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Abstract: The integrated fast detection technology for electric bikes, riders, helmets, and license
plates is of great significance for maintaining traffic safety. YOLOv5 is one of the most advanced
single-stage object detection algorithms. However, it is difficult to deploy on embedded systems,
such as unmanned aerial vehicles (UAV), with limited memory and computing resources because
of high computational load and high memory requirements. In this paper, a lightweight YOLOv5
model (SG-YOLOv5) is proposed for the fast detection of the helmet and license plate of electric bikes,
by introducing two mechanisms to improve the original YOLOv5. Firstly, the YOLOv5s backbone
network and the Neck part are lightened by combining the two lightweight networks, ShuffleNetv2
and GhostNet, included. Secondly, by adopting an Add-based feature fusion method, the number
of parameters and the floating-point operations (FLOPs) are effectively reduced. On this basis, a
scene-based non-truth suppression method is proposed to eliminate the interference of pedestrian
heads and license plates on parked vehicles, and then the license plates of the riders without helmets
can be located through the inclusion relation of the target boxes and can be extracted. To verify the
performance of the SG-YOLOv5, the experiments are conducted on a homemade RHNP dataset,
which contains four categories: rider, helmet, no-helmet, and license plate. The results show that, the
SG-YOLOv5 has the same mean average precision (mAP0.5) as the original; the number of model
parameters, the FLOPs, and the model file size are reduced by 90.8%, 80.5%, and 88.8%, respectively.
Additionally, the number of frames per second (FPS) is 2.7 times higher than that of the original.
Therefore, the proposed SG-YOLOv5 can effectively achieve the purpose of lightweight and improve
the detection speed while maintaining great detection accuracy.

Keywords: fast detection; helmet and license plate; lightweight YOLOv5; RHNP dataset;
non-truth suppression

1. Introduction

In recent years, electric bikes have become the ideal means of transportation for the
masses due to their convenience, low cost, environmental protection, low carbon, small
size, and other characteristics [1]. However, while electric bikes bring convenience to
people’s travel, the traffic casualties caused by electric bikes cannot be ignored. According
to the latest report on ‘Global Road Safety Status in 2018′ released by the World Health
Organization (WHO) [2], about 1.35 million people die in road traffic accidents every year,
among which 28% die in accidents with motorcyclists and electric bikes. Relevant research
shows that wearing helmets can reduce the death risk of people in above traffic accidents
by 42% [3]. Nevertheless, the wearing rate of helmets remains low, especially in some
developing countries [2]. In this regard, it is also crucial for the traffic police to check
whether the riders are wearing helmets. At present, the inspection of helmet wearing
mainly relies on manual labor, which has problems such as involving high law enforcement
costs, and being time-consuming and labor-intensive [4].
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With the development of artificial intelligence, object detection technology based on
deep learning has made remarkable progress in various fields such as road traffic and
intelligent security. Combining road monitoring with object detection technology enables
automatic detection of whether a cyclist is wearing a helmet. Although methods such as
YOLOv4 [5] and YOLOv5 [6] have been successfully applied to helmet detection, they
generally cannot meet the memory and real-time requirements when applied in embedded
devices with low performance. That is, existing methods still face challenges such as
high model complexity and large memory requirements. In addition to helmet detection,
rapid identification of license plates is crucial for confirming the identity information of
offenders. Only a few studies [7–9] have attempted to simultaneously recognize information
such as helmets and license plates using a multi-category detection model. However,
these methods do not account for the presence of rear passengers, and are susceptible to
interference from pedestrians and license plates of parked vehicles, leading to low detection
accuracy. To address the aforementioned challenges, this paper aims to develop a rapid
detection technology that integrates electric bicycles, riders, helmets, and license plates,
achieving rapid and accurate recognition of multi-target objects. This approach is suitable
for embedded devices with low performance. The main contributions of this paper include
the following:

(1) Due to the absence of a public electric bikes, helmet, and license plate detection
dataset, the RHNP dataset was created. The dataset includes four categories: the
whole of the rider and the electric bike, the head of the person without the helmet, the
license plate of the electric bike, and the head of the person wearing the helmet.

(2) Since YOLOv5 is difficult to deploy on small mobile embedded devices due to its
high computing load and high memory requirements [10], a SG-YOLOv5 model is
proposed. Specifically, two lightweight networks, ShuffleNetv2 and GhostNet, were
introduced in YOLOv5, and the feature fusion method was changed at the same
time. The improved model reduces the number of parameters and computation
dramatically, while ensuring the detection accuracy.

(3) As for the tedious and time-consuming detection process of violators’ license plates in
existing research, this paper draws on and improves the detection method proposed by
Allamki L. et al. [9]. Firstly, a scene-based non-truth suppression method is proposed
to eliminate the interference of pedestrians’ heads and parked vehicles’ license plates.
Then, the violator’s license plate is located through the inclusion relationships of the
predicted helmet, rider, and license plate.

