik
at least once. N is the total number of ransomware instances in the corpus.
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The features extracted by the IPFE technique were then used to train a set of ma-
chine learning classifiers for ransomware early detection (RED). The classifiers used in
this study were a mix of traditional and deep learning approaches. In particular, the
Logistic Regression, Support Vector Machines, Deep Belief Networks, and Convolutional
Neural Networks were used for testing the efficacy of the features extracted by IPFE for
ransomware early detection.

2.4. Experimental Environment

The ransomware analysis was carried out in an isolated environment using the Cuckoo
Sandbox installed on a PC with Intel® CoreTM i7-4790 CPU @ 3.60 GHZ and 32 GB RAM.
The Cuckoo Sandbox platform was developed based on the guidelines described in [29].
Moreover, the Cuckoo Sandbox was installed inside an Oracle Virtual Box. A Linux Ubuntu
4.4.0-59 generic machine was created as a Cuckoo platform inside Virtualbox, where Cuckoo
Sandbox software and related packages were installed. In addition, a Windows 7 guest
machine was created inside the Cuckoo Sandbox platform. In the virtual machine, a
collection of user-related applications and files were established to give the appearance
of a genuine computer. The virtual machine had several applications installed, including
Microsoft Office, Adobe Acrobat Reader, Google Chrome, and Mozilla Firefox. Moreover,
various nonsystem folders were established in different parts of the virtual machine’s
file system. These folders contained approximately 1647 files, including Microsoft Word
documents, Excel sheets, PowerPoint presentations, Visio files, PDFs, JPG images, and
short video files.

The ransomware and nonmalicious programs were individually executed in the Sand-
box environment, and their data were recorded into a separate trace file for each program.
After each execution, the virtual machine was returned to its original, pristine state. The
collected data were cleaned to eliminate any irrelevant information and then used as input
for the TDC and IPFE feature extraction technique phase. The techniques, along with the
results and analysis, were implemented using Python libraries, such as Sklearn, Pan-das,
and Numpy.

3. Results and Discussion

The performance of our proposed Improved Pre-encryption Feature Extraction (IPFE)
technique was evaluated using a dataset that was divided into a training set and a testing
set using 10-fold cross-validation. The IPFE technique is utilized to extract features from
the data, which were then used to train various machine learning classifiers, including
Support Vector Machine (SVM), Logistic Regression (LR), Deep Belief Networks (DBN),
Convolutional Neural Network (CNN), and Multi-layer Perceptron (MLP). The test set was
employed to assess the classification performance of each classifier based on the extracted
features using metrics, such as accuracy (ACC), F score (F1), precision, recall, and the Area
under the ROC Curve (ROC-AUC). Equations (2)–(5) outline the calculation of these metrics.

Accuracy (ACC) ACC = TP+TN
TP+TN+FP+FN (2)

F1 F1 =
2TP+

2TP + FP + FN
(3)

Precision Precision =
TP

TP + FP
(4)

Recall Recall =
TP

FP + FN
(5)

where FP, TP, FN, and TN denote false-positive, true-positive, false-negative, and true-
negative, respectively.

The experimental results of the classifier trained using the extracted features using our
IPFE technique are represented in Table 1. We used various evaluation metrics including
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Recall, Precision, F score (F1), accuracy (ACC), and False-Positive Rate (FPR). The recall
results depict that the MLP classifier achieved 0.947, which is the lowest value among the
results, while the SVM classifier achieved the highest value of recall (99). According to the
precision of classifiers, our results show that the IPFE classifier’s precision ranged between
0.9 for MLP and 0.942 for DBN. Similarly, the results of the F1 values range between 0.932
and 0.952 for MLP and DBN, respectively. In the case of classification accuracy, the results of
the classifiers range between 0.892 for LR and 0.946 for DBN. The values for the ROC_AUC
range between 0.812 and 0.893 for MLP and DBN, respectively.

Table 1. Performance of the IPFE in terms of accuracy (ACC), F1, Precision, Recall, and ROC_AUC.

