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Abstract: Mixed reality (MR) registers virtual information and real objects and is an effective way
to supplement astronaut training. Spatial anchors are generally used to perform virtual–real fusion
in static scenes but cannot handle movable objects. To address this issue, we propose a smart task
assistance method based on object detection and point cloud alignment. Specifically, both fixed and
movable objects are detected automatically. In parallel, poses are estimated with no dependence
on preset spatial position information. Firstly, YOLOv5s is used to detect the object and segment
the point cloud of the corresponding structure, called the partial point cloud. Then, an iterative
closest point (ICP) algorithm between the partial point cloud and the template point cloud is used
to calculate the object’s pose and execute the virtual–real fusion. The results demonstrate that the
proposed method achieves automatic pose estimation for both fixed and movable objects without
background information and preset spatial anchors. Most volunteers reported that our approach was
practical, and it thus expands the application of astronaut training.
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1. Introduction

Traditional astronaut training methods contain instructor-led instruction, querying
manuals, voice guidance, etc. However, these methods require astronauts to memorize and
query operational processes, increasing the task burden [1,2]. To solve this problem, MR is
applied to provide virtual assistance information, such as process guidance [3], equipment
operation simulation [1], etc., Refs. [4,5], on the astronaut’s headset. In practice, MR pro-
vides astronauts with intuitive operation guidance, freeing them from complicated manuals,
reducing brain load and operation errors, and meeting the needs of autonomous training.

The core of MR is the fusion of virtual information and real objects in 3D space. The
key point is to determine the pose of objects relative to the MR device to ensure that the
hologram can be accurately projected. In application development, spatial anchors are
generally preset [6], and the pose of the virtual information is adjusted manually. However,
this mode is only applied in scenes with fixed objects due to the lack of automatic pose
estimation. As the environment changes significantly, spatial anchors need to be updated.
Some presented works also propose preload markers on the object, which can solve the
problem effectively [7,8]. However, we do not want to add extra information to the natural
scene when training. Neither of these models can meet the application requirements for
moving objects in the environment.

For the reasons above, conventional MR devices only perform recognition of the
geometric space and cannot detect specific objects or perceive the dynamic changes in the
scene. To meet the MR training needs, it is crucial to develop a method that is not limited
by static space.
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We break down this issue into discovering objects and estimating poses. Deep learning-
based object detection is widely used to detect objects. According to whether the method
generates proposals, object detection is divided into two types, namely two-stage meth-
ods [9–13] and one-stage methods [14–19]. Two-stage methods are characterized by gener-
ating proposals first and then classifying the objects and are slower than one-stage methods.

The purpose of pose estimation is to determine the 6DoF pose of the object in 3D space,
including translation and rotation. Generally, there are three types of methods to solve
this problem. The first is the correspondence point-based method [20–24], which finds
the matching relationship between the input data and the point cloud of the object. The
second is the template-based approach [25–28], where a template similar to the object is
selected from a marked pose library. The third is the voting-based approach [29–31], with
the idea that each 2D pixel or 3D point contributes to the 6DoF pose. In MR applications,
the low-resolution images acquired by visual sensors and the soft texture of the astronaut
training environment prevent the stable extraction of 2D features. Fortunately, TOF or
stereo cameras can obtain the object’s depth, so the ICP algorithm can be used.

In work similar to ours [32], Mask-RCNN is used to segment instances. Both 2.5D and
3D replicas are extracted from the spatial mapping generated by instances to enhance the
perception of the scene. Furthermore, Mask-RCNN is also used in the subsequent work [33],
and the CAD point cloud is aligned with the object point cloud through the ICP algorithm.
Unlike our method, Park et al.’s work requires the virtual model to be registered to markers
beforehand. At the same time, the background of the astronaut training environment is
more complex, and the object is quite small, making pose estimation challenging.