The rest of this paper is organized as follows. Section 2 introduces the literature
related to this paper. Section 3 introduces the original YOLOv5 network structure. Section 4
introduces the lightweight improvement of YOLOv5, and the application process of the
scene-based non-truth suppression method. Section 5 introduces the experiment prepara-
tion and setup, and analyses the results of the experiment. Finally, the main conclusions
are drawn in Section 6.

2. Related Works

Traditional object detection algorithms such as Viola–Jones [11,12], Haar-like [13],
and DPM [14] are mainly used in the fields of face detection and pedestrian detection,
with slow progress and low performance. Until 2012, the rise of convolutional neural
networks (CNN) led to the development of deep learning [15–19], and pushed the field
of object detection to a new level. An object detection algorithm based on CNN mainly
has two technical development routes: a two-stage detection algorithm and a one-stage
detection algorithm [20]. Among them, the two-stage algorithm first generates region
proposals, which are preselection boxes that may contain the objects to be inspected, and
then classifies samples through CNN. Two-stage detection algorithms include R-CNN [21],
SPP-Net [22], Fast R-CNN [23], Faster R-CNN [24], etc. The one-stage algorithm does not
use region proposals, but directly extracts features in the network to predict object category
and location. Commonly, one-stage detection algorithms include SSD [25], RetinaNet [26],
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the YOLO series, etc. The YOLO series includes YOLO [27], YOLO9000 [28], YOLOv3 [29],
YOLOv4 [5], YOLOv5 [6], etc. In general, the two-stage algorithm has high accuracy but
slow speed and cannot meet the requirements of real-time detection, while the one-stage
algorithm meets the requirements of real-time detection but its accuracy is slightly lower.

Based on the above-mentioned algorithms, many manufacturers and scholars have car-
ried out research on the detection of electric bicycle helmets and license plates. They either
detect the riders wearing helmets [30,31], or both the helmets and the license plates [32,33].
However, few studies have been able to locate and extract license plates of riders not
wearing helmets. M. Srilakshmi et al. [7] designed a detection system for the riders without
helmets. The system first uses YOLOv2 to detect the rider and motorcycle as a whole in the
image and crop out the target box, then uses YOLOv3 to perform helmet detection on the
cropped target box, and finally uses YOLOv2 to detect the license plate when the rider is
detected not wearing a helmet. Jimit Mistry et al. [8] trained two YOLOv2 models, model 1
was trained from the COCO dataset (80 categories including humans, etc.) and model 2
was trained from the helmet dataset (only one category including helmets). First, model 1 is
applied to detect all classes in the images and crop out the human target boxes, then model 2
is used to detect helmets in the cropped images, and finally OpenALPR is used for license
plate detection on the cropped images where no helmets are detected. Allamki L. et al. [9]
used YOLOv3-tiny to detect five categories in the image, including the helmet, the head of
the rider without a helmet, the motorcycle, the rider, and the license plate. Based on the
inclusion relation of each target box, first the head of the rider without a helmet is located
in relation to the rider, then the rider is located in relation to the motorcycle, and finally
the motorcycle is located in relation to the license plate. They used YOLOv3-tiny trained
on 11,000 images for 50,000 iterations; the mean average precision (mAP) of the model
reached 75%.

It is not difficult to see that for the license plate detection of violators, M. Sirilakshmi [7]
and Jimit Mistry [8] et al. have employed multiple object detection models to locate the
license plate of violators by cropping the target box, which is tedious and time-consuming.
Allamki L. et al. [9] first detected the five categories in the image, and then located the
license plate of the violator through the inclusion relationship of the head of the rider
without helmet, rider, motorcycle, and license plate of the four target boxes. However, this
method did not consider the situation of passengers in the rear seat and the interference of
pedestrians and parked vehicle license plates, and the detection precision was not high.

3. Yolov5 Network Structure

YOLOv5 is a product of continuous integration and innovation based on YOLOv3 and
YOLOv4 [34]. It currently includes four network models, namely YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. Among them, YOLOv5s has the smallest network width and
depth [35], has the lowest requirements for mobile hardware, and is more convenient to
deploy. Therefore, for this paper we selected the YOLOv5s network model and improved
it. The overall structure of YOLOv5s consists of four parts: the image input (Input), the
backbone network (Backbone), the Neck, and the output detection head (Head), as shown
in Figure 1.

Input adopts Mosaic data augment [36], adaptive image scaling, and adaptive anchor
box calculation [37]. As shown in Figure 2, Mosaic data augment randomly uses four
images to splice in the way of random scaling, random cropping, and random arrangement,
which greatly enriches the samples of the dataset and makes the network more robust.
The length and width of the input image may be different, and the original input image
is generally uniformly scaled to a certain fixed size and sent to the detection network. To
reduce information redundancy, adaptive image scaling can adaptively add the least black
edges in the scaled image, so as to accelerate the reasoning speed. The anchor boxes of
YOLOv3 and YOLOv4 are pre-defined by K-means, while YOLOv5 uses adaptive anchor
box calculation to automatically learn the value of the best anchor box based on the training
data during the training process.
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Figure 2. The image example of Mosaic data augment.