LR SVM DBN CNN MLP

ACC 0.892 0.93 0.946 0.931 0.916
F1 0.941 0.948 0.959 0.949 0.932

Precision 0.904 0.916 0.942 0.937 0.9
Recall 0.995 0.99 0.974 0.966 0.947

ROC_AUC 0.812 0.855 0.893 0.87 0.842

Figures 3–7 represent the results of the IPFE technique in comparison with the various
state-of-the-art models. The purpose of this comparison it to show the improvement
achieved by the IPFE technique compared to the related work from the literature. Herein,
we chose the studies from [8,13,30] as they follow the same approach and investigate the
same problem as we do here. We note that the results of the recall, precision, F1, accuracy,
and ROC_AUC classifications from our IPFE technique were improved compared to the
conventional techniques that we considered against all other classifiers. Therefore, the
temporal correlation among the APIs and IRPs utilized in our IPFE technique can identify a
new key behavioral aspect of the crypto-ransomware attack lifecycle in an earlier stage better
than those other methods, under the assumption that the downloaded data are representative of
comparable testing. Again, consider Table 1 and Figures 3–7 regarding these claims.
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Figure 3. The performance comparison between the proposed IPFE with related techniques
(Al-rimy et al. (2020) [8], Rhode et al. (2018) [30], and Homayoun et al. (2017) [13]) using LR.
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Figure 5. The performance comparison between the proposed IPFE with related techniques
(Al-rimy et al. (2020) [8], Rhode et al. (2018) [30], and Homayoun et al. (2017) [13]) using DBN.
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Figure 6. The performance comparison between the proposed IPFE with related techniques
(Al-rimy et al. (2020) [8], Rhode et al. (2018) [30], and Homayoun et al. (2017) [13]) using CNN.
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Figure 7. The performance comparison between the proposed IPFE with related techniques
(Al-rimy et al. (2020) [8], Rhode et al. (2018) [30], and Homayoun et al. (2017) [13]) using MLP.

This improvement by the IPFE technique to obtain and utilize more data as compared
to other models results in a better characterization of discrete stages in the ransomware
lifecycle. IPFE tracks the beginning point of the encryption processes for each instance
individually. Thus, the IPFE technique takes advantage of the complimentary nature that
the various instances display in the dataset, giving it the opportunity to extract more
pre-encryption data that result in a better and more accurate characterization. In other
words, although some instances start the encryption very early, there are other instances
that start the encryption later. Therefore, the dynamic thresholding compensates for the
lack of information about the instances that start the encryption early using the information
gathered by the instances that start the encryption cycle later.
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4. Summary, Conclusions, and Future Research

This paper presents a novel approach for early ransomware detection by leveraging
temporal correlation between API data and I/O Request Packet (IRP) data for accurate
pre-encryption boundary delineation. The proposed Temporal Data Correlation (TDC)
method effectively identifies whether a specific cryptographic API is involved in the ran-
somware encryption process. By constructing a vector of API–IRP pairs, the TDC method
represents the pre-encryption phase of the ransomware lifecycle, which is crucial for early
detection. The IPFE technique employed in this study aids in extracting the pre-encryption
features that are essential for training various machine learning and deep learning clas-
sifiers. These classifiers were then utilized in the development of a ransomware early
detection model, which aimed to identify ransomware attacks even before the encryption
process commences.

The experimental results of our study substantiate the effectiveness of the proposed
solution, demonstrating its capability to detect ransomware attacks in their early stages.
This innovative approach has the potential not only to enhance the security of computer
systems but also to mitigate the detrimental consequences of ransomware attacks on users
and organizations. By further refining and developing the proposed techniques, it is
anticipated that the early detection of ransomware attacks will become increasingly reliable,
contributing to the advancement of cybersecurity ransomware countermeasures and the
protection of valuable digital assets.

For future work, this research can be extended in several ways. One possibility is to
improve the IPFE technique by incorporating redundancy estimation to extract unique
features and reduce data dimensionality. Another potential improvement is to add a rele-
vancy score calculation coefficient to the IPFE technique, which would help determine the
significance of features with respect to the target label. By incorporating these mechanisms,
the IPFE technique is expected to extract a compact set of relevant and nonredundant
features, thereby reducing model complexity and increasing its efficiency. In terms of
improving the TDC method, one possibility is to add the capability to analyze anti-analysis
ransomware samples. This type of ransomware examines its environment, and if it detects
an analysis tool artifact, halts its execution or changes its behavior to conceal its real intent.
As a result, the analysis sandbox may not be able to capture the ransomware’s behavior
accurately. Addressing these challenges will be a focus of our future research.