To address the limitation that MR cannot automatically detect objects, we propose
a pose estimation method based on object detection and point cloud alignment. Indeed,
objects in astronaut training are small. They occupy a small percentage of pixels, which
poses a significant challenge to traditional image processing methods. In practice, we use
YOLOv5s [14] to detect small samples and irregular objects. Furthermore, the partial point
cloud is segmented and is ICP-aligned [34] with the template point cloud to estimate the
pose of objects.

In experiments, fixed and movable objects are selected for MR. Subjects with different
backgrounds are invited to experience our system. Results show that the proposed method
effectively improves MR scene comprehension and extends the methods of astronaut MR
training. The contributions of this study are as follows:

1. We propose a smart MR task assistance method based on object detection and
point cloud alignment to meet the requirements of pose estimation of fixed and
movable objects.

2. Aiming at the specific setting of astronaut training, YOLOv5s and ICP are used to
detect objects and calculate poses, respectively.

3. The results demonstrate the usability and usefulness of the proposed method, provid-
ing a new method for subsequent research.

2. Materials and Methods

Our method focuses on object detection and pose estimation in astronaut training and
guides the virtual information to be accurately rendered onto the real object. Specifically,
we remove the limitation of preset poses and solve the problem of inaccurate registration
between virtual information and movable objects. Unlike in the work of Park et al. [33], the
objects in our images are small, and the depth measurement is inaccurate. Therefore, the
point cloud obtained from a single view is incomplete, which poses a significant challenge
to the pose estimation. Given this scene’s characteristics, YOLOv5s is combined with the
ICP algorithm to execute pose estimation in MR applications. Firstly, YOLOv5s is used to
find the object’s bounding box on the RGB image. Secondly, the partial point cloud of the
object is calculated based on its corresponding depth value. Finally, the object’s pose is
calculated by aligning it with the template point cloud. Furthermore, the pose is applied to
the astronaut MR to enhance the system’s robustness and smartness.
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2.1. Overview of the Proposed Method

As shown in Figure 1, the algorithm utilizes HoloLens2 as the MR device and is
divided into three main parts. Part I is object detection, where YOLOv5s is used to obtain
the object’s bounding box on the RGR image, i.e., the pixel coordinates of the four corners
of the rectangular box. Part II is the generation of the partial point cloud, including
(a) alignment of the RGB image with the depth image, (b) determination of the coordinates
of the bounding box on the depth image, and (c) calculation of the point cloud of the
corresponding region based on intrinsic parameters and depth values. Part III calculates
the pose of the partial point cloud relative to the template point cloud, i.e., the object’s
pose relative to the camera coordinate system, using ICP, where the template point cloud is
obtained by sampling from the CAD model.
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Figure 1. Structure of the proposed method. The method is divided into object detection, generation
of the partial point cloud, and ICP.

The world coordinate system of the camera can be obtained through SLAM and the
extrinsic parameters between sensors in HoloLens2. Therefore, the object’s pose relative to
the world coordinate system, i.e., a fixed position in 3D space, can be obtained. Furthermore,
this pose can register the virtual information used for astronaut training with the real object.

Communication between HoloLens2 and the server is performed via UDP. HoloLens2
transmits depth, RGB images, and each sensor’s intrinsic and extrinsic parameters to the
server. The server sends the object’s pose to HoloLens2. The pose includes translation
and rotation, where the translation is defined as t = [x, y, z], and rotation is defined as a
quaternion: q = [a, b, c, w]. Considering the performance of HoloLens2 and the server’s
processing capacity, the data-sending frequency of HoloLens2 is three fps. If the frequency
is too high, it will store the data in the queue and increase the latency. Indeed, the latency
becomes more pronounced as the program runs longer. In practice, the time consumption of
ICP on our device is about 0.187 s per frame, which will be completed before the subsequent
frame transmission.
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2.2. Transformation of Coordinate Systems