The Backbone contains Focus, Conv, C3, and SPP modules [22]. The structure of Focus
is shown in Figure 3. First, the input image is downsampled twice for slice operation,
then the sliced feature maps are concatenated in the channel dimension, and finally a
composite convolution operation is performed after concatenation. The purpose of Focus is
to reduce the amount of calculation and speed up the network without losing information.
The Conv module is Conv2D+BatchNormal+SiLU, which is used as the basic convolution
module in YOLOv5. C3 is the improved version of the CSPDarknet module [38]. Yolov5
contains two different C3 modules, namely C3-True and C3-False. C3-True is used in
Backbone for feature extraction of the feature maps, while C3-False is mainly used in Neck
to fuse features. Spatial pyramid pooling (SPP) concatenates the feature layer with three
multi-scale maximum pooling layers, which can improve the receptive field almost without
reducing the speed, so as to solve the alignment problem between the anchor box and the
feature layer.
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Figure 3. Focus slice operation.

The Neck uses a feature pyramid network (FPN) [39] and a pixel aggregation network
(PAN) [40] to construct feature pyramids to fuse the feature layers extracted from the
Backbone. FPN transmits and fuses high-level feature information through upsampling,
conveying strong semantic features from the top to bottom, while PAN conveys strong
positioning features from bottom to top. They fuse the features of the backbone network
and the detection layer at the same time, so as to combine the feature information of
different scales.

The Head uses anchor boxes of different sizes to predict and classify the feature
maps of three different scales, then compares the predicted results with the actual results,
and finally generates the loss function for back propagation and optimization parameters.
When multiple prediction boxes are generated for a single target in the prediction stage,
the optimal prediction box is left by non-maximum suppression (NMS) according to the
confidence level, which is the final prediction result.

4. Improved YOLOv5s Detection Algorithm

The original YOLOv5s algorithm uses a large number of Conv and C3 structures in
the backbone network and feature pyramids, resulting in a large number of parameters
and a slow detection speed. In some real application scenarios such as mobile or embedded
devices, large and complex models are difficult to apply [10]. To meet the requirements of
fast detection of the helmet and license plate, the following improvements have been made
to YOLOv5s in this paper: (1) ShuffleNetv2 and GhostNet are introduced to lighten the
backbone network and Neck part of YOLOv5s, which reduces the number of model pa-
rameters and floating-point operations (FLOPs), and increases the detection speed. (2) The
feature pyramid feature fusion is replaced with Add, which further reduces the number
of model parameters and computation. (3) A non-truth suppression method is proposed
to improve the prediction stage and effectively eliminate the interference of non-truth
target boxes.

4.1. Introducing Two Lightweight Networks: ShuffleNetv2 and GhostNet
4.1.1. ShuffleNetv2 Lightweight Network

The lightweight network ShuffleNetv2 [41] proposed by Questyle summarizes four
design principles of the lightweight network through a large number of experiments. The
effects of input and output channels, the number of group convolution groups, the degree
of network fragmentation, the element-by-element operation on speed and memory access
cost (MAC) on different hardware are analyzed in detail:

(1) When the number of input and output channels is the same, MAC is the smallest.
(2) Group convolution with too large a number of groups will increase MAC.
(3) Fragmented operations are not conducive to parallel acceleration.
(4) The cost of element-by-element operations (such as ReLU function, Shortcut-add, etc.)

cannot be ignored.

According to the above four design principles, ShuffleNetv2 has designed two struc-
tures (a basic module and a downsampling module), as shown in Figure 4. Figure 4a is
the basic module of ShuffleNetv2, which splits the input feature map into two branches
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by channel. In the two branches, branch1 selects direct skip connections, and branch2
uses the channel-by-channel convolution with convolution step of 1 and the ordinary 1 × 1
convolution to form depthwise separable convolution, which has the same number of
input and output channels for each convolution operation. Finally, the two branches are
concatenated, and the channel rearrangement operation is used to enhance the information
communication between channels. Figure 4b is the downsampling module of ShuffleNetv2,
which removes the channel separation operation compared to the basic module. Branch1
uses the depthwise separable convolution with a convolution step of 2; the convolution
step in branch2 is changed to 2.
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Generally, 1× 1 convolution is used before or after the channel-by-channel convolution
for two purposes, one is to fuse the information between channels, and the other is to
increase or reduce the dimension. In branch2, there is no need to increase or reduce the
dimension, only to fuse the information between channels. Therefore, in this paper, the
1 × 1 convolution after the channel-by-channel convolution is removed, which removes a
small amount of computational cost. The two structures of the improved ShuffleNetv2 are
shown in Figure 5.
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Figure 5. Improved ShuffleNetv2 module. (a) Improved basic module, and (b) improved downsam-
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Currently, the complexity of a general network model can be measured by both
spatial and time complexity. Spatial complexity is the size of the model parameters, which
is composed of the weights and bias terms of each convolution kernel in the network.
Time complexity (i.e., the amount of computation commonly used) can be measured by
floating-point operations (FLOPs); the specific calculation formulae are

LOPs = FLOPs f c + FLOPsconv (1)

FLOPs f c = I·O (2)

FLOPsconv = Cin·Cout·K2·Hout·Wout (3)

