
Citation: Liubogoshchev, M.;

Zudin, D.; Krasilov, A.; Krotov, A.;

Khorov, E. DeSlice: An Architecture

for QoE-Aware and Isolated RAN

Slicing. Sensors 2023, 23, 4351.

https://doi.org/10.3390/s23094351

Academic Editor: Oleg Varlamov

Received: 20 March 2023

Revised: 17 April 2023

Accepted: 25 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DeSlice: An Architecture for QoE-Aware and Isolated
RAN Slicing
Mikhail Liubogoshchev 1,2 , Dmitry Zudin 1,2 , Artem Krasilov 1 , Alexander Krotov 1

and Evgeny Khorov 1,*

1 Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
2 Phystech School of Radio Engineering and Computer Technology, Moscow Institute of Physics and

Technology (National Research University), 115184 Moscow, Russia
* Correspondence: khorov@wireless.iitp.ru

Abstract: Network slicing is considered a key feature of 5G and beyond cellular systems. It opens
the door for new business models of mobile operators, enables new services, reduces costs with
advanced infrastructure-sharing techniques, and improves heterogeneous traffic service. With slicing,
the operators can tailor the network resources to the requirements of specific verticals, applications,
and corresponding traffic types. To satisfy the heterogeneous quality of service (QoS) requirements
of various slices, efficient virtualization and resource allocation algorithms are required. Such
algorithms are especially crucial for the radio access network (RAN) because of the spectrum scarcity.
This article develops DeSlice, a novel architecture for RAN slicing. DeSlice enables efficient real-
time slicing algorithms that satisfy heterogeneous QoS requirements of the slices and improve
the quality of experience for their end users. The article illustrates the advantages of DeSlice by
considering the problem of the joint service of cloud VR, video, and web traffic. It develops the
algorithms using DeSlice architecture and application-to-network communication. With simulations,
it shows that, together, the architecture and the algorithms allow greatly improving the QoE for these
traffics significantly.

Keywords: network slicing; resource allocation; wireless networks; 5G; network assistance; cross-
layer interaction; scheduling; radio access network

1. Introduction

We witness enormous traffic growth and the emergence of new types of traffic. In
addition to well-known web traffic, online gaming, VoIP calls, video conferencing, and
IPTV, today’s networks are saturated with dynamic adaptive streaming over HTTP (DASH)
(such as YouTube and Netflix) and Internet of Things (IoT) communications. This decade,
networks are expected to provide a medium for such demanding applications as industry
automation, tactile internet, and augmented and virtual reality (AR/VR) applications. Each
traffic type has a specific quality of experience (QoE) model and the corresponding quality
of service (QoS) requirements.

5G networks aim to satisfy all these requirements at once. They provide high data
rates, high reliability, low latency, high power and spectrum efficiency, high connection, and
traffic density [1]. Unfortunately, despite broader frequency bands, the operators’ resources
remain limited. Hence, to simultaneously satisfy such heterogeneous and contradictory
requirements for complex traffic, 5G networks need to be much more flexible than the
preceding generations. Network slicing and virtualization are the primary enablers of such
flexibility [2].

Following the network slicing paradigm, multiple virtual networks (slices) can be
deployed within a single physical infrastructure. Through network function virtualiza-
tion (NFV), typical network functions are decoupled from the hardware executing them.

Sensors 2023, 23, 4351. https://doi.org/10.3390/s23094351 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2674-7674
https://orcid.org/0000-0001-7300-1424
https://orcid.org/0000-0001-6843-4428
https://orcid.org/0000-0003-0578-0782
https://orcid.org/0000-0001-5541-4671
https://doi.org/10.3390/s23094351
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094351?type=check_update&version=1


Sensors 2023, 23, 4351 2 of 15

Routing, charging, content delivery, and other functions are implemented in software
and executed on commodity servers and switches. Similarly, network resources, such
as wired links, wireless channels, and antennas, are virtualized and decoupled from the
corresponding physical ones.

By now, numerous studies have considered such aspects of network slicing as slice life-
cycle management [3], virtual network function placement [4–6], slice admission control [7],
slice resource management [8], and slice security [9,10].

The essential variability and stochasticity of user behavior, network state, traffic flows,
and computational workload require dynamic long- and short-term resource allocation to
provide high QoS and QoE and minimize costs for operators. Thus, hypervisors (i.e., slicing
algorithms) are required to efficiently multiplex the execution of different virtual network
functions on shared servers, data storage in shared databases, and the transmission of data
flows over shared wired and wireless links [8]. Computing hardware virtualization and
containerization efficiently solves the former issues, and the latter are well studied in the
case of wired networks. However, many issues are still open in wireless networks [3].

RAN (radio access network) slicing differs from the core (i.e., wired) network slicing
because of the additional stochasticity and variability of the wireless channel and the
complex relationship between the available bandwidth and the throughput of different
clients [11]. For example, if two clients have different channel conditions (path loss,
interference, and fading), they have different channel capacities and consequently need
different channel resources to achieve the same throughput. These peculiarities, along
with heterogeneous traffic patterns and QoS requirements of different slices, turn the RAN
slicing problem into a complex multi-criteria optimization problem. Yet, this problem shall
be solved in real time at the base station.

1.1. State-of-the-Art RAN Slicing Architectures

The problem of RAN slicing is widely addressed in the literature but still has many
unresolved issues [12]. The most important is the trade-off between isolation and efficiency.
On the one hand, isolation is one of the central business requirements of mobile operators:
a higher degree of isolation allows for revealing less information about the operator’s
customers and business models [13]. On the other hand, the higher the degree of isolation,
the lower the statistical multiplexing gain and the infrastructure reuse efficiency [14].

The isolation at the bandwidth layer is the most common approach to this trade-
off [15,16]. It implies that the infrastructure provider (InP) semi-statically assigns a fixed
configuration of channel resources: bandwidth and periodicity. The allocation is done
according to the current load and advertised QoS requirements of the slice. The slice
operator allocates these resources to its clients according to its policy. If some slices cannot
use their resources at some moment, InP redistributes the surplus between the other slices.
We can generally illustrate such resource allocation with the RAN slicing architecture
shown in Figure 1a.

