
Citation: Tahir, H.; Jung, E.-S.

Comparative Study on Distributed

Lightweight Deep Learning Models

for Road Pothole Detection. Sensors

2023, 23, 4347. https://doi.org/

10.3390/s23094347

Academic Editor: Petros Daras

Received: 11 March 2023

Revised: 16 April 2023

Accepted: 20 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Comparative Study on Distributed Lightweight Deep Learning
Models for Road Pothole Detection
Hassam Tahir and Eun-Sung Jung *

Department of Software & Communications Engineering, Hongik University, Sejong 30016, Republic of Korea;
hassam_tahir@g.hongik.ac.kr
* Correspondence: ejung@hongik.ac.kr

Abstract: This paper delves into image detection based on distributed deep-learning techniques
for intelligent traffic systems or self-driving cars. The accuracy and precision of neural networks
deployed on edge devices (e.g., CCTV (closed-circuit television) for road surveillance) with small
datasets may be compromised, leading to the misjudgment of targets. To address this challenge,
TensorFlow and PyTorch were used to initialize various distributed model parallel and data parallel
techniques. Despite the success of these techniques, communication constraints were observed along
with certain speed issues. As a result, a hybrid pipeline was proposed, combining both dataset and
model distribution through an all-reduced algorithm and NVlinks to prevent miscommunication
among gradients. The proposed approach was tested on both an edge cluster and Google cluster
environment, demonstrating superior performance compared to other test settings, with the quality
of the bounding box detection system meeting expectations with increased reliability. Performance
metrics, including total training time, images/second, cross-entropy loss, and total loss against the
number of the epoch, were evaluated, revealing a robust competition between TensorFlow and
PyTorch. The PyTorch environment’s hybrid pipeline outperformed other test settings.

Keywords: distributed deep-learning; distributed edge AI/ML; distributed hybrid model training

1. Introduction

A self-driving automobile employs an artificial intelligence (AI) system to evaluate
data from sensors and make judgments while driving [1]. The disposition of smart cars
assails as a fast catalyst for the revolutionary steps toward the future of intelligent trans-
portation systems by decreasing pollution, reducing accidents, and decreasing traffic [2].
The self-driving vehicles will remarkably decrease road accidents in the future through
human input integrated with AI programs. For self-driving cars, crack detection is crucial
because these vehicles rely on sensors to perceive and navigate the environment. If cracks
are not detected and repaired promptly, they can interfere with the vehicle’s perception
systems, leading to incorrect or incomplete information about the road ahead. Crack vi-
sualization has certain methods, such as the use of a deep-learning architecture, capable
of processing images at multiple scales [3] and detecting strains in columns via the mark-
free vision methodology [4]. However, substantial doubts about reliability, regulations,
and predictive detection have been encountered and raised [5]. Most reported accidents of
self-driving cars were due to inappropriate or heavy-weight neural network training on
edge devices, resulting in heating issues [6]. The inability to judge the difference between
potholes or patches results in the sudden break or non-breaking elements at inappropriate
places because of a confused state of the neural network [7]. In this regard, detecting
potholes in self-driving vehicles or road maintenance is vital for future intelligent trans-
portation systems. The requirements of pothole-detecting AI systems include the following:
(1) a lightweight distributed neural network, (2) high-quality input images for training
in a distributed edge cloud environment, and (3) reliable communication for appropriate
information exchange among distributed deep learning [8].

Sensors 2023, 23, 4347. https://doi.org/10.3390/s23094347 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094347
https://doi.org/10.3390/s23094347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1288-7521
https://doi.org/10.3390/s23094347
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094347?type=check_update&version=2

Sensors 2023, 23, 4347 2 of 26

Over the past few years, distributed deep learning has emerged as a promising area of
research, supported by scalable cutting-edge technology and driven by the need to tackle
large-scale datasets and complex problems. Numerous state-of-the-art studies have been
conducted to develop innovative techniques and frameworks for optimizing distributed
deep-learning systems. For instance, exploring data and model parallelism has led to sig-
nificant advancements in the scalability and efficiency of training large neural networks [9].
Additionally, researchers have been investigating the impact of communication strate-
gies, such as gradient compression [10] and decentralized optimization [11], to reduce
the communication overhead and latency associated with the distributed training process.
Furthermore, novel approaches, such as federated learning [12], have been proposed to
enable collaborative learning among multiple devices while preserving data privacy. These
studies reflect ongoing efforts to develop more efficient, scalable, and privacy-preserving
distributed deep-learning systems, ultimately contributing to the broader applicability of
deep learning in various domains.

There are two main distributed learning strategies. The first strategy is data paral-
lelism [13]. An extensive dataset is common for more accurate results in modern deep
learning. Due to the extensive dataset, the memory fitting problem occurs vastly. To over-
come this issue, the large dataset is divided into small batches, and their gradients are
calculated individually on different GPUs; the final result is the weighted average of all
the calculated gradients. Furthermore, the second technique is model parallelism [14].
Model parallelism is required when the model (layers of the model) or parameters are too
large to fit in the memory. Therefore, deep-learning models could be divided into pieces; a
few consecutive layers could be transferred to a single node, and the gradients could be
calculated in the forward direction. Synchronous [15] and asynchronous training [16] is a
typical method to solve data/model parallelism.

Majorly, two main libraries support distributed learning: TensorFlow and PyTorch.
TensorFlow is used vastly in industrial products and provides distributed APIs for data
distribution across multiple devices (e.g., GPU and TPU). Users can distribute data and cre-
ate a training pipeline with minimal changes in the code. One of the significant drawbacks
of TensorFlow’s distributed APIs is that they support model distribution but with many
limitations. On the other hand, PyTorch’s distributed APIs are fastly growing in model
distribution and data distribution [17]. PyTorch contains various model and data paral-
lelism options according to the user’s requirements [18]. PyTorch also provides flexibility
to develop its model and data distribution training pipeline.

However, the increase in computational capabilities is significantly outpaced by the ex-
pansion of the datasets and models [19], which is why, even after achieving the distribution
scenarios of training, the production deployment of these networks remains premature [20].
Consequently, the memory capacity and communication overhead can limit the scaling of
data parallelism.

1.1. Our Technical Contributions

In this study, we developed and presented a performance comparison of data and
model distribution on an edge cluster testbed by varying the number of graphics processing
units (GPUs). The edge cluster testbed was designed to emulate resource-constrained
environments and integrated several GPUs with Kubernetes services for seamless container
orchestration. This setup facilitated the distribution of diverse workloads across end-to-end
ML/AI workflows, eliminating concerns about underlying memory issues in resource-
constrained scenarios.

To further enhance the efficiency of the edge cluster testbed, we proposed a hybrid
pipeline that combined data parallelism and model parallelism for the simultaneous train-
ing of machine learning models. By concurrently dividing model layers and data shards
across the available compute resources, this approach exploited the advantages of both
parallelism techniques. This hybrid pipeline optimized resource utilization in edge com-

Sensors 2023, 23, 4347 3 of 26

puting environments, leading to accelerated training times and improved scalability for
deep-learning workloads.

In our performance analysis, we employed a meticulous experimental design that in-
corporated a representative deep-learning model (convolutional neural networks (CNNs)),
which is widely used in self-driving car applications. We utilized relevant datasets, ensur-
ing that they accurately reflected real-world scenarios encountered by autonomous vehicles.
Key performance metrics, including training time and images per second, model accuracy,
and model loss, were rigorously evaluated to provide a comprehensive understanding of
each approach’s efficacy.