In the formulae, FLOPs f c and FLOPsconv represent the computational effort of the full
connection layer and the convolution layer, respectively; I and O represent the number of
input and output nodes of the full connection layer, respectively; Cin and Cout represent the
number of input and output channels for the convolution layer, respectively; K is the size
of square convolution kernels, and Hout and Wout represent the height and width of the
output feature map, respectively. Here, since the bias has little effect on the total FLOPs, it
is ignored in the calculation. Here, due to the fact that the number of bias terms is much
smaller than the number of weights in each convolution kernel, the bias terms have little
effect on the total FLOPs and they are ignored in the calculation. From the formulae, the
FLOPs of the depthwise separable convolution used by ShuffleNetv2 are:

FLOPsDWS = Cin·K2·Hout·Wout + Cin·Cout·Hout·Wout (4)

To minimize MAC, ShuffleNetv2 complies with the first lightweight network design
principle, which maintains the same number of input channels Cin and output channels
Cout of the convolution layer in the module. Therefore, the ratio of depthwise separable
convolution to the original convolution operation is r:

r =
FLOPsDWS
FLOPsconv

=
Cin·K2·Hout·Wout + Cin·Cout·Hout·Wout

Cin·Cout·K2·Hout·Wout
=

1
Cin

+
1

K2 (5)

The actual number of input channels is generally large, so the ultimate calculation
amount saved is approximately inversely proportional to the square of the convolution
kernel size.

4.1.2. GhostNet Lightweight Network

Han K. et al. [42] visualized the output of ResNet50 and found that there were a lot
of duplicate and redundant feature maps during the training process. Therefore, a new
end-to-side neural network architecture GhostNet is proposed, which provides a Ghost
module. The module is designed to generate more feature maps by cheap operation, thus
reducing the computational cost.

Ghost, as a plug-and-play module, mainly consists of a small amount of convolution,
linear operations, and feature map splicing, as shown in Figure 6. First, a small amount of
convolution is used to compress the number of channels in the input image to get feature
layer A, and then the feature map of feature layer A is linearly operated one by one to get
feature layer B. Finally, feature layer A is identively mapped and spliced with feature layer
B to output a new feature layer C. After normal convolution calculation, the output of the
input feature map Xh∗w∗c is Yh′∗w′∗n, expressed as

Yh′∗w′∗n = Xh∗w∗c × fn∗k∗k∗c + b, (6)

where f is the convolution operation with n convolution kernels of size k ∗ k, the number
of channels is c, and b is a convolution bias term. There, h, w, c and h′, w′, n respectively
represent the height, width and number of channels of the input and output feature maps,
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respectively. The amount of computation for normal convolution is n× h′ × w′ × c× k× k,
while the Ghost module convolution is divided into two steps. The first is a small amount
of convolution, and the output feature map is Y′h′∗w′∗m; the formula is expressed as

Y′h′∗w′∗m = Xh∗w∗c × f ′m∗k∗k∗c + b
′
. (7)
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From the formula, the calculation amount is m× h′ × w′ × c× k× k. Then, a linear
operation is performed on the m feature maps one by one, and each feature map is trans-
formed to generate s feature maps. Since there is an identity mapping at the end, the actual
number of transformations is s− 1, the size of each linear operation convolution kernel is
d× d, and the total calculation amount of linear operations is m× (s− 1)× h′ ×w′ × d× d.
When m� n is satisfied, n = m× s is obtained. Thus, the calculation amount of the Ghost
module can be expressed as n/s× h′ ×w′ × c× k× k + n/s× (s− 1)× h′ ×w′ × d× d. The
theoretical acceleration ratio of normal convolution to Ghost module convolution is

rates =
n·h′·w′·c·k·k

n
s ·h′·w′·c·k·k + (s− 1)· ns ·h′·w′·d·d

=
c·k·k

1
s ·c·k·k +

(s−1)
s ·d·d

. (8)

When d = k, the theoretical acceleration ratio is

rates ≈
s·c

s + c− 1
≈ s. (9)

The theoretical parameter compression ratio of normal convolution to Ghost module
convolution is

ratec =
n·c·k·k

n
s ·c·k·k + (s− 1)· ns ·d·d

=
c·k·k

1
s ·c·k·k +

(s−1)
s ·d·d

. (10)

When d = k, the theoretical parameter compression ratio is

ratec ≈
s·c

s + c− 1
≈ s. (11)

From the simplification results, the number of calculations and parameters of normal
convolution is about s times that of Ghost module convolution. Thus, using the Ghost
module can make the model lighter and faster. Based on the Ghost module, this paper
uses the Ghost series modules shown in Figure 7 to replace the Conv and C3 modules in
YOLOv5s with lighter modules.
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In the figure above, k represents the size of a default convolution kernel, Group-
Conv represents group convolution, act = false indicates no activation function layer, and
DWConv represents depthwise separable convolution.