The proposed method involves transformation between multiple coordinate systems,
as shown in Figure 2. W is the world coordinate system, the initial coordinate system of the
entire system, determined by the HoloLens2 boot position. S is the system coordinate sys-
tem of HoloLens2, called the rigNode in [35], and HoloLens2 provides extrinsic parameters
of all sensors relative to S. R is the RGB camera coordinate system. D is the depth camera
coordinate system. We align the RGB image to the depth image.
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From the transformation TSR of R relative to S and the transformation TSD of D relative
to S, the following relationship can be obtained:

TDR = TDS × TSR = T−1
SD × TSR. (1)

T is the coordinate system where the template point cloud is located. In our method, T
is set to be the same as D to simplify the pose calculation’s complexity. O is the coordinate
system where the object is located.

The key to MR is to determine the transformation of O relative to S, i.e., to find TSO,
which is expressed as a translation tSO and a rotation RSO. TWS can be obtained by SLAM,
which is considered known. Therefore, by obtaining TSO, the absolute coordinates of the
object in the world coordinate system can be defined as TWO = TWS× TSO. T coincides with
D, so define TSD = TST, which can be obtained from extrinsic parameters and is considered
known. The process of calculating TSO can be translated into calculating TSO = TSD × TDO,
i.e., TSO = TST × TTO. Our goal is to calculate TTO.

Note that the above coordinate system follows a right-handed coordinate system. The
application is developed using Unity, which follows a left-handed coordinate system, so
the pose obtained by HoloLens2 needs to be transformed into a left-handed coordinate
system. In the coordinate system transformation, a distinction should be made between
translation and rotation, and the two cases should be handled separately [36].

The translation involves a transformation of the point positions as long as the corre-
sponding axes are inverted. Taking the Z-axis as an example, the point Pr(x, y, z) in the
right-hand system is transformed into the point Pl(x, y,−z) in the left-hand system, which
is represented by the matrix as the following:

Pl =

 x
y
−z

 =

1 0 0
0 1 0
0 0 −1

x
y
z

 = StPr. (2)
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The transformation matrix for translation is as follows:

St =

1 0 0
0 1 0
0 0 −1

. (3)

Assuming that the rotation matrix in the right-handed system is Rr, and the rotation
matrix in the left-handed system is Rl , then we define the following:

Rl = StRrSt. (4)

Equation (4) is the rotation matrix in the left-handed coordinate system. Equations (2) and (4)
can be used to convert the poses in the right-handed coordinate system over to the left-
handed coordinate system.

2.3. Object Detection Based on YOLOv5s
2.3.1. YOLOv5s

There are several versions of YOLOv5, among which YOLOv5s is the simplest. The
remaining ones are extended on this basis. Astronaut training scenes are relatively un-
changed and do not require the network to have too high of a generalization ability, so that
YOLOv5s can meet the demand.

YOLOv5s is divided into four parts: input, backbone, neck, and prediction. Among
them, the input adopts Mosaic data enhancement. In practice, four images are stitched
together by random scaling, random cropping, and random arrangement, which improves
the detection of the small object. This reduces training dependence on batch size and is
more suitable for the particular scene of astronauts. Moreover, Focus and CSP (Cross Stage
Partial Network) are used in the backbone. The Focus slices the image, expands the input
image of three channels to twelve channels, performs sampling of images, and retains
information completely, compared with traditional sampling. The CSP performs a two-step
operation on feature maps: one is convolution, and the other combines the results of the
previous convolution, similar to ResNet [37]. CSP brings significant improvement, effec-
tively enhancing the ability of CNN and reducing calculation. Then, the neck part changes
the convolution to the CSP, further improving the network’s power. In the prediction part,
YOLOv5s fuses the results of three different resolutions and maps them to the same size as
the input image.

The above characteristics make the YOLOv5s able to be trained faster with small
datasets and detect small-sized objects more accurately. So, we choose YOLOv5s as the
network for object detection.