Resource Allocator

Inter-Slice Scheduler

Intra-slice 
Scheduler N

Intra-slice 
Scheduler 1

Intra-slice 
Scheduler 2

Intra-slice 
Resource 

Allocator N

Intra-slice 
Resource 

Allocator 1

Intra-slice 
Resource 

Allocator 2

Resource Allocator

Inter-Slice Scheduler

(a) (b)

Figure 1. State-of-the-Art RAN Slicing Architectures. (a) Bandwidth Isolation used in [15,16]. (b) QoS
Isolation used in [17–19].



Sensors 2023, 23, 4351 3 of 15

With this architecture, the resource allocator assigns the amount of channel resource
for each slice in the long term. The inter-slice scheduler splits resources between slices in the
short term (e.g., per time-transmission interval, TTI) and optimizes the InP-specific utility
function under long-term resource allocation constraints. Finally, intra-slice schedulers
distribute channel resources assigned to the slice between the slice clients. They are
controlled by the tenants and optimize slice-specific utility functions.

Such an architecture provides the desired isolation between the slices and leaves
much control to the tenants. However, a limited choice of resources for a slice tenant may
significantly degrade statistical multiplexing because of the high time-frequency variability
of wireless channel quality. Furthermore, being very limited in resources, a tenant can fail
to provide the clients with the required QoS when their channel degrades.

Another approach is the QoS-level isolation [17–19] schematically presented in Figure 1b.
Here, the tenant creates or modifies the slice with an intra-slice resource allocator, describes
the clients’ QoS requirements, and distributes its channel resources between them. Then,
the inter-slice scheduler does all the QoS provisioning work and ensures that all clients of
different slices are satisfied.

This approach uses the wireless spectrum more efficiently. However, to allocate
resources, the InP needs to solve a rather complex multi-objective optimization problem
considering the heterogeneous QoS requirements of different slices and the detailed state
of the clients of the slices. Therefore, the inter-slice scheduler implemented by the InP shall
have complete information about the clients of the slices. As a result, it limits the ability
of slice operators to adjust the resource distribution between their clients dynamically.
Moreover, the long-term resource allocation of priorities or exact formulation of per-client
QoS/QoE metrics move the business models and the intellectual property related to slice
management from the tenants to the InP.

1.2. Paper Contributions

In this paper, we develop a novel framework to solve the RAN slicing problem while,
in contrast to other approaches from the literature, achieving both high spectral efficiency
and isolation between the tenants of the slices.

The main contribution of this paper is a novel RAN slicing architecture called DeSlice
that (i) helps to satisfy QoS and QoE requirements for heterogeneous flows of different
slices; (ii) reduces costs for operators by achieving a higher level of resource utilization and
spectral efficiency; (iii) imposes a low computational burden on the network devices; and
(iv) provides isolation between the tenants of the slices.

The rest of the paper is organized as follows. In Section 2.1, we present our RAN
slicing architecture. Section 4 provides examples of the algorithms using the capabilities
of the architecture and the platform, and Section 3 describes their extensive performance
evaluation. Finally, we give concluding remarks in Section 5.

2. DeSlice Architecture for Improved QoE and Isolation

In this section, we develop a novel RAN-slicing architecture called DeSlice. The
rationale behind its design is as follows. The network slicing problem is a complex multi-
criteria optimization problem because various slices and traffic types have different QoE
requirements evaluated with different, often non-convex, metrics at timescales of a session.
However, the 5G base station, called the next-generation NodeB or gNB, has to solve the
resource allocation problem in real time. Hence, to simplify the multi-criteria optimization,
we should decompose the problem into a few simpler single-criteria ones. In particular, we
decompose the problem into mutually dependent long- and short-term resource allocation
problems inside slices and between them [20]. Figure 2 presents the hierarchical structure
of the developed architecture.



Sensors 2023, 23, 4351 4 of 15

Inter-Slice Radio Resource Manager

Intra-slice 
RRM N

Inter-Slice Scheduler

MAC 
Scheduler

Slice Resource
Manager

Intra-slice 
RRM 1

Intra-slice 
RRM N

Intra-slice 
Scheduler N

Intra-slice 
Scheduler 1

Intra-slice 
Scheduler 2

Figure 2. The DeSlice architecture.

2.1. DeSlice Building Blocks

Let us discuss each layer of the hierarchy in detail.
The slice resource manager (SRM) is a long-term resource allocation instance. It can

be installed in the core network as a part of the management and orchestration (MANO)
framework. The main objective of SRM is to allocate the shares of channel resources to
slices and flows. It makes decisions infrequently, so it can solve complex resource allocation
problems and optimize the network performance in the long term.

SRM has two levels. The inter-slice radio resource manager (RRM) allocates the shares
of channel resources to the slices and is implemented by the InP. The shares can be assigned
by an agreement between the InP and tenants or calculated based on the activity of the
clients of slices inside a single cell or in the network in general. The intra-slice RRM allocates
the shares of channel resources or assigns the long-term priorities to particular clients of
the slice and is implemented by the slice tenant. The basic intra-slice RRM allocates equal
priority and a fair share of resources to each of the clients of the slice. However, the
DASH-video slice can benefit from centralized video bitrate selection [20,21]. In that case,
the tenant allocates shares according to the selected bitrates of the videos downloaded by
the clients.

Unlike SRM, MAC Scheduler performs short-term (per-TTI) scheduling. To reduce
delays, we implement it at the gNB. The slice tenant implements the intra-slice scheduler
or chooses one from the schedulers already implemented by the InP and tailored for the
tenant’s type of service. The intra-slice scheduler aims to optimize QoE for the particular
traffic type. Traffic-based slice selection for a client allows decomposing heterogeneous
QoS requirements. It obtains resource allocation information from the intra-slice RRM,
virtualized channel state information from the inter-slice scheduler, and picks the best
client for each virtual resource element based on the chosen policy. Finally, each scheduler
reports the list of its clients for virtual resource elements sorted by the measure of instant
importance of the resource to them.

An inter-slice scheduler is a hypervisor. It abstracts the physical layer and a part of
the MAC layer for the other levels of architecture so that for the intra-slice schedulers,
the channel appears as a set of virtual resource elements. For example, in the case of
single-user transmissions in 5G, these resource elements can be directly mapped to the
physical resource blocks. For every client of a slice, each resource element is characterized
by its quality (a proxy of achievable channel rate) and a measure of instant importance
assigned by the corresponding intra-slice scheduler. Then, the inter-slice scheduler allocates
physical resources to the clients based on their importance metrics, QoE requirements, and
long-term shares of resources allocated to the slices.