4.2. Add-Based Feature Fusion Method

Convolutional neural networks extract image features by performing convolution
operations on input images. Low-level features have higher resolution, accurate target
location, and can better reflect the specific content of the image. The features such as contour,
edge, color, texture, and shape features are more obvious. After multiple convolution
operations, high-level features have stronger semantic information and can better express
the image information that humans can understand, but their resolution is lower [39]. The
Neck part of YOLOv5 uses FPN and PAN structures to construct a feature pyramid to fuse
low-level detail features with high-level semantic features in the Concat-based method.
The feature pyramid structure here is designed to increase the resolution of feature maps
with smaller resolution but stronger semantics, which can be theoretically fused with the
Add-based method.

The two feature fusion methods Concat and Add are shown in Figure 8, where w, h,
and m represent the width, height, and number of channels, respectively. It is not difficult to
see that the Concat-based method superimposes the feature maps in the channel dimension,
which requires that the number of channels for each feature map may be different, but the
width and height must be equal. The Add-based method adds elements of corresponding
positions, which requires the width, height, and number of channels of each feature map to
be equal. Due to the large number of input and output channels, the computation amount
of Add is much smaller than that of Concat, so the Concat-based method is replaced with
the Add-based method in this paper.

4.3. Scene-Based Non-Truth Suppression Method

On real traffic roads, using the trained model to predict images may detect the pedes-
trian head target boxes and the license plate target boxes of electric bikes parked on the
roadside. As irrelevant target boxes, these are interference items for the detection of the
helmet and license plate in this paper. At the same time, in order to facilitate the subsequent
positioning of the license plate information of riders who do not wear helmets as required,
this paper proposes a scene-based non-truth suppression method.
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First, four categories in the image are detected: the whole of the rider and the electric
bike, the head of the person without the helmet, the license plate of the electric bike, and the
head of the person wearing the helmet. Then, non-truth suppression is performed during
the prediction stage to remove the interference of the head target boxes of pedestrians and
the license plate target boxes of electric bikes parked on the roadside. Finally, only four
categories are detected: the whole of the rider and the electric bike, the head of riders
without helmets, the head of riders wearing helmets, and the license plate of electric bikes.
Figure 9a shows the non-truth suppression process, and Figure 9b shows an example image
of the non-truth suppression.

4.4. SG-YOLOv5 Network Structure

According to the theoretical analysis of the above chapters, a lightweight YOLOv5
model (SG-YOLOv5) is proposed for the detection of the helmet and license plate of the
electric bike. The network structure of SG-YOLOv5 is shown in Table 1.

The ‘From’ column in the table indicates which layer the input of the module comes
from, and -1 signals that the input of the module comes from the output of the previous
layer. The ‘Params’ column represents the number of module parameters of this layer,
the ‘Module’ column represents the module name of each layer, and the ‘Arguments’
column indicates the information of the module parameters, including the number of input
channels, the number of output channels, the size of the convolution kernel, and the step. It
is worth noting that the second Shuffle_Block downsampling module of SG-YOLOV5 keeps
the number of input and output channels unchanged. This operation slows down the surge
in the number of subsequent feature layer channels, thereby reducing the model complexity.

SG-YOLOv5 uses the loss function of YOLOv5, which is composed of three parts: the
classification loss (lcls), the confidence loss (lobj), and the position loss (lbox). lcls and lobj use
BCEWithLogitsLoss, and the calculation formulae are as follows:

Loss = lcls + lobj + lbox, (12)

lcls = ∑s2

i=0 Iobj
ij ∑c∈classes

(
P̂i(c)log(Pi(c)) +

(
1− P̂i(c)

)
log(1− Pi(c))

)
, (13)

lobj = ∑S2

i=0 ∑B
j=0 Iobj

ij
(
Ĉilog(Ci) +

(
1− Ĉi

)
log
(
1− Ĉi

))
− λ noobj ∑

S2

i=0 ∑B
j=0 Inoobj

ij
(
Ĉilog(Ci) +

(
1− Ĉi

)
log
(
1− Ĉi

))
, (14)
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where S2 indicates that the image is divided into S× S grid cells, B indicates the bounding
box, and Iobj

ij indicates the j-th bounding box of the i-th grid cell. If Iobj
ij contains the target

center point, its value is 1, otherwise it is 0, and Inoobj
ij is the opposite. Pi(c) represents the

category prediction probability, P̂i(c) represents the category true probability, Ci represents
the confidence value, Ĉi represents the intersection of the predicted bounding box and the
ground truth box, and λnoobj represents the confidence loss coefficient of no target.
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Table 1. SG-YOLOv5 network structure.