2.3.2. Datasets

Astronauts work in a relatively unchanged environment, and two frequently operated
objects are selected, including a valve and a panoramic camera. We use HoloLens2 to scan
the scene, and the data stream is saved as images. Five hundred are selected, 400 of which
are used as the training set and the other 100 as the validation set. Some of the data are
shown in Figure 3.

It should be noted that some of the data are blurred, as shown in Figure 3.
Figure 3b is normal and reasonable. This is caused by the movement of the HoloLens2

while capturing images, which often happens in natural application scenes.
A large amount of labeled data like COCO cannot be acquired in the experiment, and

the image resolution captured by HoloLens2 is poor. Compared with the general case, this
application is characterized by small samples and low resolution, which creates higher
requirements. Fortunately, the astronaut training scene is unchanged. For object detection,
there is a high similarity between the train and test datasets, so the strong generalization
ability of the network is not required. Meanwhile, Mosaic and self-adversarial trainings
(SAT) are used in YOLOv5s for data augmentation, which expands the dataset.
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2.3.3. Network Training

The developing environment and parameters are shown in Table 1, and YOLOv5s is
fine-tuned based on the pre-training weights. Since our dataset is relatively small, we use a
small batch size to meet the training requirements. The optimization algorithm is stochastic
gradient descent (SGD), and CUDA accelerates the training.

Table 1. The learning environment for YOLOv5s.

Environment NVIDIA GeForce GTX 2060, Pytorch GPU, Intel i7-8750H
Network YOLOv5s
Additional dataset 400 images for each additional class
Pre-train dataset COCO
Epochs 400
Learning rate 0.0001
Batch size 4

Figure 4a shows the training loss curves, which decrease rapidly in the first 50 epochs
and stabilize after 200 epochs. The mAP (mean Average Precision) of the validation set is
shown in Figure 4b. When the IoU (Intersection over Union) threshold is set to 0.5, mAP
stabilizes at a high value (fixed at 0.995) after 30 epochs. When the threshold is set from
0.5 to 0.95, the average mAP is stabilized at a high value after 300 epochs. The proposed
method uses the best weights after 300 epochs for object detection. It should be noted that
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the training is easy because the network is not trained from scratch, and the dataset is small
compared to COCO.
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2.4. Generation of Partial Point Cloud

As shown in Part II in Figure 1, the method is divided into object detection, generation
of the partial point cloud, and ICP.

The RGB image captured by HoloLens2 is used to determine the object’s bounding
box by YOLOv5s, represented by four values (x, y, w, h). (x, y) is the center coordinate of
the bounding box, and (w, h) is the width and height of the bounding box.

The resolution of the RGB image acquired by HoloLens2 is 726× 428, and the res-
olution of the depth image is 320 × 288. The field of view of the two datasets differs
significantly, so the two images need to be aligned. The point cloud corresponding to the
depth image can be obtained according to intrinsic parameters. Assume that the coordinate
of the point PD in the depth coordinate system is [XD, YD, ZD]

T, which is calculated as

PD =

XD
YD
ZD

 = ZDK−1
D

uD
vD
1

, (5)

where (uD, vD)
T is the pixel coordinate corresponding to the point in the depth image, ZD

is the depth of PD, and KD represents the intrinsic parameter of the depth camera. From
the transformation TDR of the RGB camera coordinate system relative to the depth camera
coordinate system, the spatial point coordinates can be calculated as

PR = TRDPD = T−1
DRPD, (6)

where TDR is the transformation of the depth camera coordinate system relative to the RGB
camera coordinate system. Since ZD ≈ ZR, the pixel coordinates (uR, vR)

T on the RGB
image can be calculated as follows:uR

vR
1

 = Z−1
R KRPR = Z−1

R KRT−1
DRPD, (7)

where ZR is the depth of PD in the RGB camera coordinate system. By combining
Equations (5) and (7), it can be calculated as follows:uR

vR
1

 = KRT−1
DRK−1

D

uD
vD
1

. (8)
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In practice, we align RGB images to depth images through Equation (8). Then, corre-
sponding pixel coordinates of the bounding box on the depth image can be determined.
Furthermore, we obtain the point cloud according to Equation (5). It should be noted that
the point cloud is generated by the single-view depth image, which only expresses partial
information about the object and is called the partial point cloud. As shown in Figure 5,
the point cloud is incomplete where the camera cannot capture the whole structure due
to obstruction.
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2.5. Pose Estimation