The comparison of the hybrid distributed pipeline with established frameworks, such
as PyTorch and TensorFlow APIs, was performed on both edge devices and the Google
Cloud Platform. This cross-platform evaluation facilitated a thorough investigation of the
strengths and limitations of each approach in diverse computing environments, thereby
enabling us to draw robust conclusions about their suitability for real-time analysis in
self-driving car applications.

By employing state-of-the-art techniques and rigorous experimental design, our study
showcases the potential of the hybrid distributed pipeline in addressing the unique chal-
lenges of edge computing scenarios, particularly in the context of autonomous vehicles.
Our comprehensive performance evaluation not only demonstrates the technical superi-
ority of the hybrid approach but also establishes it as a viable and efficient solution for
enabling real-time deep-learning processing, ultimately contributing to the advancement
of self-driving car technology.

Keeping in view the technical limitations of the current methods mentioned in the next
section, we proposed a hybrid pipeline for distributed training and showed the efficacy of
our approach through comparative performance analysis on the Google Cloud Platform
and our edge cluster testbed. The edge cluster testbed comprised three GPUs, and we used
TensorFlow and PyTorch distributed API for implementation. More concrete contributions
are as follows:

• We showed the performance comparison of data and model distribution on the edge
cluster testbed by varying the number of GPUs. The edge cluster testbed integrated
several devices (GPUs) with Kubernetes services. The diverse workloads are easily
distributed by end-to-end ML/AI workflows using Kubernetes services without
worrying about underlying memory issues in resource-constricted environments;

• We formulated a hybrid (data and parallel) pipeline to simultaneously train the model
by simultaneously dividing model layers and data shards on the edge cluster;

• We conducted a performance comparison of the proposed hybrid distributed pipeline
employing data and model distribution simultaneously on edge clusters for up to
four GPUs. We also compared the proposed hybrid approach vs. PyTorch APIs vs.
TensorFlow APIs on both edge devices and the Google Cloud Platform to determine
the feasibility of proficient real-time analysis for self-driving cars.

The motivation behind the above objectives was to develop and evaluate a highly
efficient, scalable, and resource-conscious distributed training approach for deep-learning
workloads in edge computing environments. By exploring the performance of data and
model distribution with varying numbers of GPUs, designing a hybrid pipeline that
combines the strengths of data and model parallelism, and comparing the proposed pipeline
against established frameworks on different platforms, our study aimed to identify the
most effective solution for real-time analysis in resource-constrained scenarios, such as
those encountered in self-driving cars. The successful implementation and evaluation of
this approach have the potential to significantly enhance the capabilities of autonomous
vehicles, thereby contributing to the broader advancement of deep-learning applications in
edge-computing contexts.

Sensors 2023, 23, 4347 4 of 26

1.2. Organization of Paper

The paper is organized as follows: Section 2 discusses related work, research gaps,
and our contributions; Section 3 presents a comparison of TensorFlow and PyTorch dis-
tributed APIs; The proposed hybrid distributed pipeline is detailed in Section 4; The
experimental data are provided in Section 5, while Section 6 outlines the experimental
settings; The results and discussions are covered in Section 7; and this study’s conclusion is
presented in Section 8.

2. Related Work

The detection of road potholes using computer vision and machine learning ap-
proaches can be a valuable tool to assist with visual challenges [21]. Potholes can pose
a significant risk to autonomous vehicles, potentially causing damage to their sensors or
suspensions and can lead to accidents or disruptions in traffic flow. Similarly, the automatic
detection of pothole distress in asphalt pavement using improved convolutional neural
networks (CNNs) is a promising approach for identifying and addressing potholes on time.
Potholes can cause significant damage to vehicles, disrupt traffic flow, and pose safety
hazards to drivers and pedestrians alike [22].

Similarly, rethinking road surface 3D reconstruction and pothole detection from per-
spective transformation to disparity map segmentation is a novel approach to detecting
and addressing potholes on the road. The traditional method of pothole detection involves
using cameras to capture images of the road surface, followed by perspective transfor-
mation to create a 3D surface model. However, this method can be time-consuming and
computationally expensive [23].

The system known as 3Pod is a federated learning-based system for 3D pothole
detection in smart transportation. The system uses a distributed approach where data
is collected from various sensors installed in the vehicles and then sent to a centralized
server for processing using federated learning techniques. This approach helps improve the
accuracy and efficiency of pothole detection while ensuring data privacy. One drawback of
this system is that it requires a large amount of computational power and data storage to
process and store the 3D point clouds [24].

Traditional distributed deep-learning pothole detection systems may not be accurate
or reliable enough for use in self-driving cars, as they may be affected by various factors,
such as lighting conditions, weather, and road surface variations. Moreover, the system’s re-
liability is dependent on both hardware and software. The system’s hardware components,
such as the sensors and processors, must be able to accurately capture and process data for
the software to analyze and interpret it effectively. Therefore, it is essential to ensure that
the hardware is high-quality and meets the necessary specifications. To achieve cutting-
edge development, high-end distributed strategies should be developed. Developing a
high-end distributed environment for pothole and road distress detection, as a use case of
self-driving cars, requires an in-depth understanding of distributed deep learning.

The distributed model analysis is thought to be the foundation of an Oracle tool
that can help to identify limitations and bottlenecks of various parallelism approaches
during their scaling scenario. This methodology assesses Oracle using six parallelization
algorithms, four CNN models, and different datasets (2D and 3D) on up to 1024 GPUs.
Compared to empirical results, the Oracle tool has an average accuracy of roughly 86.74%
and data parallelism accuracy of up to 97.57% [25]. However, GPU processing performance
and training throughput are severely limited because of the excessive memory consumption
mentioned before.

To tackle the issue mentioned above, a model named Hippie was proposed [26].
Hippie is a hybrid parallel training framework that combines pipeline and data parallelism
to increase the memory economy and scalability of massive DNN training. Hippie uses
a hybrid parallel approach based on hiding gradient communication to boost training
throughput and scalability. Hippie was created utilizing the PyTorch and NCCL platforms.
According to tests on diverse models, Hippie achieved above 90% scaling efficiency on a

Sensors 2023, 23, 4347 5 of 26

16-GPU architecture. Hippie also boosts performance by up to 80% while reducing memory
overhead by 57%, resulting in a memory efficiency of 4.18×. However, significant speed-up
issues were observed in inherently sequential tasks.

HyPar-Flow is a single API for processing data, model, and hybrid parallel training
at scale for any Keras model. To accumulate/average gradients across model replicates,
the all-reduce algorithm is employed. HyPar-Flow presents a significant advancement in
distributed training, as it provides several notable benefits. First, it offers up to 1.6 times the
speed of Horovod-based (Horovod is an open-source package that overcomes both scaling
challenges in inter-GPU communication [27]) data-parallel training in sequential tasks,
demonstrating its superior efficiency. Second, HyPar-Flow can achieve 110 times the speed
of a single node when deployed, showcasing its impressive scalability. Lastly, for ResNet-
1001, an ultra-deep model, HyPar-Flow boasts an astounding 481 times the speed of
single-node performance when implemented on 512 Frontera nodes, further emphasizing
its remarkable capabilities in handling complex and resource-intensive tasks. While the
aforementioned information highlights the impressive performance and scalability of
HyPar-Flow, it does not address the potential increase in communication overhead due
to the combination of data and model parallelism in HyPar-Flow, which could impact its
overall efficiency in specific scenarios.

Communication overhead is one of the most significant roadblocks to training big
deep-learning models at scale. Gradient sparsification is a promising technique for reducing
the amount of data transmitted. First, developing a scalable and efficient sparse all-reduce
method has proven to be complex. Secondly, the sparsification overhead is crucial in
limiting the potential for speed improvement.