Number From Params Module Arguments

0 −1 3520 Focus [3, 32, 3]
1 −1 2880 Shuffle_Block [32, 64, 2]
2 −1 9656 C3Ghost [64, 64]
3 −1 5280 Shuffle_Block [64, 64, 2]
4 −1 28,968 C3Ghost [64, 64]
5 −1 9856 Shuffle_Block [64, 128, 2]
6 −1 110,160 C3Ghost [128, 128]
7 −1 36,096 Shuffle_Block [128, 256, 2]
8 −1 143,072 C3Ghost [256, 256]
9 −1 18,240 GhostConv [256, 128, 1, 1]

10 −1 0 Upsample [None, 2, ‘nearest’]
11 [−1, 6] 0 ADD [1]
12 −1 33,280 C3Ghost [128, 128]
13 −1 5024 GhostConv [128, 64, 1, 1]
14 −1 0 Upsample [None, 2, ‘nearest’]
15 [−1, 4] 0 ADD [1]
16 −1 8448 C3Ghost [64, 64]
17 −1 19,360 GhostConv [64, 64, 3, 2]
18 [−1, 13] 0 ADD [1]
19 −1 25,088 C3Ghost [64, 128]
20 −1 75,584 GhostConv [128, 128, 3, 2]
21 [−1, 9] 0 ADD [1]
22 −1 99,328 C3Ghost [128, 256]
23 [16, 19, 22] 12,177 Detect -

The position loss (lbox) adopts CIOU_Loss, which also considers the overlap area, the
center point distance, and the aspect ratio between the predicted bounding box and the
ground truth box. The specific calculation formulae are:

lbox = 1− CIOU = 1−
(

IOU − S2

c2 −
v2

(1− IOU) + v

)
= 1−

A
B
− s2

c2 −
v2(

1− A
B

)
+ v

 (15)

v =
4

π2

(
arctan

wgt

hgt − arctan
wp

hp

)2

(16)

Among them, A is the area of the intersection of the predicted bounding box and the
ground truth box, B is the area of the union of the two bounding boxes, s is the Euclidean
distance between the center points of the two bounding boxes, c is the diagonal distance
of the two bounding boxes, wgt and hgt are the width and height of the ground truth box,
respectively, and wp and hp are the width and height of the predicted box, respectively.

5. Experiments and Result Analysis
5.1. Experiment Preparation and Setup
5.1.1. Dataset Collection

On account of the fact that there was no public dataset available, the experimental
dataset came from field shooting, and the shooting locations were multiple traffic roads in
Changsha. The relevant indicators and corresponding values of the shooting camera are as
follows: S = 1/17 s, EV = 0, F = 1.8, resolution = 3456 × 4608. In order to use license plate
detection to obtain the personal information of illegal riders, the shooting angle was the rear
and the oblique rear of the electric bikes. Based on this, a total of 2700 pictures were taken to
create a dataset, some of which are shown in Figure 10. The labels of the dataset include four
categories: rider, no helmet, license plate, helmet. Among them, ‘rider’ refers to the whole
of the rider and the electric bike; ’no helmet’ refers to the head of the person without helmet;
‘license plate’ means the license plate of the electric bike; and ‘helmet’ refers to the head of
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the person wearing the helmet. The dataset is named RHNP dataset (https://drive.google.
com/file/d/1zESCktHH3VQfsaDviks7v9inztDQ1IXQ/view?usp=sharing, accessed on
3 March 2023), and randomly divided into train set, validation set, and test set, with a ratio
of 7:1:2. As shown in Figure 11, LabelImg software 5.1.1 is used to manually label the
collected images. LabelImg software sets the storage format to YOLO format; the label
suffix is TXT, and the label and image names are consistent.
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The results of visualizing the location distribution of the center points of the target
boxes and the size distribution of the target boxes in the dataset re shown in Figure 12.
Figure 12a shows the location distribution of the center point coordinates of the target
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https://drive.google.com/file/d/1zESCktHH3VQfsaDviks7v9inztDQ1IXQ/view?usp=sharing


Sensors 2023, 23, 4335 14 of 21

boxes after the size of image resolution is regularized. The darker the color is, the higher
the number of center points of the target boxes at this point. In Figure 12b, width and
height, respectively, represent the proportion of the width and height of the target boxes to
the width and height of the images. It can be seen from the two figures that most of the
targets in the dataset are distributed in the lower right, and the proportion of small and
medium-sized targets is larger.
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5.1.2. Experimental Environment and Parameter Settings

The experimental environment was based on Windows 10, and the deep learning
framework used the Pytorch1.7.1 architecture. A NVIDIA GeForce RTX 3080 Ti was used
as the video card. The video memory size was 12 GB and the memory size was 64 GB. The
specific experimental configuration is shown in Table 2.

Table 2. Experimental environment configuration.

Parameter Configuration

CPU AMD Ryzen 9 5950X 16-Core Processor
GPU NVIDIA GeForce RTX 3080 Ti

System environment Windows 10
Acceleration environment CUDA11.0

Language Python3.8

In the training phase of SG-YOLOv5, the model was iterated for 500 rounds. To
compare it with other models as fairly as possible, the remaining parameter values were
consistent with the default settings of YOLOv5. The target box dimensions in the dataset
were re-clustered using the K-means algorithm before the model training, the parameters
of the initial anchor box were set to [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90,
156, 98, 73, 326], the section of image input adopts Mosaic method to enhance the dataset.
The input image size was 640 × 640 × 3, the training batch was 16, an SGD optimizer was
used for the parameter optimization, the initial learning rate was 0.01, the weight decay
coefficient was set to 0.0005, and the learning rate momentum was 0.937. After 3 iterations
of the Warmup method with a momentum parameter of 0.8, the learning rate cycle of cosine
annealing was entered.