Notice that the inter-slice scheduler does not need to allocate the exact predefined
shares of resources to each slice in each TTI. Instead, it shall provide target shares of
resources in a time window. Thanks to this, the inter-slice scheduler (i) improves the
average spectral efficiency by prioritizing slices and clients experiencing the best channel
conditions in particular TTIs and resource elements; and (ii) improves QoE provisioning



Sensors 2023, 23, 4351 5 of 15

by prioritizing slices and clients having stringent QoS requirements (e.g., small remaining
lifetime and low buffer level).

Using the DeSlice architecture, the tenants can control the service of their clients. At
the same time, the InP can take into account the fine-grained channel dynamics and use
advanced wireless resource allocation techniques, such as MU-MIMO or CoMP transmissions.

2.2. Cross-Layer Interaction

The DeSlice architecture allows us to solve the RAN slicing problem efficiently and
improve the QoE of the end users. However, we need to retrieve its requirements and status
online to achieve the best performance for each flow. For over-the-top (OTT) services, such
as YouTube and Netflix, the requirements are typically available only at the application
level. At the same time, the intermediate network nodes are unaware of the nature of the
traffic. Such limitations stem from privacy and fairness concerns: users would not like to
expose the content they consume to third parties, and OTT service providers would like
network neutrality to be preserved. That is possibly one of the reasons why the framework
of bearers in LTE networks is underutilized [22].

To realize the benefits of the 5G networks and provide excellent QoE for flows with
heterogeneous and often contradictory requirements, we have to sacrifice privacy to some
extent. However, we have to admit that it has already been sacrificed: the general archi-
tecture of the LTE/5G network includes traffic detection function since Release 12 [23].
This function is typically performed by deep packet inspection (DPI) software or hardware
produced by such companies as Qosmos, Allot, Sandvine, and others. Unfortunately,
modern DPI systems have limited performance, and the detection accuracy of the most
advanced machine-learning-based methods recently considered in the literature is notice-
ably below 100% [24–26]. Therefore, while the privacy of the users is already violated, QoE
provisioning still cannot be significantly improved because of DPI performance limitations.
That is why establishing direct communication between the applications running on the
end nodes and the intermediate network equipment is appealing. If carefully designed,
such cross-layer communication would not introduce additional privacy threats, while
the provided metadata would help the operators to improve QoE. As a bonus, such com-
munication simplifies the adaptation of the application to the changing network state.
For example, instead of indirectly measuring the network capacity and congestion, the
end-client applications can ask the network [21].

To date, numerous application-to-network communication protocols or APIs have
been developed. Some examples are SAND [27], xStream [21], and xMB [28]. This paper
assumes that the network uses xStream because it provides the functionality required to
distinguish between different traffic types and exchange QoE-related recommendations.

With xStream, DeSlice can classify traffic and exchange service information about type-
specific QoS requirements between UEs and the network. Based on this information, long-
term radio resource managers can accurately estimate the amount of resources required
for each slice and each slice client. Moreover, for some traffic types, e.g., DASH-video
streams, the RRM can help solve the bitrate allocation problem. At the same time, the
schedulers in the architecture can obtain and use valuable information about the served
traffic in real time. Such information includes the state of the communication channel with
the UE, packet deadlines, levels of client video buffer occupancy, and sizes of web pages
downloaded by clients.

3. Case Study: DeSlice for Cloud VR, Video and Web Traffic Service
3.1. Scenario and Problem Statement

To show the benefits of the proposed slicing architecture, we use it to maximize the QoE
for clients running web, video, and cloud VR applications. For that, we first need to briefly
describe these applications, their QoE models, and the corresponding QoS requirements.

The set of web slice clients is Uweb download web pages using HTTP. Their QoE
depends on the web page download delay. More specifically, according to ITU [29], excellent



Sensors 2023, 23, 4351 6 of 15

subjective QoE corresponds to a download delay below two seconds. We assume that
ui ∈ Uweb is satisfied when the average web page download delay, δweb

i , does not exceed
two seconds. The following satisfaction indicator for ui ∈ Uweb displays this criterion
more formally:

1web
ui

=

{
1 if δweb

i ≤ 2s,
0, otherwise.

(1)

The set of video slice clients is Uvideo. Video clients download DASH videos [30]. With
DASH, a video is split into segments with a duration of several seconds each. Each segment
is precoded in different qualities (e.g., different resolutions and bitrates) and stored on a
server. A client requests segments one by one using HTTP and plays them back to the user.
The video quality can be chosen manually or by an adaptation algorithm that estimates the
state of the network and playback. The DASH technology does not specify the algorithm
itself and is application-specific. We model video QoE with composite satisfaction criteria
for ui ∈ Uvideo: (i) the total duration of the video playback θ

480p
i in the resolution not less

than 480p shall reach at least 85%, (ii) the initial delay of video playback δvideo
i shall be less

than 5 s, and (iii) the stall duration ∆video
i shall be less than 0.1% of the whole video playback

duration Θi. Once the criteria are satisfied, the aim is to maximize the average bitrate of
the video flows. The following expression gives the satisfaction indicator of ui ∈ Uvideo:

1video
ui

=

1 if θ
480p
i
Θi
≥ 0.85 and δvideo

i ≤ 5 s and ∆video
i
Θi
≤ 0.001,

0 otherwise.
(2)

The rationale behind the choice of the criteria is as follows. First, a video resolution
higher than 480p is frequently unnoticeable for the users of smartphones [31]. Second, the
QoE of users decays exponentially with the increasing overall stall duration. Hence, it shall
be kept very low [32]. Finally, the QoE decays logarithmically with the growth of initial
delay [32]. Hence, we can choose a relatively high value that still allows us to detect if some
flows are deferred from service.