The aforementioned issues were addressed for big and distributed deep-learning
models by Ok-TOPK, a distributed training system with sparse gradients [28]. Ok- TOPK
combines a decentralized parallel stochastic gradient descent (SGD) optimizer with a
unique sparse all-reduce technique (less than 6k communication volume and asymptotically
optimal). Ok-TOPK achieves model accuracy comparable to dense all-reduce, according to
empirical results. Ok-TOPK is more scalable and boosts training performance significantly
compared to the optimized dense and state-of-the-art sparse all-reduces (e.g., 3.29×–12.95×
improvement for BERT on 256 GPUs).

Furthermore, a distributed framework was introduced for air quality prediction featur-
ing Busan, Republic of Korea as its model city. To forecast the intensity of particle pollution,
a deep-learning model was trained on a distributed system known as data parallelism
(PM2.5 and PM10) [29]. To determine how the air quality particles are connected in space
and time with the dataset distribution, multiple one-dimensional CNN layers are combined
with a stacked attention-based BiLSTM layer to extract local spatial features.

The hybrid approach observed in the mentioned research involved asynchronously
distributing data and the model within the same algorithm. For instance, the data was
initially distributed and trained with the undistributed model, followed by distributing the
undistributed model and training it with undistributed data. Additionally, the communi-
cation overhead between the GPUs was a more significant concern than the training and
epoch time. The research also lacked practical comparisons, as the developed algorithms’
training times were analyzed but not compared to state-of-the-art APIs.

The current literature on distributed training techniques primarily focuses on the
performance of these approaches on conventional GPUs, leaving a research gap in un-
derstanding their behavior on edge devices, which are critical for real-time applications,
such as self-driving cars. To address this gap and enhance the technical value of our
research, we proposed a hybrid deep-learning approach tailored for self-driving car appli-
cations, specifically for pothole detection on edge devices, such as the Jetson Nano. This
approach leveraged sophisticated distributed PyTorch APIs, enabling us to investigate the
effectiveness and adaptability of the hybrid pipeline in resource-constrained, real-world
scenarios.

Sensors 2023, 23, 4347 6 of 26

3. Comparison of TensorFlow and PyTorch Distributed APIs and Their Limitations

TensorFlow and PyTorch are two of the most popular deep-learning frameworks, each
offering distributed APIs to facilitate training models across multiple devices, such as
GPUs or TPUs. We examined the key differences between the TensorFlow and PyTorch
distributed APIs in terms of their architecture, design principles, and functionality.

1. Architecture:

• TensorFlow: TensorFlow employs a dataflow graph-based architecture, where
computations are represented as directed acyclic graphs (DAGs). The nodes in
the graph represent operations, while the edges represent tensors flowing be-
tween these operations. TensorFlow’s distributed training relies on the tf.distribute
API, which provides a flexible and extensible way to distribute the training across
multiple devices and platforms.

• PyTorch: PyTorch follows an imperative (eager execution) programming paradigm,
which enables dynamic computation graph construction. PyTorch’s distributed
training is facilitated by the torch.distributed package, which provides a rich set of
communication primitives and backend-specific implementations for distributed
training.

2. Design principles:

• TensorFlow: The tf.distribute API is designed to be highly modular and easy
to use. It offers several distribution strategies (such as MirroredStrategy, Multi-
WorkerMirroredStrategy, and ParameterServerStrategy) that can be easily incor-
porated into the existing TensorFlow code with minimal changes.

• PyTorch: The distributed package aims to provide a simple, flexible, and efficient
way to parallelize training across multiple devices. PyTorch offers multiple
backends (such as NCCL, Gloo, and MPI) for communication, and supports
various parallelization methods, including data parallelism, model parallelism,
and hybrid approaches.

3. Functionality:

• TensorFlow: The tf.distribute API offers a comprehensive set of features, such as
synchronous and asynchronous training, custom training loops, fault tolerance,
and checkpointing. It also supports TensorFlow Extended (TFX) components,
enabling seamless integration with end-to-end ML pipelines.

• PyTorch: The distributed package provides various distributed communication
primitives, such as all_reduce, scatter, and gather, as well as higher-level ab-
stractions, such as DistributedDataParallel and DistributedSampler. PyTorch’s
distributed API also supports advanced features, such as torchelastic, for fault
tolerance and elasticity in distributed training.

TensorFlow and PyTorch distributed APIs, despite their powerful distributed train-
ing capabilities, have limitations related to static graphs, overhead, manual parallelism,
and heterogeneous hardware support. These limitations can affect the efficiency and perfor-
mance of training in resource-constrained environments, such as edge computing scenarios.
A hybrid distribution approach, combining data and model parallelism, addresses these
limitations by leveraging the strengths of both techniques, resulting in better resource
utilization, improved scalability, and more efficient training in diverse edge computing
contexts. As depicted in Figures 1 and 2, the limitations of TensorFlow and PyTorch are
illustrated through a comparative analysis. The figures display the impact of these limi-
tations on various significant parameters, with the y-axis representing the severity level
ranging from 1 to 5 and the x-axis enumerating the different parameters that exhibit notable
constraints. Moreover, Table 1 shows a comparative analysis using values of key features.

Sensors 2023, 23, 4347 7 of 26

Figure 1. TensorFlow disadvantages.

Figure 2. PyTorch disadvantages.

Sensors 2023, 23, 4347 8 of 26

Table 1. Comparative analysis of distributed PyTorch with distributed TensorFlow using key features.

Features Distributed PyTorch Distributed TensorFlow

Learning curve Moderate Steeper

Model deployment Less mature deployment options More mature deployment options (e.g.,
TensorFlow Serving)

Memory footprint (relative) 1.1 1

Mobile support Less mature mobile support (PyTorch
Mobile) Mature mobile support (TensorFlow Lite)

Multi-node scaling efficiency (relative) 1 1.2

Static computation graphs Not native, requires TorchScript Native in TensorFlow 1.x, requires some
adjustments in TensorFlow 2.x

CPU utilization (relative) 1 1.2

Performance Slightly lower performance in some cases
compared to TensorFlow

Slightly higher performance in some
cases compared to PyTorch

ONNX support Native support, but not all models are
compatible

Requires third-party libraries (e.g.,
tf2onnx) for conversion

GPU utilization (relative) 1 1.2

4. Proposed Hybrid Distributed Pipeline

Scalability is a crucial factor in the development and deployment of self-driving
vehicles, as these vehicles generate vast amounts of data and require complex deep-learning
models to process this data in real-time. While traditional methods, such as Hadoop or
Apache Spark, can address some of the issues related to parallel data processing, these
methods can introduce significant overhead during data transfer and may not be sufficient
for processing complex deep-learning models.

To address these challenges, this methodology proposes the development of a hybrid
distributed pipeline that can efficiently process complex models with massive data in
resource-constrained environments while minimizing overhead. The proposed method-
ology incorporates Kubernetes as the primary source of scalability in the testbed for self-
driving vehicles.

The proposed strategy enables efficient resource optimization, load balancing, and ef-
fective fault tolerance systems to ensure passenger safety while also providing efficient
scaling in response to changing traffic conditions. The integration of the proposed pipeline
with Kubernetes-powered testbeds enables self-driving vehicles to scale massively and run
efficiently on edge devices.

