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Abstract: The performance of an active-quenching single-photon avalanche diode (SPAD) array that
is based on the tri-state gates of a field programmable gate array (FPGA) is presented. The array is
implemented by stacking a bare 4 × 4 N-on-P SPAD array on a bare FPGA die, and the electrodes
of the SPAD pixels and the I/O ports of the FPGA are connected through wire bonding within the
same package. The active quenching action on each SPAD pixel is performed by using the properties
of the tri-state gates of the FPGA. Digital signal processing, such as pulse counters, data encoders,
and command interactions, is also performed by using the same FPGA. The breakdown voltage of
the SPAD pixels, with an active area of 60 µm × 60 µm, is 47.2–48.0 V. When the device is reverse
biased at a voltage of ~50.4 V, a response delay of ~50 ns, a dead time of 157 ns, a dark count rate of
2.44 kHz, and an afterpulsing probability of 6.9% are obtained. Its peak photon detection probability
(PDP) reaches 17.0% at a peak wavelength of 760 nm and remains above 10% at 900 nm. This hybrid
integrated SPAD array is reconfigurable and cost effective.

Keywords: single-photon avalanche diode (SPAD); active quenching circuit (AQC); field programmable
gate array (FPGA); tri-state gate; 3D stacked package

1. Introduction

The single-photon avalanche diode (SPAD) is a type of avalanche photodiode (APD)
that operates in Geiger mode above the breakdown voltage, with a quenching circuit to
stop the avalanche process. The electrical output of SPADs is binary, with a “0” or “1”
output corresponding to whether photons are detected based on the fixed amplitude of
the avalanche pulse. Due to their ultrahigh sensitivity—down to a single photon—and
excellent photon counting and time-resolved performance, SPADs have gained significant
attention in various fields [1]. In many applications, arrays of APDs are used, either
in parallel to discriminate photon numbers (e.g., in silicon photomultipliers) [2] or with
independent pixel outputs to enhance throughput [3].

When an APD detects a photon, it generates a macroscopic avalanche current through
the process of impact ionization. This current can be self-sustaining and may block sub-
sequent photon detection unless it is externally quenched. Therefore, a quenching circuit
is critical for ensuring the optimal performance of the APD. It functions by rapidly extin-
guishing the avalanche current and resetting the bias voltage, allowing the APD to recover
and detect subsequent photons.

In general, there are two types of quenching circuits: passive quenching circuits
(PQCs) and active quenching circuits (AQCs) [4]. A PQC can be simply realized by serially
connecting a ballast resistor with a high value (e.g., >50 kΩ) to the APD. However, the PQC
does not have a well-defined quenching and recovery process but rather poor afterpulsing
controllability. The AQC senses the rise of the avalanche pulse, synchronously generates a
digital pulse to indicate the arrival of incident photons, and feeds back to a control circuit
to lower the bias voltage of the APD below the breakdown voltage. At this time, the APD
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is turned off and is temporarily unable to detect photons. This hold-off state is usually
maintained for a period of time to suppress the afterpulsing effect, and then the bias voltage
is restored to its initial value (above the breakdown voltage). AQCs have been shown to
offer superior performance and are commonly used in conjunction with single-photon
avalanche diode (SPAD) arrays.

Most AQCs are implemented based on application-specific integrated circuits (ASICs)
by either monolithic integration or hybrid integration, which has the advantages of strong
device consistency and large-scale SPAD pixels integration [5–7]. However, these solutions
have drawbacks, such as a long research and development cycle, a large initial investment,
and difficulty upgrading. In other words, if the required quantity of the device is not large
enough or the innovation of the device develops rapidly, it is obvious that ASIC-based
AQCs are not cost effective. In contrast, the field programmable gate array (FPGA) is a logic
device that can be reprogrammed and flexibly configured; it is complementary to ASICs,
and a commercially available FPGA can replace an ASIC to achieve most of its functions to
a certain extent [8]. Although SPAD arrays usually require FPGAs for external command
interactions, image signal processors, power drivers, etc., and all these implementations
largely rely on FPGA-based host boards, there are few reports on active quenching action
directly realized by an FPGA. Samuel Burri et al. reported a compact linear SPAD camera
system with commercial FPGA-based TDC modules for versatile 50 ps resolution time-
resolved imaging; however, the variable-load quenching circuit used to implement the
quenching process of the SPAD array was designed based on ASIC technology [9]. Subash
Sachidananda et al. reported a reconfigurable hybrid design implemented by a System-on-
Chip (SoC), which integrates an FPGA to vary the quench and reset parameters; however,
it practically belongs to the ASIC-based AQC category [10].