Author Contributions: Methodology, A.A.; Software, A.A.; Validation, A.A.; Formal analysis, A.A.;
Writing—original draft, A.A.; Writing—review & editing, F.T.S.; Visualization, A.A.; Supervision,
F.T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmed, Y.A.; Kocer, B.; Al-rimy, B.A.S. Automated analysis approach for the detection of high survivable ransomware. KSII

Trans. Internet Inf. Syst. 2020, 14, 2236–2257.
2. Alghofaili, Y.; Albattah, A.; Alrajeh, N.; Rassam, M.A.; Al-Rimy, B.A.S. Secure Cloud Infrastructure: A Survey on Issues, Current

Solutions, and Open Challenges. Appl. Sci. 2021, 11, 9005. [CrossRef]
3. Khalaf, B.A.; Mostafa, S.A.; Mustapha, A.; Mohammed, M.A.; Mahmoud, M.A.; Al-Rimy, B.A.S.; Razak, S.A.; Elhoseny, M.;

Marks, A. An adaptive protection of flooding attacks model for complex network environments. Secur. Commun. Netw. 2021,
2021, 5542919. [CrossRef]

4. Hussain, S.; Mustafa, M.W.; Al-Shqeerat, K.H.A.; Saeed, F.; Al-Rimy, B.A.S. A Novel Feature-Engineered–NGBoost Machine-
Learning Framework for Fraud Detection in Electric Power Consumption Data. Sensors 2021, 21, 8423. [CrossRef]

https://doi.org/10.3390/app11199005
https://doi.org/10.1155/2021/5542919
https://doi.org/10.3390/s21248423


Sensors 2023, 23, 4355 13 of 14

5. Alsoufi, M.A.; Razak, S.; Siraj, M.; Al-Rimy, B.A.; Ali, A.; Nasser, M.; Abdo, S. A Review of Anomaly Intrusion Detection Systems
in IoT using Deep Learning Techniques. Adv. Data Sci. Adapt. Anal. 2021, 13, 2143001. [CrossRef]

6. Kean, C.; Ghaleb, B.; Mcclelland, B.; Ahmad, J.; Wadhaj, I.; Thomson, C. The Mobile Attacks under Internet of Things Networks.
In Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems; Springer: Cham, Switzerland, 2022.

7. Olaimat, M.N.; Maarof, M.A.; Al-rimy, B.A.S. Ransomware Anti-Analysis and Evasion Techniques: A Survey and Research
Directions. In Proceedings of the 2021 3rd International Cyber Resilience Conference (CRC), Online, 29–31 January 2021.

8. Al-Rimy, B.A.S.; Maarof, M.A.; Alazab, M.; Alsolami, F.; Shaid, S.Z.M.; Ghaleb, F.A.; Al-Hadhrami, T.; Ali, A.M. A Pseudo
Feedback-Based Annotated TF-IDF Technique for Dynamic Crypto-Ransomware Pre-Encryption Boundary Delineation and
Features Extraction. IEEE Access 2020, 8, 140586–140598. [CrossRef]

9. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Ransomware threat success factors, taxonomy, and countermeasures: A survey and
research directions. Comput. Secur. 2018, 74, 144–166. [CrossRef]

10. Urooj, U.; Al-rimy, B.A.S.; Zainal, A.; Ghaleb, F.A.; Rassam, M.A. Ransomware Detection Using the Dynamic Analysis and
Machine Learning: A Survey and Research Directions. Appl. Sci. 2022, 12, 172. [CrossRef]

11. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Crypto-ransomware early detection model using novel incremental bagging with
enhanced semi-random subspace selection. Future Gener. Comput. Syst. 2019, 101, 476–491. [CrossRef]

12. Sgandurra, D.; Muñoz-González, L.; Mohsen, R.; Lupu, E.C. Automated dynamic analysis of ransomware: Benefits, limitations
and use for detection. arXiv 2016, arXiv:1609.03020.

13. Homayoun, S.; Dehghantanha, A.; Ahmadzadeh, M.; Hashemi, S.; Khayami, R. Know abnormal, find evil: Frequent pattern
mining for ransomware threat hunting and intelligence. IEEE Trans. Emerg. Top. Comput. 2017, 8, 341–351. [CrossRef]

14. Al-rimy, B.A.S.; Maarof, M.A.; Prasetyo, Y.A.; Shaid, S.Z.M.; Ariffin, A.F.M. Zero-day aware decision fusion-based model for
crypto-ransomware early detection. Int. J. Integr. Eng. 2018, 10, 82–88. [CrossRef]

15. Ahmed, Y.A.; Huda, S.; Al-Rimy, B.A.S.; Alharbi, N.; Saeed, F.; Ghaleb, F.A.; Ali, I.M. A Weighted Minimum Redundancy
Maximum Relevance Technique for Ransomware Early Detection in Industrial IoT. Sustainability 2022, 14, 1231. [CrossRef]

16. Urooj, U.; Maarof, M.A.B.; Al-rimy, B.A.S. A proposed Adaptive Pre-Encryption Crypto-Ransomware Early Detection Model. In
Proceedings of the 2021 3rd International Cyber Resilience Conference (CRC), Langkawi Island, Malaysia, 29–31 January 2021.