4.1. Deep-Learning Model Architecture

The architecture of FactorNet, as described in [30], consists of four initial layers that
take as the input an image with dimensions of 1920 × 1080 and three channels of RGB.
Segment 1-a is made up of one convolutional layer with a 7 × 7 filter size and one pooling
layer with a 3 × 3 filter. Segment 2-a consists of three layers: the first two layers are
convolutional, with filter sizes of 1 × 1 and 3 × 3, and the last layer is a 3 × 3 pooling filter.
The architecture incorporates a parallel CNN approach that utilizes four parallel sub-factors.
These sub-factors consist of a pooling layer, 3 × 3 convolution, 5 × 5 convolution, and
7 × 7 convolution, respectively. Each sub-factor encodes different visual features and helps
to detect object boundaries. The FactorNet architecture is used as the backbone of Faster
R-CNN to identify multiple objects in a single frame. The architecture is embedded in
the Faster R-CNN framework with the region proposal network (RPN) to reduce visual
features by gradually processing them in a parallel manner. The RPN was chosen for its
state-of-the-art detection, classification, and prediction capabilities. The architecture of
the model can be visualized in Figure 3, as presented in [30]. A significant change in our

Sensors 2023, 23, 4347 9 of 26

architecture is the addition of a state-of-the-art Faster R-CNN as the detection front end and
the use of FactorNet as the backbone to reduce neural network complexity. The purpose
of combining these two models is to assess the computational handling capacity of the
proposed pipeline and testbed.

Figure 3. Distributed FactorNet model.

4.2. Proposed Hybrid Pipeline

A hybrid distributed pipeline is proposed as shown in Figure 4, which executes
model and data distribution simultaneously in the same code using PyTorch API. Initially,
the dataset and convolutional neural network model settings are prepared. After that,
a training job manager is established, which contains hybrid code with the distribution of
the dataset and model incorporated in Kubernetes clusters to initiate the training process on
the edge cluster. Furthermore, the linkage of worker nodes is established using integrated
all-reduce and NV links to overcome communication overheads. A complete deep neural

Sensors 2023, 23, 4347 10 of 26

model is distributed and replicated as a variable in the form of model layers on different
devices, denoted as PEs. The dataset is divided into sub-datasets for each model replica
in data-parallel. Forward and backward propagation is computed with the help of a
micro-batch utilizing different sectors of the dataset. To aggregate the weights, the gradient
exchange phase is enabled with the help of the all-reduce algorithm, as shown in Figure 5.

Figure 4. Conceptualization of proposed methodology.

Figure 5. All-reduce exchange of distributed model parameters on distributed data.

In Figure 4, the hybrid algorithm is explained clearly in the following Algorithm 1.
The input dataset is first partitioned into smaller chunks, which are then processed con-
currently on different devices. Simultaneously, the model’s layers or subnetworks are
distributed across these devices. During the forward and backward passes, the devices
exchange intermediate data and gradients to update their respective parts of the model.
By combining data parallelism and model parallelism, the algorithm can efficiently utilize
multiple devices, thus reducing the overall training time, balancing the computational
load, and allowing for the training of larger models that may not fit into a single device’s
memory.

Sensors 2023, 23, 4347 11 of 26

Algorithm 1 Proposed Hybrid Distributed Deep-Learning Detection Algorithm

1: procedure HYBRIDDISTRIBUTEDTRAINING
2: Initialize the distributed environment
3: Set up data and model parallelism parameters
4: Load the dataset and create distributed data samplers
5: Define the model architecture with the chosen backbone
6: Distribute the model across multiple devices
7: Initialize the optimizer and learning rate scheduler
8: for each epoch do
9: for each batch in training dataset do

10: Distribute data to available devices
11: Perform data augmentation if necessary
12: Forward pass through the model
13: Calculate the loss function
14: Backward pass to compute gradients
15: Synchronize gradients across devices
16: Update the model weights using the optimizer
17: Update learning rate scheduler if needed
18: end for
19: Evaluate the model on the validation dataset
20: for each batch in validation dataset do
21: Distribute data to available devices
22: Forward pass through the model
23: Calculate the loss function and performance metrics
24: end for
25: Calculate the average validation loss and metrics
26: Save the model if the validation score improves
27: Early stopping if validation score does not improve for a set number of epochs
28: end for
29: Return the best model
30: end procedure

In this proposed approach, we defined a neural network model and a training function
that takes the rank and world size as arguments. We initialized he distributed training
using the dist.init_process_group function and set the device for the current process using
torch.cuda.set_device. We then created the model and optimizer and wrapped the model
in a DistributedDataParallel object using the DDP constructor. We also created a data
loader for the training data. Within the training loop, we moved the data and target to the
current device using data.cuda(rank) and target.cuda(rank), and computed the forward
pass through the model.

FactorNet f(x) is trained on dataset D for the detection of potholes. The model consisted
of n layers, and each layer is divided into m sub-layers. Let fi,j(x) represent the j-th sub-
layer of the i-th layer of the model. Then, we divided the model into m sub-models, each of
which consists of n sub-layers, such that:

fm(x) = f _n, m(f _n, m− 1(. . . f _n, 1(f _n− 1, m(f _n− 1, m− 1(. . . f _1, 1(x)))))) (1)

Each sub-model is executed in parallel across different processing units using model
parallelism. Let P be the number of processing units.

To train the model, we used the stochastic gradient descent (SGD) algorithm with
data parallelism. We divided the dataset D into P smaller sub-datasets D1, D2, . . . , DP,
and assigned each sub-dataset to a processing unit. Each sub-dataset contained a subset of
the training data.

Sensors 2023, 23, 4347 12 of 26

The notation fm(x; θ) represented the sub-model fm(x) with the parameters θ. Then,
the objective function for training the model is as follows:

min
θ

1
|D|

|D|

∑
i=1

L(fm(xi; θ), yi) (2)

where L is the loss function, xi is the input data in batch i, and yi is the corresponding
target output.

To perform SGD with data parallelism, each processing unit computes the gradients
of the objective function with respect to the model parameters θ using their respective
sub-dataset. Let ∇J(θ(t)i) represent the gradient of the objective function with respect to θ.

Then, the gradients computed by each processing unit are combined using the all-
reduce algorithm to update the model parameters. The all-reduce algorithm computes the
sum of the gradients across all the processing units and then broadcasts the result back
to each processing unit. Moreover, each processing unit i computes the gradient of the
objective function with respect to θ using their sub-dataset:

∇J(θ(t)i) =
1
|Bi|∑

(
∇L(fm(x; θ

(t)
i), y)

)
(3)

Each processing unit i sends its gradient to all the other processing nodes using the
all-reduce communication protocol and broadcasts the result back to each node:

∇Jglobal = MPI_Allreduce(∇J(θ(t)i), op = MPI_SUM) (4)

Furthermore, it computes the average gradient on each node:

∇Javg =
1
k
· ∇Jglobal (5)

Similarly, the sum of the gradients across all the processing units is computed:

∇Jglobal =
k

∑
i=1
∇J(θ(t)i) (6)

The local model parameters θ are updated on node n_i using the computed average gradi-
ent:

θ
(t+1)
i = θ

(t)
i − α · ∇Javg (7)

where α is the learning rate.
The all-reduce algorithm synchronizes gradient updates among multiple workers

during deep-learning model training. With four workers (0, 1, 2, and 3), each computes
gradients locally, then exchanges and sums them hierarchically in a sequence. After worker
3 receives the sum of all the gradients, it sends the sum back in reverse order, ultimately
synchronizing and updating all workers’ models consistently for efficient distributed
training, as shown in Figure 5.