The template point cloud is obtained from the manually created CAD model by sam-
pling, as shown in Figure 6. The partial point cloud is aligned with the template point cloud
by ICP to calculate the transformation between them. The commonly used ICP algorithms
are divided into the point-point algorithm [34] and the point-plane algorithm [38], and the
point-plane algorithm converges faster. However, it is found in the experiments that the
results calculated by the point-plane algorithm often fail. The reason may be that point
clouds in this method are too noisy and non-homologous. Additional errors are introduced
in determining the plane where the points are located, which is not as good as directly
calculating the distance between matched pairs of points. The ICP method used in this
method is as follows.

Given point clouds P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qn), we define the
target function:

E(T) = ∑(p,q)εΩ ρ‖p− Tq‖, (9)

equivalent to
E(T) = ∑

(p,q)εΩ
ρ‖p− Rq− t‖. (10)

Among them,

ρ(x) =
µx2

µ + x2 (11)

P is the template point cloud, and Q means the partial point cloud. T denotes the
transformation matrix between point clouds, including the rotation R and the translation t.
ρ is the kernel function to limit the influence of outer points. Then, the pose between point
clouds can be calculated by minimizing Equation (10). In practice, fast global registration
(FGR) [39] is used to obtain the initial transformation.
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The results of the point cloud alignment are shown in Figure 7. Although the ap-
pearance of the two point clouds is different, the alignments are approximately accurate.
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3. Results and Discussion

A fixed valve and a movable panoramic camera are selected as detected objects to
verify the method’s performance. Given that the MR ultimately provides operational
guidance to humans, human experience in the task is essential. Twenty subjects are
invited to experience HoloLens2 and give feedback on whether the algorithm is useful
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through questionnaires. The experiments show that the proposed method can project
virtual information with fixed or movable objects, proving the usability and usefulness of
the method.

3.1. Results of Object Detection

After 100 images were tested, the average processing time for each image was 0.0102 s,
including 0.0005 s for preprocessing, 0.0082 s for inference, and 0.0015 s for NMS (non-
maximum suppression). Compared with the data transfer rate between HoloLens2 and the
server, the object detection time is negligible, so the operation of the whole system can be
well satisfied.

Compared to work dedicated to object detection, it does not make sense for us to
verify the accuracy of the network on a test dataset. This is because the test set of our
application scene is similar to the training set, which is evident in the training phase of
the network. The detection results saved during the whole system’s real-time operation
are shown in Figure 8. Figure 8a is the result of a fixed valve, Figure 8b,c are results of a
fixed panoramic camera, and Figure 8d is the result of a moving panoramic camera. It can
be seen from Figure 8d that the network accurately detects the object even if the captured
image is blurred while on the move. The images sent from HoloLens2 to the server were
all detected correctly.
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3.2. MR Applications for the Static Object

The experimental object is a valve fixed to the cabin. In astronaut training, it is usually
necessary to operate similar objects. The astronauts could be guided to perform the correct
operation with added virtual information. This is particularly important in space–ground
communication, where the information had by astronauts in orbit and experts on the
ground is not equivalent. Astronauts in space will be less sensitive to orientation for
various unique reasons, so MR assistance is especially needed.

The marker-based approach is more sensitive to distance [32]. For comparison, a valve
is observed at different distances and angles to verify the proposed method, as shown in
Figure 9. Due to the spacecraft cabin structure limitation, the experiment performs the
observation at distances of 0.5 m, 1 m, and 1.5 m, respectively. Furthermore, we change the
observation angle at the fixed distance of 1 m.
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Figure 9. Observe the object from different distances and angles.