17. Alqahtani, A.; Gazzan, M.; Sheldon, F.T. A proposed Crypto-Ransomware Early Detection (CRED) Model using an Integrated
Deep Learning and Vector Space Model Approach. In Proceedings of the 2020 10th Annual Computing and Communication
Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020.

18. Mo, W.; Li, Z.; Zeng, Z.; Xiong, N.N.; Zhang, S.; Liu, A. SCTD: A spatiotemporal correlation truth discovery scheme for security
management of data platform. Futur. Gener. Comput. Syst. 2023, 139, 109–125. [CrossRef]

19. Wang, Y.; Lou, X.; Fan, Z.; Wang, S.; Huang, G. Verifiable multi-dimensional (t, n) threshold quantum secret sharing based on
quantum walk. Int. J. Theor. Phys. 2022, 61, 24. [CrossRef]

20. Kirda, E. UNVEIL: A large-scale automated approach to detecting ransomware (keynote). In Proceedings of the 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, Austria, 20–24 February
2017; pp. 757–772.

21. Gómez-Hernández, J.A.; Álvarez-González, L.; García-Teodoro, P. R-locker: Thwarting ransomware action through a honey
file-based approach. Comput. Secur. 2018, 73, 389–398. [CrossRef]

22. Song, S.; Kim, B.; Lee, S. The effective ransomware prevention technique using process monitoring on Android platform. Mobile
Inf. Syst. 2016, 2016, 2946735. [CrossRef]

23. Mbol, F.; Robert, J.-M.; Sadighian, A. An efficient approach to detect torrent locker ransomware in computer systems. In
International Conference on Cryptology and Network Security, Proceedings of the 15th International Conference, CANS 2016, Milan, Italy,
14–16 November 2016; Springer: Cham, Switzerland, 2016; pp. 532–541.

24. Morato, D.; Berrueta, E.; Magaña, E.; Izal, M. Ransomware early detection by the analysis of file sharing traffic. J. Netw. Comput.
Appl. 2018, 124, 14–32. [CrossRef]

25. Scaife, N.; Carter, H.; Traynor, P.; Butler, K.R.B. CryptoLock (and drop It): Stopping ransomware attacks on user data. In
Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June
2016; pp. 303–312.

26. Moussaileb, R.; Bouget, B.; Palisse, A.; Le Bouder, H.; Cuppens, N.; Lanet, J.L. Ransomware’s early mitigation mechanisms. In
Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August
2018; pp. 1–7.

27. Chen, Z.-G.; Kang, H.-S.; Yin, S.-N.; Kim, S.-R. Automatic Ransomware Detection and Analysis Based on Dynamic API Calls Flow
Graph. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, New York, NY, USA,
20–23 September 2017; ACM: Krakow, Poland; pp. 196–201.

28. Cohen, A.; Nissim, N. Trusted detection of ransomware in a private cloud using machine learning methods leveraging meta-
features from volatile memory. Expert Syst. Appl. 2018, 102, 158–178. [CrossRef]

29. Ahmadian, M.M.; Shahriari, H.R. 2entFOX: A framework for high survivable ransomwares detection. In Proceedings of the 2016
13th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC), Tehran, Iran, 7–8
September 2016; pp. 79–84.

https://doi.org/10.1142/S2424922X21430014
https://doi.org/10.1109/ACCESS.2020.3012674
https://doi.org/10.1016/j.cose.2018.01.001
https://doi.org/10.3390/app12010172
https://doi.org/10.1016/j.future.2019.06.005
https://doi.org/10.1109/TETC.2017.2756908
https://doi.org/10.30880/ijie.2018.10.06.011
https://doi.org/10.3390/su14031231
https://doi.org/10.1016/j.future.2022.09.022
https://doi.org/10.1007/s10773-022-05009-w
https://doi.org/10.1016/j.cose.2017.11.019
https://doi.org/10.1155/2016/2946735
https://doi.org/10.1016/j.jnca.2018.09.013
https://doi.org/10.1016/j.eswa.2018.02.039


Sensors 2023, 23, 4355 14 of 14

30. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput. Secur. 2018, 77, 578–594.
[CrossRef]

31. Mehnaz, S.; Mudgerikar, A.; Bertino, E. RWGuard: A real-time detection system against cryptographic ransomware. In Research
in Attacks Intrusions and Defense; Springer: Cham, Switzerland, 2018; Volume 11050, pp. 114–136.