The set of VR clients is UVR. Cloud VR clients run remote interactive gaming, educa-
tion, or engineering applications. The cloud VR headsets only capture the actions of the
users and send them to remote servers. The servers update the virtual reality based on the
most recently received actions, encode it into a video sequence and send it to the headsets.
The headsets play back the video to the users, perhaps slightly adjusting the displayed
picture to the actual position of the users. In such a workflow, the cloud VR traffic is a se-
quence of video frames with stringent delay budgets: 50 ms for interactive applications [33].
We model a cloud VR QoE with the following satisfaction criteria. A cloud VR session
is satisfied if more than 99% of frames arrive within the delay requirement [33]. Hence,
the network shall allocate enough resources for the cloud VR slice to satisfy all cloud VR
sessions consistently. Let us define for ui ∈ UVR the number of frames that arrive within
the delay requirement as nVR

i and the total number of frames as NVR
i . More formally, the

following expression defines the satisfaction indicator of ui ∈ UVR:

1VR
ui

=

1 if nVR
i

NVR
i
≥ 0.99,

0 otherwise.
(3)

In the paper, we assume that the InP’s revenue grows with the number of satisfied
users of each slice. Additionally, the revenue received from a satisfied VR user is much
higher than the revenue from a web or video user. Except for VR users, who require specific
service with high bandwidth and low delays, the InP preserves the network neutrality and
aims to provide a fair resource distribution between the elastic traffic types: web and video.
Summing up, we can formulate the RAN slicing problem as the following problem of the
revenue maximization of InP:



Sensors 2023, 23, 4351 7 of 15

max

 ∑
ui∈Uweb

1web
ui
·Wi + ∑

ui∈Uvideo

1video
ui
·Wi + ∑

ui∈UVR

1VR
ui
·Wi

, s.t.
Svideo
Sweb

=
Nvideo
Nweb

, (4)

where the revenue of the InP for a satisfied VR flow WVR �Wweb = Wvideo, i.e., the revenue
of the InP for a satisfied web or video flow.

3.2. Proposed Solution

Let us describe the algorithms that operate at each of the layers of the architecture and
help us solve the optimization problem.

3.2.1. Inter-Slice Radio Resource Management

The top architecture level is the long-term inter-slice RRM. We consider cloud VR as
high-priority traffic because it generates more revenue and it is inelastic and non-adaptive,
unlike web and video. In other words, providing it with less-than-required resources is
equivalent to no service. Hence, first, the inter-slice RRM allocates enough resources to
satisfy the requirements of the cloud VR slice:

SVR = ∑
ui∈UVR

wVR
i , (5)

where wVR
i is the share of resources required to satisfy the VR UE i defined in the following

section. Please note that we do not discuss the problem of admission control in this paper,
and we consider the scenarios with SVR < 1.

Then, the algorithm allocates the remaining resources, namely 1− SVR, to the web
and video slices proportionally to their average number of active clients, i.e., clients that
have data to be downloaded:

Svideo = (1− SVR) ·
Nvideo

Nvideo + Nweb
, Sweb = (1− SVR) ·

Nweb
Nvideo + Nweb

. (6)

Such allocation allows us to achieve fair resource distribution between the slices with
elastic traffic types.

3.2.2. Intra-Slice Radio Resource Management

The second level is the long-term intra-slice RRM, which differs for each slice.
First, cloud VR sessions require a stable bandwidth that ensures the necessary cloud

VR stream bitrate. Therefore, the long-term resource share of a cloud VR client is calculated
as follows:

wVR
i =

bi
Ci(t)

, (7)

where Ci(t) is the average channel capacity, and bi is the target bitrate of the cloud VR
stream of UE i.

Second, for video clients, we implement centralized video bitrate selection that helps
avoid the mistakes of the client-side adaptation that can happen due to the fluctuations
in the network service rate, following [34]. Specifically, initially, each user is assigned the
minimal acceptable bitrate of 480p. Then while some resources in the video slice are still
idle, the bitrate of video users is gradually incremented. Thus, each flow gets a long-term
share of resources that shall be enough to deliver the video with the bitrate corresponding
to the selected resolution:

wvideo
i =

bi
Ci(t)

, (8)

where bi is the bitrate of the video of UE i assigned by the bitrate selection algorithm.



Sensors 2023, 23, 4351 8 of 15

Finally, all web flows have the same priority and shall receive the same long-term
resource shares. For that, we distribute evenly the share allocated to the web slice between
all active web flows:

wweb
i =

Sweb
Nweb(t)

. (9)

3.2.3. Intra-Slice Scheduling

For each slice, we select the schedulers that optimize the service of the corresponding
traffic type.

Namely, we select the shortest remaining processing time (SRPT) [35] algorithm as
a web slice scheduler because it aims at minimizing the average duration of a web page
download. In OFDMA resource block k, we select the UE î:

î = arg max
i∈Uweb

(
µSRPT

ik (t)
)
= arg max

i∈Uweb

(
rik(t)
Si(t)

)
, (10)

where rik(t) is the amount of data that can be transmitted to UE i in slot t in resource block
k, and Si(t) is the amount of data remaining to be transmitted to UE i before the completion
of web page loading.

Next, the SAND-enabled bitrate and resource allocation (SEBRA) algorithm [34]
prioritizes video clients with low video buffers, reducing the probability of video stalls. In
particular, in resource block k, we select the UE î:

î = arg max
i∈Uvideo

(
µSEBRA

ik (t)
)
= arg max

i∈Uvideo

(
rik(t)
r̄i(t)

eTi(t)/Qi

)
, (11)

where Ti(t) is a token, which tracks the difference between the allocated throughput and
the target bitrate of the UE, Qi is the video buffer level, and r̄i(t) is the average throughput
of UE i.

Finally, the MLWDF scheduler [36] serves cloud VR slice because it prioritizes the
packets with the most stringent delay requirements and gives them the best resources:

î = arg max
i∈UVR

(
µMLWDF

ik (t)
)
= arg max

i∈UVR

(
Di(t)rik(t)

Ci(t)

)
, (12)

where Di(t) is the age of the head-of-line packet for UE i.

3.2.4. Inter-Slice Scheduling: Constant Channel

Finally, due to the high complexity of the original optimization problem, we develop
two different heuristics for the inter-slice scheduling algorithms at the lowest level of the
DeSlice architecture: one assuming that the wireless channel is constant and another that
additionally benefits from the channel fluctuations.