As illustrated in Figure 6, the Faster R-CNN model backed with FactorNet is divided
into two shards, and the input batch is partitioned into various splits and pipelined into the
two model shards. The distinction is that instead of using CUDA streams to parallelize the
execution, this research uses asynchronous RPCs. The model shards are stitched together
into a single module. In addition, two rpc.remote functions are used to call the two shards
on two RPC workers so they can be accessed in the forward pass.

Sensors 2023, 23, 4347 13 of 26

Figure 6. Distribution of FactorNet among hybrid pipeline. Conceptualization from [31,32].

By using hybrid parallelism with the all-reduce algorithm and data awareness, we
achieved faster training and better utilization of computing resources. However, the com-
munication overhead, synchronization, and load balancing need to be carefully managed
to avoid performance bottlenecks. To avoid this issue in the proposed architecture, NV-
Links are introduced via P100 with the all-reduced methodology for gradient information
exchange in forward and backward propagation to avoid communication overheads. NV-
Links are built with an added feature that enables the overall reduction algorithm to fasten
the pipeline and flow gradients in a backup manner. An NV-Link is a direct GPU-to-
GPU link that allows the server to scale multi-GPU input/output (IO). Within a single
node and between nodes, NV-Switch connects numerous NV-Links to offer all-to-all GPU
communication at a complete NV-Link speed [33].

5. Experimental Data

The experimental data is divided into two distinct categories. To evaluate the robust-
ness of the hybrid approach under varying conditions, multiple subsets of data have been
generated. These subsets serve as diverse representations of the data, providing a more
comprehensive examination of the approach’s performance.

To further strengthen the reliability of the proposed approach, these datasets are
fed into the model using repetitions of 1× dataset, 4× dataset, and 8× dataset. This is
completed in the form of distributed data, which allows the model to adapt and learn from
a broader range of input, ultimately enhancing the robustness and dependability of the
hybrid approach.

5.1. Dataset of Potholes

The dataset used in this study consisted of 10,000 images of potholes captured from
various angles as shown in Figure 7. The dataset comprised a combination of local data
and various online resources, primarily focusing on road potholes from the USA, Europe,
and Southeast Asia. This diverse collection aims to improve the model’s adaptability, a crit-
ical factor for self-driving cars. The input size for the pothole images is 1920 × 1080 × 3.
To assess the processing speed, the dataset was augmented by replicating the dataset,
and different techniques, such as the data parallel, model parallel, and hybrid approaches,
were employed. The images were annotated using labelImg software in PASCAL format,
and their size was adjusted to meet the neural network’s input requirements. To evaluate
the detection of potholes from various dimensions, the images were divided into 70% test
data and 30% train data.

Sensors 2023, 23, 4347 14 of 26

Figure 7. Pothole dataset for detection analysis.

5.2. Dataset of Road Distress Conditions

The purpose of detecting different road distress conditions is to train a distributed
deep-learning model using a road distress dataset. This model can detect and classify
road distress conditions in real-time, allowing self-driving cars to adjust their speed, tra-
jectory, and other parameters based on the road conditions. This can improve the safety
and efficiency of autonomous vehicles by reducing the risk of accidents and improving
ride comfort.

The importance of such a dataset for self-driving cars lies in the fact that road distress
conditions can affect the safety and performance of autonomous vehicles. For example,
roughness can affect the stability and control of the vehicle, while cracking and rutting
can cause vibrations and noise that affect the perception of the environment by the vehi-
cle’s sensors. Faulting can also affect the vehicle’s trajectory and stability, especially at
higher speeds.

To proceed with the experimentations, additional images (2973 in total) were taken
from https://www.kaggle.com/datasets/shubhamadsul97/cdac-dai-pavement-distress-
detection (accessed on 1 April 2023). These images contain different road conditions
excluding potholes. The purpose of testing the model with two different datasets was to
observe whether the distributed environment can adopt different kinds of input or not.
The images were annotated in PASCAL format and divided into a 70% test set and a 30%
validation set.

6. Experimental Settings

In this section, an in-depth experimental setting is applied to the proposed and tradi-
tional testbeds on the aforementioned dataset. Two testbeds are proposed as follows:

6.1. Proposed Low Resourceful Edge Devices Testbed

The proposed architecture contains combinations of edge devices to compete with
powerful GPUs in terms of training time by utilizing different distributed techniques
proposed in this research before. “Jetson Nano and Xavier both use ARM architecture” [34].
The ARM Cortex-A57 CPU is a high-performance 64-bit processor designed for energy-
efficient computing. It is capable of executing multiple instructions in parallel, which helps
to improve the overall performance of the system.

Similarly, a combination of Jetson Nano and Jetson Xavier is used in this research to
form multi-dimensional edge clusters for distributed training of deep neural models with
an extensive dataset to achieve accuracy in resource-constricted environments. Kubernetes
is an open-source framework for automating containerized application deployment, scal-
ing, and management, which serves the purpose of container orchestration in this study.
Container orchestration and AI can be highly complementary technologies, as both re-
quire efficient and scalable management of distributed workloads. Container orchestration
platforms, such as Kubernetes, provide a highly flexible and scalable infrastructure for
deploying and managing containerized AI applications.

https://www.kaggle.com/datasets/shubhamadsul97/cdac-dai-pavement-distress-detection
https://www.kaggle.com/datasets/shubhamadsul97/cdac-dai-pavement-distress-detection

Sensors 2023, 23, 4347 15 of 26

Edge clusters are developed using Kubernetes tokens to connect different edge devices
in a parallel fashion, serving each as a GPU source to enable rigorous distributed training.
Framework selection such as PyTorch, TensorFlow distributed API or hybrid pipeline
depends on user requirements. A proposed environment for edge-distributed deep neural
networks is shown in Figure 8 and Algorithm 2.

Algorithm 2 Experimental Setup of Kubernetes Cluster with Edge Devices

1: procedure KUBERNETESSETUP
2: Set up a Kubernetes master on a Jetson Nano & Jetson Xavier
3: Initialize the Kubernetes cluster on the master device
4: Retrieve the join token from the master device
5: for each Jetson Nano worker do
6: Join the Kubernetes cluster using the join token
7: Configure the worker device for Kubernetes
8: Apply required settings and resource limits
9: end for

10: Deploy the Distributed Pipeline via Jupyter Notebook Integration with edge devices
11: Set up monitoring tools for the cluster to measure computational cost
12: Verify that the cluster is running and all devices are connected
13: end procedure

Figure 8. Proposed environment of edge distributed deep neural network for self-driving cars.

Sensors 2023, 23, 4347 16 of 26

6.2. Conventional Powerful Cloud GPU Testbed

The concept of the Google Cloud integrated GPU (graphics processing unit) is that
graphics processing units (GPUs) can be added to the virtual machine (VM) instances using
Compute Engine. These GPUs can speed up specialized workloads on virtual machines,
such as machine learning and data processing. NVIDIA GPUs are provided in passthrough
mode for the VMs, giving them direct control over the GPUs and their related memory.

The research conducted in this study utilized NVIDIA vGPU clusters consisting of
Tesla K80 and P100 models. The Tesla K80 model can support up to eight GPUs with a
maximum GPU memory of 96 GB GDDR5, as shown in Figure 9, while the P100 model can
support up to four GPUs. To implement the virtualization environment powered by the
NVIDIA virtual GPUs, the NVIDIA virtual GPU (vGPU) software is installed alongside
the hypervisor at the virtualization layer. This software enables the creation of virtual
GPUs, which allows each virtual machine (VM) to utilize the server’s hardware GPU.
The software provides a graphics, or compute, driver for each VM, which enables the
offloading of demanding operations to the hardware GPUs. This results in an improved
user experience since the CPU is responsible for the bulk of the work. Furthermore,
virtualized and cloud environments can support compute-intensive workloads, such as AI,
data science, and demanding engineering and creative applications.