32. Cusack, G.; Michel, O.; Keller, E. Machine learning-based detection of ransomware using SDN. In Proceedings of the 2018 ACM
International Workshop on Security in Software Defined Networks & Network Function Virtualization, Tempe, AZ, USA, 21
March 2018; pp. 1–6.

33. KCabaj; Gawkowski, P.; Grochowski, K.; Osojca, D. Network activity analysis of cryptowall ransomware. Prz. Elektrotech. 2015,
91, 201–204.

34. Cabaj, K.; Gregorczyk, M.; Mazurczyk, W. Software-defined networking-based crypto ransomware detection using HTTP traffic
characteristics. Comput. Electr. Eng. 2018, 66, 353–368. [CrossRef]

35. Le Guernic, C.; Legay, A. Ransomware and the Legacy Crypto API. In Proceedings of the Risks and Security of Internet
and Systems: 11th International Conference, CRiSIS 2016, Roscoff, France, 5–7 September 2016; Springer: Berlin/Heidelberg,
Germany, 2017.

36. Christensen, J.B.; Beuschau, N. Ransomware Detection and Mitigation Tool. Master’s Thesis, Technical University of Denmark,
Lyngby, Denmark, 2017.

37. Ahmed, Y.A.; Koçer, B.; Huda, S.; Al-rimy, B.A.S.; Hassan, M.M. A system call refinement-based enhanced Minimum Redundancy
Maximum Relevance method for ransomware early detection. J. Netw. Comput. Appl. 2020, 167, 102753. [CrossRef]

38. Ioanid, A.; Scarlat, C.; Militaru, G. The Effect of Cybercrime on Romanian SMEs in the Context of Wannacry Ransomware Attacks.
In Proceedings of the 12th European Conference on Innovation and Entrepreneurship ECIE, Paris, France, 21–22 September 2017.

39. Pandey, S.K.; Mehtre, B.M. Performance of malware detection tools: A comparison. In Proceedings of the 2014 IEEE International
Conference on Advanced Communication, Control and Computing Technologies, ICACCCT 2014, Ramanathapuram, India, 8–10
May 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015.

40. Al-rimy, B.A.S.; Maarof, M.A.; Alazab, M.; Shaid, S.Z.M.; Ghaleb, F.A.; Al-Hadhrami, T. Redundancy Coefficient Gradual
Up-weighting-based Mutual Information Feature Selection technique for Crypto-ransomware early detection. Future Gener.
Comput. Syst. 2021, 115, 641–658. [CrossRef]

41. Popli, N.K.; Girdhar, A. Behavioural Analysis of Recent Ransomwares and Prediction of Future Attacks by Polymorphic and Metamorphic
Ransomware; Springer: Singapore, 2019.

42. Genç, Z.A.; Lenzini, G.; Ryan, P. Security Analysis of Key Acquiring Strategies Used by Cryptographic Ransomware. In
Proceedings of the Central European Cybersecurity Conference, Ljubljana, Slovenia, 15–16 November 2018. [CrossRef]

43. Maniath, S.; Ashok, A.; Poornachandran, P.; Sujadevi, V.; Prem Sankar, A.U.; Jan, S. Deep learning LSTM based ransomware
detection. In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida,
India, 26–27 October 2017.

44. Rossow, C.; Dietrich, C.J.; Grier, C.; Kreibich, C.; Paxson, V.; Pohlmann, N.; Bos, H.; van Steen, M. Prudent practices for designing
malware experiments: Status quo and outlook. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San
Francisco, CA, USA, 20–23 May 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cose.2018.05.010
https://doi.org/10.1016/j.compeleceng.2017.10.012
https://doi.org/10.1016/j.jnca.2020.102753
https://doi.org/10.1016/j.future.2020.10.002
https://doi.org/10.1145/3277570.3277577

	Introduction 
	Pre-Encryption Detection 
	Static Pre-Encryption Boundary Delineation 
	Dynamic Pre-Encryption Boundary Delineation 

	Accurately Defining Pre-Encryption Boundaries 
	Research Contribution 
	Related Works 

	Methodology 
	Dataset 
	Temporal Data Correlation Method 
	Improved Pre-Encryption Feature Extraction (IPFE) Technique 
	Experimental Environment 

	Results and Discussion 
	Summary, Conclusions, and Future Research 
	References