Figure 10 shows the results of our algorithm at each point. It can be seen that the
virtual–real fusion is good when facing the object regardless of the distance change. How-
ever, it must be noted that the virtual–real matching worsens when the observation angle
changes. Because the object’s front surface is contoured, the observation is complete. In
comparison, the brim is incomplete when the occlusion occurs from the rotation. Astro-
nauts generally face the object during operation, so the inaccuracy of the lateral pose will
not affect the task result.
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The most similar method to ours is [33]. Figure 11 shows the results using the algorithm
proposed in [33]. To be clear, our results are all screenshots of HoloLens 2 running in real-
time. Therefore, they do not coincide with the viewing angles in Figure 10. As can be seen,
it is hard to get accurate results. For [28], the subjects were large-sized objects with a simple
background. By contrast, our object size is small, and the environment is more complex.
So, our method is more suitable for astronaut training.
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In particular, during the experiment, the virtual-real registration is ineffective in some
cases. As shown in Figure 12, the axis of symmetry of the virtual valve differs from that of
the real object. The cause is the different depth data from different bounding boxes, which
results in the difference in ICP. To solve this problem, two methods are proposed.
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3.2.1. Filtering Results of the Pose

The pose is sent to HoloLens2 only when the angle θ between the symmetry axis of
the hologram and the symmetry axis of the real object does not exceed the threshold. The
previous pose is always used until the new pose is received, and the threshold is set to 5◦.
Therefore, helpful results will always be displayed during the device’s operation. Various
results are shown in Figure 13. The angle between the symmetry axis of the template point
cloud (green) and the symmetry axis of the partial point cloud (red) is θ. In practice, the
results with θ less than the threshold are selected and sent to HoloLens2 for display.
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3.2.2. Only the Translation Is Calculated

During the ICP, we find that the translation is calculated robustly. However, the
rotation error is relatively large. The virtual arrow (red) and text in Figure 14 are artificially
set to rotate with the line of sight (always directly in the line of sight) and are fixed relative to
the valve. Therefore, it is necessary to know the translation of the valve only to determine
the position of the virtual arrow and the text, not to precisely calculate the rotation of
the valve.
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Figure 14 shows the results of using this method and hiding the valve. There may be
errors in the rotation of the virtual valve calculated by ICP. While the translation is more
accurate, the red arrows and the text can always be displayed correctly without rotation.
Astronaut training primarily includes process tasks. Specifically, tips on the operation are
required, but not frequent registration of real and virtual objects. Therefore, our method
can meet the task needs.

3.3. MR Applications for the Movable Object

Moving positions and performing operations on objects are necessary for some train-
ing, such as assembling equipment. A typical task is moving the panoramic camera in
astronaut extravehicular activities. Conventional MR only performs localization by the
marker or background and does not work when the object moves to a new location. To
address this issue, a panoramic camera is used in the experiment. Figure 15a shows the
result of virtual-real registration in scene 1, and the text is accurately displayed above the
panoramic camera. The panoramic camera is moved to different scenes, and Figure 15b
shows the moving process. As shown in Figure 15c, when the panoramic camera appears
again in a different field of view, the virtual information can be quickly matched on the real
object. Experiments show that the proposed method does not depend on any background
and does not require any fixed reference to be preset. The registration can be performed as
long as the object is detected in the field of view.
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3.4. Feedback from Subjects

MR is ultimately used to assist astronauts, so the human experience is significant.
Fifteen subjects (seven men and eight women, with an average age of 30.2 years) are invited
to the experiment. Among them, five have MR development experience, another five have
no development experience but do have experience in MR applications, and the other
five do not have access to MR equipment. Subjects are asked to wear HoloLens2 and are
allowed to move around to observe the fixed object. Then, the panoramic camera can be
carried to other sites at will so the subject can experience the method’s performance with a
movable object. After the experiment, each subject must finish a questionnaire consisting
of 10 questions, as shown in Table 2, several of which are acquired from [33]. Each question
has a score of 10. A higher score indicates that the proposed method is more effective, and
the average score for each question is calculated to assess the method’s performance.