Figure 9. Conventional environment of GPU distributed deep neural network for self-driving cars.

Sensors 2023, 23, 4347 17 of 26

7. Results and Discussion

After performing the experimentation, the results were gathered and collected in
several distributed parts for comparison as follows:

7.1. Computational Analysis

The PyTorch distributed API was compared with the TensorFlow API in a distributed
fashion to analyze the image/second time and epoch time for the appropriate choice of API
in the Google cluster environment. In Figure 10a,b the data set is categorized concerning
the different batch sizes. In a nutshell, on four GPUs, the TensorFlow processing time was
the least in comparison with PyTorch for data distribution. Furthermore, in image/second,
the behavior of TensorFlow presented better results than PyTorch, except, at one point in
two GPUs, TensorFlow surged in image/second due to communication overhead issues.

(a) (b)

Figure 10. (a) Google Colab Cluster (4 GPUs) w.r.t. time (s). (b) Google Colab Cluster (4 GPUs)
w.r.t. img/s.

Moreover, the PyTorch distributed API was compared to the TensorFlow API in a
distributed fashion to analyze the image/second time and epoch time for the appropriate
choice of API in an edge cluster environment with up to three GPUs. Compared with
the Google cluster for two initial GPUs, the data distribution takes added time for the
TensorFlow libraries because of the communication overheads observed, as shown in
Figure 11a,b.

(a) (b)

Figure 11. (a) Edge devices (3 GPUs) w.r.t. time (s). (b) Edge devices (3 GPUs) w.r.t. img/s.

Sensors 2023, 23, 4347 18 of 26

The PyTorch distributed API was compared to the TensorFlow API in a distributed
fashion to analyze the image/second time and epoch time for the appropriate choice of
API in the Google cluster environment with up to four GPUs for model distribution. In
the model distribution by the count of GPUs, the overall training time decreased with an
increase in GPUs. There was a robust competition between TensorFlow and PyTorch for
distributed model analysis, as the behavior was different for 1× the number of datasets and
observed differently for 8×; overall, TensorFlow was fast because of the low communication
connection, as shown in Figure 12a,b.

(a) (b)

Figure 12. (a) Up to 4 GPUs w.r.t. time (second)). (b) Up to 4 GPUs w.r.t. img/s.

Compared with Google Colab, the overall time was increased in edge devices due
to the connection time in and communication period. However, for resource-constricted
environments with up to three GPUs, it was giving robust competition to the Google Cloud
cluster, as shown in Figure 13a,b.

(a) (b)

Figure 13. (a) Up to 3 GPUs w.r.t. time (second). (b) Up to 3 GPUs w.r.t. img/s.

Moving toward hybrid pipeline analysis, a focused area of PyTorch, TensorFlow
showed some limitations in this scenario. After the formation of the proposed hybrid
testbed and experimentation, it was observed that the behaviors of PyTorch in the individual
data or model distribution were different due to communication overheads. Nevertheless,
it inculcates appropriate algorithms and NV-Links for solid communication. The hybrid
pipeline significantly decreased the training time for the overall time (s) and image/seconds.
The hybrid pipeline formed using the PyTorch library represented clear succession among
TensorFlow hybridism in Google cluster analysis. Furthermore, the individual epoch was

Sensors 2023, 23, 4347 19 of 26

observed to be delayed because the initial two epochs are crucial for the formation of the
linkage between gradients for forward and backward propagation. The results are analyzed
and depicted in Figure 14a,b.

(a) (b)

Figure 14. (a) Up to 4 GPUs w.r.t. time (seconds). (b) Up to 4 GPUs w.r.t. img/s.

Similarly, the same hybridism was tested on edge devices. There was a slight increase
in overall communication, but it was still remarkable for individual data and model-
distributed training. Furthermore, this will be helpful in self-driving vehicles where
resource-constricted ARM structures are observed in bulk. The results are depicted in
Figure 15a,b.

(a) (b)

Figure 15. (a) Up to 3 GPUs w.r.t. time (second). (b) Up to 3 GPUs w.r.t. img/s.

The depth of losses is outside the scope of this study because this research focuses
more on computational analysis. However, losses were observed for the model in two
dimensions. Firstly, the log losses were calculated for detection analysis, including the ROI
and actual value positions for the localization points. On the other hand, the cross-entropy
loss is used to evaluate how well the model predicts the class of each object in an image
detection scenario, as well as their location within the image.

The losses are observed in Figure 16 for the hybrid pipeline with respect to the epoch
size. The overall and cross-entropy losses of the Google Colab cluster were reduced
instantly due to strong cross-link GPUs and reduced communication overhead. However,
the proposed hybrid technique showed remarkable competitiveness in loss tests.

Sensors 2023, 23, 4347 20 of 26

Figure 16. Validation analysis for hybrid pipeline.

7.2. Accuracy and Loss Analysis of Model

Training and validation accuracy are critical metrics in the context of distributed deep
learning, where multiple nodes in a network are used to train a deep-learning model. In this
scenario, it is important to measure the accuracy and validation of the model across all the
nodes to ensure that the large model is performing well on a large and diverse dataset. In
this section, the training and validation results of PyTorch, TensorFlow, and the proposed
distributed deep-learning framework on an edge network are compared. As shown in
Figure 17, it can be observed that the accuracy of PyTorch reached 95.1% and converged at
epoch size 12, which is a competitive result considering the overhead and large distribution
of the model.

Figure 17. Cont .

Sensors 2023, 23, 4347 21 of 26

Figure 17. Training accuracy results of different frameworks on proposed edge testbed.

Furthermore, the proposed strategy converged to an accuracy of 94.2% at epoch size 10,
which is a reasonable result considering the overhead and the simultaneous processing of
both the model and data with large parameters. These accuracy levels can be further im-
proved by providing a solid communication platform to reduce overhead or by enhancing
neural network parameters. However, this is not the aim of this study, as the focus of this
study is mainly on distributed strategies to overcome computational complexity. If com-
putational complexities are not addressed, they often lead to issues with the hardware of
self-driving vehicles. The method proposed in this research is flexible and can be adopted
in any challenging environment to achieve the best results.

In addition to these results, TensorFlow achieved an accuracy of 93.1%, which is
reasonable but falls short compared to the other two methods. The major advantage of the
proposed framework over the other two frameworks is that it processes both the model and
data simultaneously, demonstrating that, even in larger scenarios, these accuracy levels will
be solid. With a good communication strategy, the proposed framework has the potential
to overcome many barriers.

In a distributed deep-learning system, the model is trained on multiple nodes, each
with its own data and computation resources. The training and validation losses help to
ensure that the model is learning and generalizing well across all the nodes. In a distributed
deep-learning system, it is important to monitor the training and validation losses of each
node, as well as the overall losses across all the nodes. If the losses are not consistent
across all the nodes, this may indicate that the data distribution is not balanced or that
some nodes are not contributing equally to the training process. As shown in Figure 18, we

Sensors 2023, 23, 4347 22 of 26

can observe the training and validation losses of PyTorch, TensorFlow, and the proposed
distributed framework on the edge devices. With a distribution of 100 epochs, the average
training losses of PyTorch are around 5–6%, the proposed framework shows losses of 6–7%,
and TensorFlow shows losses of around 7–8%.

The proposed strategy has an advantage over the other two strategies as it processes
both the data and the model in parallel, resulting in lower observed losses, compared to
the other two frameworks that process either the data or the model in parallel and still
face losses.