For the first slicing algorithm, we consider only slice priority for scheduling: while
the higher-priority queue is not empty, any lower-priority one receives no service. Cloud
VR traffic has very stringent QoS requirements, and therefore is served first. If there are
cloud VR data to transmit, we allocate all the resources to the cloud VR slice. Next, to
optimize the download rate of the web pages, we should postpone video service as long as
possible. Thanks to the application-to-network communication, we know the buffer levels
of the video clients and the sizes of their video segments that are yet to be downloaded.
Therefore, we can schedule the video segment transmissions to finish just before the client’s
buffer becomes empty and allocate the remaining resources to the web slice. The long-term
resource allocation by the RRM guarantees that cloud VR and video flows do not consume
all the resources, and the fair share will remain available for web traffic.

Such a scheme allows us to satisfy the requirements of cloud VR flows and improve the
QoE of the web and adaptive video flows. However, it leaves large room for optimization
because the state of the wireless channel varies in both time and frequency domains.



Sensors 2023, 23, 4351 9 of 15

Taking this into account, we can additionally improve the performance of the system with
channel-aware slicing.

3.2.5. Inter-Slice Scheduling: Dynamic Channel

The concept of the channel-aware inter-slice scheduler is based on the weighted
proportional fair scheduler [37]. This scheduler maximizes the weighted sum of logarithms
of the average throughputs of the clients. We modify the original algorithm to optimize
the throughput of different clients at configurable timescales. For that, we change the
optimization problem by assigning different smoothing factors (effectively averaging
windows) to clients generating traffic with different QoS requirements.

Consequently, we aim to solve the following optimization problem. Let si(t) be the
amount of data transmitted to the UE i in TTI t. Then, ri(t) = (1− 1

τ )ri(t− 1) +
(

1
τ

)
si(t)
TTI is

the exponentially weighted moving average of the throughput in the time window τ:

U = ∑
i

wi · log
(

ri(t)
)

, (13)

where wi equals the target long-term share of resources allocated for UE i by the corre-
sponding intra-slice RRM algorithms.

The modification of the utility function changes its gradient and, therefore, the schedul-
ing metric of the algorithm. Nevertheless, the optimization problem remains convex.
Applying the gradient descent algorithm to the problem, in RB k, in TTI t, we select for
scheduling the UE î:

î = arg max
i

(
µWPF

ik (t)
)
= arg max

i

(
wi
τ
· rik(t)

ri(t)

)
. (14)

The moving average window defines the time interval at which the QoS requirements
of a slice are satisfied. In other words, it depends on the timescale at which the slice is
insensitive to isolation violation. Hence, we can choose the averaging windows of the
clients according to their QoS requirements as follows. For cloud VR, the time interval
corresponds to its frame-delay requirements, i.e., from tens to hundreds of milliseconds.
For DASH video, it is in the order of the video buffer size, i.e., dozens of seconds. Finally,
the window for web traffic has the order of the web page download time, namely, a
few seconds.

To summarize the proposed solution, the pseudocode of the short-term scheduling
algorithms is presented in Algorithm 1 and the interaction between the blocks of DeSlice
architecture is shown in Figure 3.

Inter-Slice Radio Resource Manager

Intra-slice 
RRM VR

Inter-Slice Scheduler

Short-term
Scheduling

Long-term
Resource 
Management

Intra-slice 
RRM Web

Intra-slice 
RRM Video

Intra-slice 
Scheduler VR

Intra-slice 
Scheduler Web

Intra-slice 
Scheduler Video

SVRSVideoSWeb

VR bitrate (bi)Video bitrate (bi)

Web Leader Video Leader VR Leader

Shares (wi)

Figure 3. Interaction between the building blocks of the DeSlice architecture.



Sensors 2023, 23, 4351 10 of 15

Algorithm 1: Inter-Slice Scheduling

Input: slices_set = {Uweb, Uvideo, UVR}
ue_set = [{Uweb : [ua, ..., ub]}, {Uvideo : [uc, ..., ud]}, {UVR : [ue, ..., u f ]}]
RB_map = {RB1 : _ , ..., RBK : _ } (Empty RB map)
D = {Dc, ..., Dd} (Remaining sizes of currently downloaded video segments)
Output: RB_map filled with UEs
foreach RBk ∈ RB_map do

foreach Um ∈ slices_set do
intra_slice_leaders[Um]← argmaxui∈ue_set[Um ] µintra−slice metric

ik (t)
end
if Constant channel then

if ∃ ui ∈ UVR : queuei not empty then
u∗i ← intra_slice_leaders[UVR]

end
else if ∃ ui ∈ Uvideo : Qi <

Di
Ci

then
u∗i ← intra_slice_leaders[Uvideo]

end
else if ∃ ui ∈ Uweb : queuei not empty then

u∗i ← intra_slice_leaders[Uweb]
end
else

u∗i ← intra_slice_leaders[Uvideo]
end

end
else if Dynamic channel then

u∗i ← argmaxui∈intra_slice_leaders µWPF
ik (t)

end
RB_map[RBk]← u∗i

end
return RB_map

4. Numerical Results

We use a widely popular NS-3 [38] simulation platform to evaluate the performance
of the DeSlice architecture with different inter-slice scheduling algorithms. We consider
a single-cell network, where N UEs are randomly dropped around the gNB in a circle of
radius R = 500 m. The gNB has wired connections to a cloud VR server in the InP network
and the web and video servers on the Internet.

The UEs generate either web, video, or cloud VR traffic. Web UEs download pages with
sizes drawn from the empirical distribution retrieved from the HTTP archive database [39].
They request web pages with a truncated exponentially distributed inter-request time with
the mean of 45 s, minimum of 15 s, and maximum of 90 s. Video UEs use DASH to download
videos picked from the database of popular YouTube clips [40]. Their operation points
correspond to the resolutions: {144p,. . . , 360p,. . . , 1080p}. Cloud VR video stream is a trace
generated by a state-of-the-art cloud VR Pico Neo Streaming Assistant application [41]
with an average bitrate of 15 Mbps and 60 frames per second frame rate. Each video
and VR session has the uniformly distributed duration of [90, 110] s, and the duration of
the inter-session interval of each UE has a truncated exponential distribution with the
mean of 30 s, the minimum of 10 s and the maximum of 60 s. Table 1 shows the other
simulation parameters.



Sensors 2023, 23, 4351 11 of 15

Table 1. Simulation parameters.