5.1.3. Evaluation Indicators

In object detection tasks, when the intersection over union (IOU) between the pre-
diction box and the truth box is greater than a certain threshold, the prediction result is
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regarded as a positive sample. Otherwise, it is treated as a negative sample. Based on these
analyses, the number of positive samples with correct predictions is counted as TP; the
number of positive samples with incorrect predictions is counted as FP; and the number
of negative samples with incorrect predictions is counted as FN. In this paper, several
evaluation indicators commonly used in the field of object detection were used to evaluate
the performance of the algorithm model. The selected indicators mainly included precision
(P), recall (R), average precision (AP), mean average precision (mAP), and frames per
second (FPS).

Among them, P refers to the correct proportion of all targets predicted by the model;
R refers to the correct proportion of all real targets predicted by the model; AP refers to
the area under the PR curve (Precision–Recall curve); mAP is the average value of AP
of each category, then mAP0.5 represents the mAP when the IOU threshold is 0.5, and
mAP0.5 : 0.95 represents the average mAP at different IOU thresholds (from 0.5 to 0.95,
step 0.05). In the above experimental environment, the FPS is obtained by averaging the
total detection time of 540 pictures in the test set, and the calculation formulae are:

P =
TP

TP + FP
, (17)

R =
TP

TP + FN
, (18)

AP =
∫ 1

0
P(R) , (19)

mAP =
∑n

i=1 APi

n
. (20)

5.2. Experimental Results
5.2.1. Training Results

The SG-YOLOv5 and YOLOv5s models were trained on the RHNP dataset, using the
same experimental environment and parameter settings. After the models converged, the
average values of the corresponding evaluation indicators were taken every 50 iterations to
obtain the model comparison table shown in Table 3.

Table 3. Model comparison during training process.

Epochs 300~349 350~399 400~449 450~499

mAP0.5
YOLOv5s 96.4% 96.4% 96.7% 96.4%

SG-YOLOv5 96.8% 97.0% 97.3% 97.2%

mAP0.5:0.95
YOLOv5s 67.4% 67.5% 67.6% 67.5%

SG-YOLOv5 66.3% 66.6% 66.7% 66.9%

precision YOLOv5s 95.4% 95.6% 95.9% 95.7%
SG-YOLOv5 95.3% 94.4% 95.4% 95.0%

recall
YOLOv5s 93.3% 93.0% 93.4% 92.7%

SG-YOLOv5 91.7% 93.1% 92.7% 92.9%

It can be seen from the figures that the average precision, precision, and recall of
SG-YOLOv5 and YOLOv5s on the RHNP dataset are almost the same. To further confirm
the effectiveness of the SG-YOLOv5 model for helmet and license plate detection, the
trained SG-YOLOv5 model was tested in a real scene, as shown in Figure 13. It is apparent
from the figures that SG-YOLOv5 meets the detection requirements for multiple targets,
long-distance small targets, and occluded targets on different traffic roads as well.
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5.2.2. Non-Truth Suppression and License Plate Extraction Experiment

This study improves the YOLOv5s prediction stage and proposes a non-truth sup-
pression method. The experimental results are shown in Figure 14. Figure 14a,c are the
prediction outputs before improving the prediction stage; Figure 14b,d are the prediction
outputs using the non-truth suppression method. A comparison of the figures shows that
the non-truth suppression method can effectively remove the interference of pedestrian
head target boxes and license plate target boxes of electric bikes parked on the roadside.

The extraction process of offenders’ license plates in this paper is shown in Figure 15.
First, the SG-YOLOv5 model was used to predict the image. Then, according to the
inclusion relationship of each target box, the no-helmet is located in relation to the rider,
and the rider is located in relation to the license plate. Finally, the license plate is extracted.
It can be seen that for this study we only needed to train a single object detection model,
abandoning the operation of locating violators’ license plates by cropping the target box in
the existing researches, and greatly improving the detection efficiency.
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5.2.3. Comparative Experiment

To verify the effectiveness of the SG-YOLOv5 model proposed in this paper for the
detection of electric bikes, helmets, and license plates, a comparative experiment was
conducted on the self-made RHNP dataset. That is, SG-YOLOv5 was compared with
several classic one-stage object detection algorithms. Under the same experimental envi-
ronment, the experimental results obtained on the test set are shown in Table 4. Because the
computing power of the high-performance GPU platform was sufficient and the memory
bandwidth was large, the lightweight model had little advantage over the original model.
However, the lightweight model designed in this paper will mainly be applied to devices
with limited memory and computing resources. Therefore, the test environment for FPS
values was a personal computer (PC) with limited computing resources, the CPU was an
AMD Ryzen 7 4800H, and the GPU a NVIDIA GeForce GTX 1650Ti.

Table 4. Comparative experiment.