In summary, the proposed hybrid framework outperforms the state-of-the-art frame-
works in terms of accuracy, losses, and distribution strategies. Its high level of accuracy,
low observed losses, and efficient distribution strategies make it a safe and reliable choice
for self-driving cars. The hybrid framework offers a compelling solution for autonomous
vehicles that need to operate in complex and dynamic environments, ensuring their safe
and efficient operation.

Figure 18. Cont.

Sensors 2023, 23, 4347 23 of 26

Figure 18. Training loss results of different frameworks on proposed edge testbed.

7.3. Detection Analysis of Pothole

After observing the training times, and comparing the clusters, the quality of the visual
detection was observed specifically for the hybrid approach, which tends to be much more
efficient for self-driving cars, as shown in Figure 19a,b. Overall, the quality for detection
purposes was up to the mark.

(a) (b)

Figure 19. (a) Double pothole detection. (b) Single pothole detection.

7.4. Detection Analysis of Other Road Distress Conditions

Self-driving cars rely heavily on computer vision algorithms and sensors to detect and
respond to real-time road conditions. From a computational perspective, detecting various
road distress conditions, other than potholes, is crucial for ensuring autonomous vehicles’
safety, reliability, and efficiency. These road distress conditions, such as cracks, fissures,
water pools, uneven surfaces, road leakages, and debris, can pose potential hazards to
both self-driving cars and their passengers. To assess the effectiveness of our proposed
methodology, we conducted experiments on different road distress conditions. The epoch
size for training was set to 250, with a step size of 1563 for each epoch. The results showed
that our proposed pipeline was efficient, as demonstrated by the bounding box quality
and precision after the training on a dataset of road distress detection. As illustrated in
Figure 20a,b, the results indicated that our proposed pipeline was up to the mark.

Sensors 2023, 23, 4347 24 of 26

(a)

(b)

Figure 20. (a) Road leakages detection. (b) Road crack detection.

Additionally, a training and validation analysis was conducted to evaluate the robust-
ness of the proposed methodology. As depicted in Figure 21a, the training and validation
accuracies were observed to be 92%, which is competitive on a small dataset. Furthermore,
as shown in Figure 21b, the training and validation losses were below 10%, indicating that
the proposed methodology would be highly suitable for self-driving vehicles in various
road situations when applied to a large-scale dataset.

(a) (b)

Figure 21. (a) Training and validation accuracies. (b) Training and validation losses.

8. Conclusions

This research addressed the challenge of pothole detection by autonomous vehicles
due to inadequate training quality and embedded edge devices, arising from big data
management and training difficulties. Furthermore, this study detected other road distress
conditions to bolster its robustness. To enable comparison, two clusters were established,
comprising an edge device cluster and a Google cluster. The PyTorch and TensorFlow
distributed data and model APIs were assessed based on the total training duration and
epoch size. A hybrid pipeline was suggested to overcome the limitations of individual
distribution packages.

Sensors 2023, 23, 4347 25 of 26

The hybrid pipeline, which integrates the all-reduce algorithms and NV-Links for
forward and backward gradient propagation, demonstrated promising outcomes in terms
of the total training time and epoch size, particularly within the PyTorch environment.
In the Google cluster, the PyTorch-based hybrid pipeline, when processing 8×dataset repe-
titions on two GPUs, attained the shortest training time of 48 images/s; however, the first
and second epoch sizes required additional time due to the gradient synchronization pro-
cess. In the edge environment, these values were somewhat higher because of constraint
limitations, but they still exhibited significant improvements when compared to separate
distribution packages. The detection and cross-entropy losses were also evaluated to vali-
date model accuracy on the given dataset. This work holds the potential to be extended to
videographic analysis with high frame rates in smart cities for accurate, precise detection.
Moreover, the validation and training losses were observed, and the overall model accuracy
exceeded 92%, indicating a robust computer vision model.

Author Contributions: Conceptualization, E.-S.J.; methodology, H.T. and E.-S.J.; software, H.T.;
validation, H.T. and E.-S.J.; formal analysis, H.T. and E.-S.J.; investigation, H.T.; resources, E.-S.J.;
data curation, H.T.; writing—original draft preparation, H.T.; writing—review and editing, E.-S.J.;
visualization, H.T.; supervision, E.-S.J.; project administration, E.-S.J.; funding acquisition, E.-S.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant number 2021-0-02082, CDM_Cloud: Multi-Cloud Data Protection
and Management Platform.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Data sharing not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, L.; Ota, K.; Dong, M. Humanlike Driving: Empirical Decision-Making System for Autonomous Vehicles. IEEE Trans. Veh.

Technol. 2018, 67, 6814–6823. [CrossRef]
2. Retallack, A.E.; Ostendorf, B. Current Understanding of the Effects of Congestion on Traffic Accidents. Int. J. Environ. Res. Public

Health 2019, 16, 3400. [CrossRef]
3. Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone

double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [CrossRef]
4. Tang, Y.; Zhu, M.; Chen, Z.; Wu, C.; Chen, B.; Li, C.; Li, L. Seismic performance evaluation of recycled aggregate concrete-filled

steel tubular columns with field strain detected via a novel mark-free vision method. Structures 2022, 37, 426–441. [CrossRef]
5. Takács, Á.; Rudas, I.; Bösl, D.; Haidegger, T. Highly Automated Vehicles and Self-Driving Cars [Industry Tutorial]. IEEE Robot.

Autom. Mag. 2018, 25, 106–112. [CrossRef]
6. Verhelst, M.; Moons, B. Embedded Deep Neural Network Processing: Algorithmic and Processor Techniques Bring Deep Learning

to IoT and Edge Devices. IEEE-Solid-State Circuits Mag. 2017, 9, 55–65. [CrossRef]
7. Ni, Z.; Yuksel, A.C.; Ni, X.; Mandel, M.I.; Xie, L. Confused or Not Confused? Disentangling Brain Activity from EEG Data Using

Bidirectional LSTM Recurrent Neural Networks. In Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB’17), Boston, MA, USA, 20–23 August 2017; pp. 241–246. [CrossRef]

8. Jin, P.H.; Yuan, Q.; Iandola, F.N.; Keutzer, K. How to scale distributed deep learning? arXiv 2016, arXiv:1611.04581.
9. Yuan, Z.; Xue, H.; Zhang, C.; Liu, Y. Hulk: Graph Neural Networks for Optimizing Regionally Distributed Computing Systems.

arXiv 2023, arXiv:2302.13741.
10. Alimohammadi, M.; Markov, I.; Frantar, E.; Alistarh, D. L-GreCo: An Efficient and General Framework for Layerwise-Adaptive

Gradient Compression. arXiv 2022, arXiv:2210.17357.
11. Song, Z.; Shi, L.; Pu, S.; Yan, M. Compressed gradient tracking for decentralized optimization over general directed networks.

IEEE Trans. Signal Process. 2022, 70, 1775–1787. [CrossRef]
12. Charles, Z.; Bonawitz, K.; Chiknavaryan, S.; McMahan, B.; Agüera y Arcas, B. Federated select: A primitive for communication-

and memory-efficient federated learning. arXiv 2022, arXiv:2208.09432.
13. Lessley, B.; Childs, H. Data-parallel hashing techniques for GPU architectures. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 237–250.