Parameter Value

Channel 20 MHz @ 2 GHz
Channel model 3GPP TR 38.901 EPA

gNB/UE TX power 30/23 dBm
gNB antenna type Omni-directional

gNB height 30 m
UE height 1 m

TTI duration 1 ms
Wired connection capacity 10 Gbps
Duration of simulation run 1000 s
Number of simulation runs 20

In our experiments, there are always two cloud VR UEs, half of the remaining UEs are
video clients, and another half are web clients. We vary the total numbers of UEs in the
system and evaluate the QoE of the end users using the QoE models defined in Section 3.1.
Figures 4–6 compare the QoE provided by the following solutions:

• Legacy (no slicing): the default 5G system and DASH video application.
• Bandwidth isolation: RAN slicing architecture considered in the papers [15,16]. To

provide a fair comparison and solve the problem described in Section 3.1, we extend
the NVS slicing algorithm described in [16] with the same allocation of long term
shares of resources as in our solution, i.e., the shares are allocated as described in
Sections 3.2.1 and 3.2.2.

• Constant channel: DeSlice architecture with solutions described in Section 3.2 and
constant channel inter-slice scheduler described in Section 3.2.4.

• Dynamic channel: DeSlice architecture with solutions described in Section 3.2 and
dynamic channel inter-slice scheduler described in Section 3.2.5.

Figure 4. The fraction of unsatisfied web sessions.



Sensors 2023, 23, 4351 12 of 15

Figure 5. The fraction of unsatisfied video sessions.

Figure 6. The fraction of unsatisfied cloud VR sessions.

Figures 5 and 6 show that at low system loads, the network has enough resources to
satisfy almost all video and cloud VR sessions when using any solution. However, Figure 4
shows that the DeSlice-based solutions can improve QoE upon the legacy system and
bandwidth-isolating slicing for web flows by prioritizing them when the video and cloud
VR traffic does not require immediate service. Note that the observed fraction of unsatisfied
web sessions is well above zero because the 2 s threshold for the web page download time
corresponds to excellent service, which cannot be achieved for edge users when the base
station serves two cloud VR flows.

Figure 6 shows that the legacy system fails to satisfy cloud VR traffic requirements
starting from the medium loads. The main reason is that the cloud VR slice requires
more resources than the fair share provided by the legacy system. Meanwhile, DeSlice-
based solutions provide higher QoE for web and video traffic types and keep all cloud
VR sessions satisfied (see Figures 4 and 5). Overall, the developed solutions reduce the



Sensors 2023, 23, 4351 13 of 15

fraction of unsatisfied web sessions by up to 40% and reduce the fraction of unsatisfied
video sessions by up to 2.5 times.

Finally, at high loads, we outline the following. First, Figure 5 shows that the DeSlice-
based solutions gradually reduce video QoE and bring it close to the QoE of the legacy
system. It happens because the considered inter-slice RRM focuses a lot on the cloud VR
service and allocates its slice more-than-fair share of resources. Hence, the video slice gets
fewer resources in slicing-enabled systems than in the legacy system, and clients watch
videos with an unsatisfactory resolution (less than 480p). Nevertheless, compared to the
legacy system, slicing-enabled solutions still reduce the fraction of unsatisfied web sessions
by up to 30% and satisfy 100% cloud VR sessions at the same time (see Figures 4 and 5).
Second, the dynamic channel solution provides higher web and video traffic QoE than the
static channel and bandwidth-isolating solutions. In the considered scenario, it reduces the
fraction of unsatisfied web sessions by up to 30% and the fraction of unsatisfied video
sessions by up to 20% compared to the static channel solution. Finally, compared to a
bandwidth-isolating solution, the dynamic channel solution reduces both the fraction of
unsatisfied web and video sessions by up to 25%. The high relative performance of the
dynamic channel solution illustrates why the inter-slice scheduler shall consider both the
channel state of the clients of the slice and their QoS requirements.

5. Conclusions

In the paper, we presented DeSlice, a novel RAN slicing architecture that enables
flexible and efficient resource allocation between and within slices. The architecture helps to
decompose a complex resource allocation problem into a few simpler mutually dependent
optimization problems and solve them in real time. Furthermore, the proposed architecture
allows tenants to control the service of their clients and provides high resource utilization,
high spectral efficiency, and resource isolation at flexible timescales.

We demonstrated the advantages of DeSlice architecture by solving a RAN slicing
problem for joint web, video, and cloud VR traffic services. With simulations, we showed
that the proposed solution significantly improves QoE. In particular, the developed solution
achieved up to 50 and 35% gain in web and video QoE over the RAN slicing architecture and
algorithms known from the literature. Unlike legacy systems, it satisfied the requirements
of 100% cloud VR flows.

Author Contributions: Conceptualization, E.K., A.K. (Alexander Krotov) and A.K. (Artem Krasilov);
Formal analysis, E.K. and M.L.; Investigation, M.L. and D.Z.; Methodology, E.K. and A.K. (Alexander
Krotov); Software, M.L. and D.Z.; Validation, E.K., A.K. (Artem Krasilov), M.L. and D.Z.; Writing—
original draft, M.L. and D.Z.; Writing—review and editing, E.K. and M.L. All authors have read and
agreed to the published version of the manuscript.

Funding: The research has been carried out at IITP RAS and supported by the Russian Science Foun-
dation (Grant No 21-79-10431, https://rscf.ru/en/project/21-79-10431/, accessed on 16 April 2023).

Data Availability Statement: The implementation of the developed algorithms can be found here:
http://wireless.iitp.ru/network-slicing/, accessed on 16 April 2023.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AR/VR Augmented and Virtual Reality
DASH Dynamic Adaptive Streaming over HTTP
gNB Next-Generation NodeB

https://rscf.ru/en/project/21-79-10431/
http://wireless.iitp.ru/network-slicing/


Sensors 2023, 23, 4351 14 of 15

InP Infrastructure Provider
IoT Internet of Things
MANO Management and Orchestration
MAC Media Access Control
NFV Network Function Virtualization
OTT Over-the-Top
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RRM Radio Resource Manager
SRM Slice Resource Manager
TTI Time-Transmission Interval
UE User Equipment

References
1. Series, M. IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Recommendation

ITU. 2015, Volume 2083. Electronic Publication Geneva, Switzerland. Available online: https://www.itu.int/rec/R-REC-M.2083
-0-201509-I/en (accessed on 16 April 2023).