Figure 16 shows the results of the questionnaires (averaged). There is a consensus
that this method is better when applied to movable objects, especially for those with
experience in MR development. Because the traditional method generally applies to static
environments, where markers or spatial anchors are preset in advance, it cannot be used
for movable objects. While in the static task, subjects who do not have access to MR have
a positive experience, other subjects do not see much improvement over the traditional
method. Results are sometimes inferior to the traditional method in terms of pose accuracy.
This is because the traditional method can manually preset the virtual object and precisely
adjust the poses according to human observation.
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Table 2. Questionnaires for the proposed method.

Simplified Questions

Q1 Like using this system on the fixed object
Q2 Like using this system on the movable object
Q3 Like using this system with virtual models and text
Q4 Like using this system without virtual models
Q5 Projected virtual information on the real object naturally
Q6 Effective registration of real structure and virtual information
Q7 Helpful for understanding structure operations
Q8 It is easy to understand the meaning of virtual information
Q9 The real-time performance of the method is acceptable

Q10 It will be an effective method
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Figure 16. Results of the questionnaires. Higher scores indicate that the proposed method is
more useful.

In contrast, achieving precise results in our method is difficult due to the quality
of the point cloud and the alignment error. The same issue is reflected in Q5 and Q6,
where some subjects encountered poor pose accuracy during the experiment. Indeed,
the pose estimation is performed in real-time. The quality of the partial point clouds
obtained at different angles will lead to different pose accuracy. Although two methods are
adopted to correct this problem, the accuracy is still inadequate compared to markers or
spatial anchors.

Some subjects feel that precise alignment of the virtual object with the real object is
not very helpful for the task and that only text is needed to satisfy the requirements, as
reflected in Q3 and Q4. This is because the task focuses on affecting the operational process
and does not require precise guidance to perform delicate operations on the object. At the
same time, the proposed method makes it difficult to precisely match the virtual object with
the real object. The text, on the other hand, only needs to calculate the translation of the
real object, so more subjects prefer to use the procedure without the virtual object. Q7 and
Q8 are mainly reflected in the setting of virtual information, which has little relationship to
pose accuracy. Our method adds text for information enhancement, which is more robust
with pose accuracy. The LAN limits the data transmission rate to 3 fps, so there is a delay
when the object is moved to a new location. Therefore, some subjects feel that the real-time
performance is unsatisfactory, which is reflected in Q9.

In summary, most subjects approve of our system and consider it a meaningful attempt.
There is still room for improvement, especially regarding pose accuracy. Of course, this
needs to be accomplished through other methods. Methods based on deep learning and
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point cloud alignment are inherently uncertain, and it is challenging to achieve the same
accuracy with them as it is with manual fine-tuning.

4. Conclusions

A method based on object detection and point cloud alignment is proposed for task
assistance in astronaut MR training. For the weak texture features, small object size, and
irregular configuration, YOLOv5s is used to detect the object’s bounding box on RGB
images. Furthermore, depth images are combined to segment the object’s partial point
cloud. Then, the partial point cloud is aligned with the template point cloud using ICP,
where the template point cloud is obtained by sampling from the CAD model. The proposed
method does not rely on any pre-determined spatial information. It automatically estimates
the pose of fixed or movable objects, expanding the forms of MR training for astronauts.

Experiments are performed for fixed and movable objects, respectively. Specifically,
virtual information can be accurately projected onto fixed objects and does not depend
on anchors. For the movable object, the virtual information can follow the object, which
improves the flexibility of MR training. Moreover, the subject experience shows that the
proposed method has better value for movable objects. However, the accuracy of virtual-
real alignment is not improved. For future work, different technologies or devices need to
be used to enable higher pose accuracy and faster data transmission.
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