[CrossRef]

http://doi.org/10.1109/TVT.2018.2822762
http://dx.doi.org/10.3390/ijerph16183400
http://dx.doi.org/10.1016/j.engstruct.2022.115158
http://dx.doi.org/10.1016/j.istruc.2021.12.055
http://dx.doi.org/10.1109/MRA.2018.2874301
http://dx.doi.org/10.1109/MSSC.2017.2745818
http://dx.doi.org/10.1145/3107411.3107513
http://dx.doi.org/10.1109/TSP.2022.3160238
http://dx.doi.org/10.1109/TPDS.2019.2929768

Sensors 2023, 23, 4347 26 of 26

14. Lai, Z.; Li, S.; Tang, X.; Ge, K.; Liu, W.; Duan, Y.; Qiao, L.; Li, D. Merak: An Efficient Distributed DNN Training Framework with
Automated 3D Parallelism for Giant Foundation Models. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 1466–1478. [CrossRef]

15. Zhang, J.; Tu, H.; Ren, Y.; Wan, J.; Zhou, L.; Li, M.; Wang, J. An adaptive synchronous parallel strategy for distributed machine
learning. IEEE Access 2018, 6, 19222–19230. [CrossRef]

16. Wu, W.; He, L.; Lin, W.; Mao, R.; Maple, C.; Jarvis, S. SAFA: A semi-asynchronous protocol for fast federated learning with low
overhead. IEEE Trans. Comput. 2020, 70, 655–668. [CrossRef]

17. Riba, E.; Mishkin, D.; Ponsa, D.; Rublee, E.; Bradski, G. Kornia: An Open Source Differentiable Computer Vision Library for
PyTorch. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Snowmass Village,
CO, USA, 1–5 March 2020.

18. Li, S.; Zhao, Y.; Varma, R.; Salpekar, O.; Noordhuis, P.; Li, T.; Paszke, A.; Smith, J.; Vaughan, B.; Damania, P.; et al. PyTorch
Distributed: Experiences on Accelerating Data Parallel Training. arXiv 2020, arXiv:2006.15704.

19. Hao, Y.; Wang, S.; Cao, P.; Gao, X.; Xu, T.; Wu, J.; He, X. Attention in Attention: Modeling Context Correlation for Efficient Video
Classification. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7120–7132. [CrossRef]

20. Yan, M.; Meisburger, N.; Medini, T.; Shrivastava, A. Distributed SLIDE: Enabling Training Large Neural Networks on Low
Bandwidth and Simple CPU-Clusters via Model Parallelism and Sparsity. arXiv 2022, arXiv:2201.12667.

21. Devi, U.A.; Arulanand, N. Detection of Road Potholes Using Computer Vision and Machine Learning Approaches to Assist the
Visually Challenged. In Smart Computer Vision; EAI/Springer Innovations in Communication and Computing (EAISICC); Kumar,
B.V., Sivakumar, P., Surendiran, B., Ding, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 61–79. [CrossRef]

22. Wang, D.; Liu, Z.; Gu, X.; Wu, W.; Chen, Y.; Wang, L. Automatic Detection of Pothole Distress in Asphalt Pavement Using
Improved Convolutional Neural Networks. Remote Sens. 2022, 14, 3892. [CrossRef]

23. Fan, R.; Özgünalp, U.; Wang, Y.; Liu, M.; Pitas, I. Rethinking Road Surface 3-D Reconstruction and Pothole Detection: From
Perspective Transformation to Disparity Map Segmentation. IEEE Trans. Cybern. 2022, 52, 5799–5808. [CrossRef]

24. Musa, A.; Hassan, M.; Hamada, M.; Kakudi, H.A.; Amin, M.F.I.; Watanobe, Y. A Lightweight CNN-Based Pothole Detection
Model for Embedded Systems Using Knowledge Distillation. In Proceedings of the 21st International Conference on New Trends
in Intelligent Software Methodologies, Tools and Techniques (SoMeT’22), Kitakyushu, Japan, 20–22 September 2022.

25. Kahira, A.N.; Nguyen, T.T.; Gomez, L.B.; Takano, R.; Badia, R.M.; Wahib, M. An Oracle for Guiding Large-Scale Model/Hybrid
Parallel Training of Convolutional Neural Networks. In Proceedings of the 30th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC’21), Stockholm, Sweden, 21–25 June 2021; pp. 161–173. [CrossRef]

26. Ye, X.; Lai, Z.; Li, S.; Cai, L.; Sun, D.; Qiao, L.; Li, D. Hippie: A Data-Paralleled Pipeline Approach to Improve Memory-Efficiency
and Scalability for Large DNN Training. In Proceedings of the 50th International Conference on Parallel Processing (ICPP 2021),
Lemont, IL, USA, 9–12 August 2021. [CrossRef]

27. Sergeev, A.; Balso, M.D. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv 2018, arXiv:1802.05799.
28. Li, S.; Hoefler, T. Near-Optimal Sparse Allreduce for Distributed Deep Learning. arXiv 2022, arXiv:2201.07598.
29. Mengara Mengara, A.G.; Park, E.; Jang, J.; Yoo, Y. Attention-Based Distributed Deep Learning Model for Air Quality Forecasting.

Sustainability 2022, 14, 3269. [CrossRef]
30. Sung, J.; Jung, E. Factorial Convolution Neural Networks. arXiv 2021, arXiv:2111.07072.
31. Zhang, J.; Zhan, J.; Li, J.; Jin, J.; Qian, L. Optimizing execution for pipelined-based distributed deep learning in a heterogeneously

networked GPU cluster. Concurr. Comput. Pract. Exp. 2020, 32, e5923. [CrossRef]
32. Getting Started with Distributed Data Parallel. Available online: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

(accessed on 11 March 2023).
33. Temuçin, Y.H.; Sojoodi, A.H.; Alizadeh, P.; Kitor, B.; Afsahi, A. Accelerating Deep Learning Using Interconnect-Aware UCX

Communication for MPI Collectives. IEEE Micro 2022, 42, 68–76. [CrossRef]
34. Flynn, P.; Yi, X.; Yan, Y. Exploring Source-to-Source Compiler Transformation of OpenMP SIMD Constructs for Intel AVX

and Arm SVE Vector Architectures. In Proceedings of the Thirteenth International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM’22), Seoul, Republic of Korea, 2–6 April 2022; pp. 11–20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2023.3247001
http://dx.doi.org/10.1109/ACCESS.2018.2820899
http://dx.doi.org/10.1109/TC.2020.2994391
http://dx.doi.org/10.1109/TCSVT.2022.3169842
http://dx.doi.org/10.1007/978-3-031-20541-5_3
http://dx.doi.org/10.3390/rs14163892
http://dx.doi.org/10.1109/TCYB.2021.3060461
http://dx.doi.org/10.1145/3431379.3460644
http://dx.doi.org/10.1145/3472456.3472497
http://dx.doi.org/10.3390/su14063269
http://dx.doi.org/10.1002/cpe.5923
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
http://dx.doi.org/10.1109/MM.2022.3148670
http://dx.doi.org/10.1145/3528425.3529100

	Introduction
	Our Technical Contributions
	Organization of Paper

	Related Work
	Comparison of TensorFlow and PyTorch Distributed APIs and Their Limitations
	Proposed Hybrid Distributed Pipeline
	Deep-Learning Model Architecture
	Proposed Hybrid Pipeline

	Experimental Data
	Dataset of Potholes
	Dataset of Road Distress Conditions

	Experimental Settings
	Proposed Low Resourceful Edge Devices Testbed
	Conventional Powerful Cloud GPU Testbed

	Results and Discussion
	Computational Analysis
	Accuracy and Loss Analysis of Model
	Detection Analysis of Pothole
	Detection Analysis of Other Road Distress Conditions

	Conclusions
	References