2. ISG NFV. Network Functions Virtualisation. An Introduction, Benefits, Enablers, Challenges and Call for Action; Technical Report; ETSI:
Sophia Antipolis, France, 2012.

3. Wu, Y.; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A survey of intelligent network slicing management for industrial IoT: Integrated
approaches for smart transportation, smart energy, and smart factory. IEEE Commun. Surv. Tutor. 2022, 24, 1175–1211. [CrossRef]

4. Marquez, C.; Gramaglia, M.; Fiore, M.; Banchs, A.; Costa-Perez, X. How Should I Slice My Network?: A Multi-Service Empirical
Evaluation of Resource Sharing Efficiency. In Proceedings of the 24th Annual International Conference on Mobile Computing
and Networking (MobiCom ’18), New Delhi, India, 29 October–2 November 2018; pp. 191–206. [CrossRef]

5. Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey. IEEE Commun. Surv.
Tutor. 2013, 15, 1888–1906. [CrossRef]

6. Ojaghi, B.; Adelantado, F.; Antonopoulos, A.; Verikoukis, C. SlicedRAN: Service-Aware Network Slicing Framework for 5G
Radio Access Networks. IEEE Syst. J. 2022, 16, 2556–2567. [CrossRef]

7. Dangi, R.; Lalwani, P. Harris Hawks optimization based hybrid deep learning model for efficient network slicing in 5G network.
Clust. Comput. 2023, 26, 1–15. . [CrossRef]

8. Hurtado Sánchez, J.A.; Casilimas, K.; Caicedo Rendon, O.M. Deep reinforcement learning for resource management on network
slicing: A survey. Sensors 2022, 22, 3031. [CrossRef] [PubMed]

9. Dangi, R.; Jadhav, A.; Choudhary, G.; Dragoni, N.; Mishra, M.K.; Lalwani, P. Ml-based 5g network slicing security: A
comprehensive survey. Future Internet 2022, 14, 116. [CrossRef]

10. Javed, F.; Antevski, K.; Mangues-Bafalluy, J.; Giupponi, L.; Bernardos, C.J. Distributed ledger technologies for network slicing: A
survey. IEEE Access 2022, 10, 19412–19442. [CrossRef]

11. Du, J.; Jiang, B.; Jiang, C.; Shi, Y.; Han, Z. Gradient and channel aware dynamic scheduling for over-the-air computation in
federated edge learning systems. IEEE J. Sel. Areas Commun. 2023, 41, 1035–1050. [CrossRef]

12. Nadeem, L.; Azam, M.A.; Amin, Y.; Al-Ghamdi, M.A.; Chai, K.K.; Khan, M.F.N.; Khan, M.A. Integration of D2D, network slicing,
and MEC in 5G cellular networks: Survey and challenges. IEEE Access 2021, 9, 37590–37612. [CrossRef]

13. Gonzalez, A.J.; Ordonez-Lucena, J.; Helvik, B.E.; Nencioni, G.; Xie, M.; Lopez, D.R.; Grønsund, P. The isolation concept in the 5G
network slicing. In Proceedings of the 2020 European Conference on Networks and Communications (EuCNC), Dubrovnik,
Croatia, 15–18 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 12–16.

14. Marquez, C.; Gramaglia, M.; Fiore, M.; Banchs, A.; Costa-Pérez, X. Resource Sharing Efficiency in Network Slicing. IEEE Trans.
Netw. Serv. Manag. 2019, 16, 909–923. [CrossRef]

15. Tun, Y.K.; Tran, N.H.; Ngo, D.T.; Pandey, S.R.; Han, Z.; Hong, C.S. Wireless Network Slicing: Generalized Kelly Mechanism-Based
Resource Allocation. IEEE J. Sel. Areas Commun. 2019, 37, 1794–1807. [CrossRef]

16. Kokku, R.; Mahindra, R.; Zhang, H.; Rangarajan, S. NVS: A Virtualization Substrate for WiMAX Networks. In Proceedings of the
Sixteenth Annual International Conference on Mobile Computing and Networking (MobiCom ’10), Chicago, IL, USA, 20–24
September 2010; pp. 233–244. [CrossRef]

17. Schmidt, R.; Chang, C.Y.; Nikaein, N. FlexVRAN: A Flexible Controller for Virtualized RAN Over Heterogeneous Deployments.
In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May
2019; pp. 1–7. [CrossRef]

18. Afolabi, I.; Taleb, T.; Frangoudis, P.A.; Bagaa, M.; Ksentini, A. Network Slicing-Based Customization of 5G Mobile Services. IEEE
Netw. 2019, 33, 134–141. [CrossRef]

19. Papa, A.; Jano, A.; Ayvaşık, S.; Ayan, O.; Gürsu, H.M.; Kellerer, W. User-based quality of service aware multi-cell radio access
network slicing. IEEE Trans. Netw. Serv. Manag. 2021, 19, 756–768. [CrossRef]

https://www.itu.int/rec/R-REC-M.2083-0-201509-I/en
https://www.itu.int/rec/R-REC-M.2083-0-201509-I/en
http://doi.org/10.1109/COMST.2022.3158270
http://dx.doi.org/10.1145/3241539.3241567
http://dx.doi.org/10.1109/SURV.2013.013013.00155
http://dx.doi.org/10.1109/JSYST.2021.3064398
http://dx.doi.org/10.1007/s10586-022-03960-1
http://dx.doi.org/10.3390/s22083031
http://www.ncbi.nlm.nih.gov/pubmed/35459015
http://dx.doi.org/10.3390/fi14040116
http://dx.doi.org/10.1109/ACCESS.2022.3151150
http://dx.doi.org/10.1109/JSAC.2023.3242727
http://dx.doi.org/10.1109/ACCESS.2021.3063104
http://dx.doi.org/10.1109/TNSM.2019.2923265
http://dx.doi.org/10.1109/JSAC.2019.2927100
http://dx.doi.org/10.1145/1859995.1860023
http://dx.doi.org/10.1109/ICC.2019.8761222
http://dx.doi.org/10.1109/MNET.001.1800072
http://dx.doi.org/10.1109/TNSM.2021.3122230


Sensors 2023, 23, 4351 15 of 15

20. Khorov, E.; Tang, S. xStream: A new platform for Application-aware Adaptive Network Slicing in 5G Systems (Tutorial). In
Proceedings of the IEEE Global Information Infrastructure and Networking Symposium (GIIS 2018), Thessaloniki, Greece, 23–25
October 2018.