Model
AP

mAP0.5 FPS Parameters/106 GFLOPs Model
Size/MBRider No-Helmet License Plate Helmet

YOLOv3 95.8% 86.6% 95.6% 92.6% 92.6% 4.2 61.54 155.1 117
YOLOv3-tiny 94% 81.1% 94.3% 89.6% 89.8% 39.5 8.68 13.0 16.6
YOLOv3-spp 96.2% 88.2% 96.2% 92.9% 93.4% 4.1 62.59 156.0 119

YOLOv4 97.4% 83.8% 96.8% 90.1% 92.0% 20.9 63.95 59.78 244
SSD 95.2% 74.4% 87.8% 83.1% 85.1% 36.1 24.01 61.11 92.1

YOLOv5s 96.2% 89.7% 97% 93.3% 94.0% 24.9 7.07 16.4 13.7
YOLOv5s-MobileNetv3 94.5% 82.2% 96% 88.3% 90.3% 44.2 3.37 5.9 6.67
YOLOv5s-ShuffleNetv2 97.1% 86.3% 97.3% 91.6% 93.1% 72.5 0.85 1.8 1.82

YOLOv5s-GhostNet 96.5% 88% 96.1% 92.9% 93.4% 37.6 3.92 9.7 7.79
YOLOv7 97.7% 94.3% 96.3% 97.5% 94.7% 2.6 36.50 103.2 71.3

SG-YOLOv5 97.8% 89.6% 97% 92.6% 94.2% 66.7 0.65 3.2 1.54

It can be seen from the table that on the test set, the mAP0.5 of SG-YOLOv5 is 0.2%
higher than that of YOLOv5s, and the FPS of SG-YOLOv5 is 2.7 times that of YOLOv5s.
Meanwhile, the number of parameters is reduced by 90.8%, the FLOPs are reduced by
80.5%, and the model file size is reduced by 88.8%. Compared to the lightweight net-
works, YOLOv5s-MobileNetv3 and YOLOv5s-GhostNet of the same baseline, the mAP0.5
of SG-YOLOv5 is respectively 3.9% and 0.8% higher. Meanwhile, the number of param-
eter, FLOPs, FPS and the model size of SG-YOLOv5 are all optimal. Compared to the
lightweight network YOLOv5s-ShuffleNetv2, although the FPS and FLOPs of SG-YOLOv5
are not dominant, the mAP0.5 is 1.1% higher and it is superior in the number of parameters
and the model file size. Compared to other one-stage object detection algorithms such as
YOLOv3, YOLOv3-tiny, YOLOv3-spp, YOLOv4, and SSD, the SG-YOLOv5 proposed in this
paper is optimal in terms of various evaluation indicators. Compared to the latest YOLOv7,
the mAP0.5 of SG-YOLOv5 is slightly lower, but all other evaluation indicators are signifi-
cantly improved. Combining the complexity of each model and the actual detection effects,
it can be seen in general that SG-YOLOv5 performs better among these models.

6. Conclusions

This paper proposes a lightweight model SG-YOLOv5 based on YOLOv5 for detection
of electric bikes, helmets, and license plates. Two strategies are used to reduce the number
of model parameters and FLOPs. First, the YOLOv5s backbone network and the Neck
part are lightweighted by combining ShuffleNetv2 and GhostNet. Second, the feature
pyramid feature fusion method is replaced with Add. Compared to YOLOv5s, the mAP0.5
of SG-YOLOv5 is almost the same, but the number of parameters of SG-YOLOv5 is reduced
by 90.8%, FLOPs are reduced by 80.5%, the model file size is reduced by 88.8%, and the
FPS is 2.7 times of YOLOv5s. At the same time, compared to other lightweight networks,
SG-YOLOv5 also has great advantages; for example, the model can be better deployed on
mobile terminals or embedded devices with limited memory and computing resources.
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Further, in order to eliminate the interference of pedestrians’ heads and parked electric
bikes’ license plates, this study improves the YOLOv5s prediction stage. That is, a non-truth
suppression method is proposed, and this method is applied to SG-YOLOv5.

Furthermore, in order to eliminate the interference of pedestrians’ heads and parked
vehicles’ license plates, this paper improves the YOLOv5s prediction stage and proposes a
non-truth-value suppression method. Finally, the license plates of riders without helmets
are located and extracted according to the inclusion relationship of the target box, so as to
determine the identity information of violators.

However, due to the influence of many complex factors in reality, the detection algo-
rithm proposed in this paper still has some shortcomings and deserves further study:

(1) In this paper, the license plate detection of the riders without helmets is realized only in
a relatively ideal traffic environment. However, in complex traffic environments, such
as crowds of pedestrians and riders in the image, there may be overlapping of heads
or license plates, resulting in the unclear positioning of violators and corresponding
license plates. Therefore, the corresponding research work should be carried out in
more complex traffic environment in the future.

(2) This paper only classifies and detects several related categories. Despite the interfer-
ence of pedestrians and parked electric bikes being excluded, the identification of the
license plate information of the violators still needs to be further improved. For ex-
ample, after locating the license plate of the illegal rider, optical character recognition
(OCR) of the license plate should be performed.

(3) Foggy backgrounds and image motion blur are not considered in this paper. In future
work, we can deploy a defogging algorithm and a deblurring algorithm to clear the
image, and then carry out target detection on the image.

(4) As for future work, we also hope to develop a license plate identification system for
illegal riders, with the complete interface and the software and hardware platform to
better protect peoples’ safe travels.
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