21. Akyildiz, I.F.; Khorov, E.; Kiryanov, A.; Kovkov, D.; Krasilov, A.; Liubogoshchev, M.; Shmelkin, D.; Tang, S. xStream: A New
Platform Enabling Communication between Applications and the 5G Network. In Proceedings of the 2018 IEEE Globecom
Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

22. Henry, J.; Szigeti, T. Diffserv to QCI Mapping-01. Diffserv to QCI Mapping-01. IETF Internet-Draft, 2019. Available online:
https://datatracker.ietf.org/doc/draft-henry-tsvwg-diffserv-to-qci/ (accessed on 16 April 2023).

23. 3GPP. 3GPP TS 23.139 Group Services and System Aspects; 3GPP System—Fixed Broadband Access Network Interworking; (Release 12);
3GPP: Biot, France, 2015.

24. Li, F.; Razaghpanah, A.; Kakhki, A.M.; Niaki, A.A.; Choffnes, D.; Gill, P.; Mislove, A. lib•erate , (n) a library for exposing
(traffic-classification) rules and avoiding them efficiently. In Proceedings of the 2017 Internet Measurement Conference, London,
UK, 1–3 November 2017; pp. 128–141.

25. Shamsimukhametov, D.; Kurapov, A.; Liubogoshchev, M.; Khorov, E. Is Encrypted ClientHello a Challenge for Traffic Classifica-
tion? IEEE Access 2022, 10, 77883–77897. [CrossRef]

26. Azab, A.; Khasawneh, M.; Alrabaee, S.; Choo, K.K.R.; Sarsour, M. Network traffic classification: Techniques, datasets, and
challenges. Digit. Commun. Netw. 2022, in press. [CrossRef]

27. ISO/IEC 23009-5:2017; Information Technology—Dynamic Adaptive Streaming over HTTP(DASH)—Part 5: Server and Network
Assisted DASH (SAND). ISO: Geneva, Switzerland, 2017.

28. 3GPP. 3GPP TS 26.348 Northbound Application Programming Interface (API) for Multimedia Broadcast/Multicast Service (MBMS) at the
xMB Reference Point; (Release 16); 3GPP: Biot, France, 2020.

29. Recommendation G.1030; Series G: Transmission Systems and Media, Digital Systems and Networks. Multimedia Quality of
Service and Performance—Generic and User-Related Aspects. Estimating End-to-End Performance in IP Networks for Data
Applications. ITU-T: Geneva, Switzerland, 2014.

30. MPEG. ISO/IEC 23009-1:2014; MPEG-DASH 2nd Edition Specification; Technical Report. ISO: Geneva, Switzerland, 2014.
31. VMAF: The Journey Continues. Available online: https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12

(accessed on 14 April 2023).
32. Seufert, M.; Egger, S.; Slanina, M.; Zinner, T.; Hoßfeld, T.; Tran-Gia, P. A survey on quality of experience of HTTP adaptive

streaming. IEEE Commun. Surv. Tutor. 2014, 17, 469–492. [CrossRef]
33. Huawei. White Paper for 5G Cloud VR Service Experience Standards; Technical Report; Huawei: Shenzhen, China, 2019.
34. Khorov, E.; Krasilov, A.; Liubogoshchev, M.; Tang, S. SEBRA: SAND-enabled bitrate and resource allocation algorithm for

network-assisted video streaming. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [CrossRef]

35. Kleinrock, L. Theory, Queueing Systems; Wiley-Interscience: Hoboken, NJ, USA, 1975.
36. Basukala, R.; Ramli, H.M.; Sandrasegaran, K. Performance analysis of EXP/PF and M-LWDF in downlink 3GPP LTE system. In

Proceedings of the 2009 First Asian Himalayas International Conference on Internet, Kathmundu, Nepal, 3–5 November 2009;
pp. 1–5. [CrossRef]

37. Khawam, K.; Kofman, D.; Altman, E. The Weighted Proportional Fair Scheduler. In Proceedings of the 3rd International
Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine ’06), Waterloo, ON, Canada, 7–9 August
2006; p. 43-es. [CrossRef]

38. Network Simulator 3 (NS-3). Available online: https://www.nsnam.org/ (accessed on 14 April 2023).
39. HTTP Archive. Available online: https://httparchive.org/ (accessed on 15 March 2023).
40. Ragimova, K.; Loginov, V.; Khorov, E. Analysis of YouTube DASH Traffic. In Proceedings of the 2019 IEEE BlackSeaCom, Sochi,

Russia, 3–6 June 2019; IEEE: Piscataway, NJ, USA, 2019.
41. Pico Neo 2. Available online: https://www.picoxr.com/uk/products/g2-4k (accessed on 14 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/GLOCOMW.2018.8644183
https://datatracker.ietf.org/doc/draft-henry-tsvwg-diffserv-to-qci/
http://dx.doi.org/10.1109/ACCESS.2022.3191431
http://dx.doi.org/10.1016/j.dcan.2022.09.009
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
http://dx.doi.org/10.1109/COMST.2014.2360940
http://dx.doi.org/10.1109/WiMOB.2017.8115758
http://dx.doi.org/10.1109/AHICI.2009.5340336
http://dx.doi.org/10.1145/1185373.1185428
https://www.nsnam.org/
https://httparchive.org/
https://www.picoxr.com/uk/products/g2-4k

	Introduction
	State-of-the-Art RAN Slicing Architectures
	Paper Contributions

	DeSlice Architecture for Improved QoE and Isolation
	DeSlice Building Blocks
	Cross-Layer Interaction

	Case Study: DeSlice for Cloud VR, Video and Web Traffic Service
	Scenario and Problem Statement
	Proposed Solution
	Inter-Slice Radio Resource Management
	Intra-Slice Radio Resource Management
	Intra-Slice Scheduling
	Inter-Slice Scheduling: Constant Channel
	Inter-Slice Scheduling: Dynamic Channel


	Numerical Results
	Conclusions
	References