This study presents a novel approach for implementing a SPAD array with an active
quenching circuit based on the tri-state gates of a commercial FPGA. The proposed approach
involves integrating a 4× 4 N-on-P SPAD array with an FPGA using stacked die packaging,
which is akin to the chiplet design concept [11]. The SPAD array serves to detect incident
photons, while the FPGA carries out active quenching and data processing functions. This
synergistic combination of the SPAD array with FPGA renders the pixels reconfigurable and
facilitates real-time algorithmic implementations. Compared to discrete component-based
AQCs for SPAD arrays, the proposed approach offers the advantages of compactness and
performance consistency. Compared with ASIC-based AQCs for SPAD arrays, it is more
cost-effective and offers greater flexibility. Therefore, this approach may be particularly
well suited for low-investment scenarios, small production volumes, fast innovation, and
pre-research stages.

The structure of this paper is organized as follows: In Section 2, we present the
operational mechanism of the proposed SPAD array, which includes the logic principle of
the active quenching circuit based on tri-state gates and the counting readout logic design
of the SPAD array. In Section 3, we describe the implementation method of the SPAD array
and its connection with the FPGA chip. The experimental results and their analysis are
presented in Section 4. Finally, we summarize the conclusions and provide perspectives for
future research in Section 5.

2. Operation Mechanism

The tri-state gate is a fundamental component of an FPGA. Typically, the general-
purpose input/output (GPIO) mechanism adopts the LVTTL level standard. The LVTTL
level standard consists of a high-level voltage of 3.3 V and a low-level voltage of 0 V. In
this study, the N electrode of an N-on-P SPAD is connected to a GPIO pin of the FPGA,
and the P electrode (anode) is connected to a negative bias voltage slightly smaller than
the breakdown voltage of the SPAD pixel. Initially, the output of the tri-state gate is set to
high-level (3.3 V, “1”), and then it is switched to a high-impedance (“Hi-Z”) state. The read
loop of the FPGA detects a high-level potential on the parasitic capacitor (Cs in Figure 1a),
which is called the “complete” state. At this time, the potential of the N electrode of
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the SPAD remains high (3.3 V) because it is floating. The voltage between the N and P
electrodes of the SPAD, i.e., −HV minus −3.3 V, is above the breakdown voltage, and the
input buffer of the GPIO pin continuously reads the potential of the N electrode, which is
called the “steady” state.
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Figure 1. Schematic of the SPAD array based on the tri-state gate of the FPGA: (a) active quenching
circuit for one of the SPAD pixels, where “Negative Bias” provides a direct current steady-state
negative voltage and Cs is parasitic capacitance; (b) physical implementation of the SPAD array.

If a photon is incident on the SPAD, a photogenerated electron-hole pair (or a dark,
thermally excited electron-hole pair) triggers an avalanche, and the SPAD is immediately
discharged through the internal RC circuit. At the same time, the parasitic capacitance
Cs charges the SPAD through the external loop. Then, the potential of the N electrode
drops from the high level (3.3 V) to a lower value. Once the N electrode potential, read
by the input buffer of the GPIO port, drops to a preset threshold voltage (e.g., 0.8 V in
this study), the digital logic circuit inside the FPGA generates a logic pulse recording the
arrival of incident photons and controls the tri-state gate to synchronously output a low
potential level (0 V, “0”) to the N electrode. As a result, the bias voltage of the SPAD is
quickly reduced below the breakdown voltage, and the avalanche is actively extinguished
and maintained below the breakdown voltage for a certain amount of time (i.e., a hold-off
time) to suppress the afterpulse, which is called the “hold-off” state. After the hold-off time,
the digital logic circuit controls the tri-state gate to output a high-level voltage (3.3 V) for a
certain amount of time to restore the potential of the N electrode to its initial value, which
is called the “reset” state (due to the possibility of insufficient charging at the beginning
of the reset, voltage fluctuations may occur at the parasitic capacitor). Then, the FPGA
enters the “complete” state, and the readout circuit of the FPGA continuously detects the
voltage value after power-up. It maintains the current state until the readout circuit detects
a high voltage level, and the state transitions from “complete” to “steady”. This completes
one logic cycle. The physical implementation of the SPAD array is schematically shown in
Figure 1b. The readout logic circuits, such as the count module, time measure module, data
encoder, and command interaction, are also provided by the logic resources of the FPGA.

The internal active quenching logic circuit design of the FPGA can be represented by a
four-input and two-output block diagram, as shown in Figure 2. The four input parameters
(Register Parameters), Cover, Status, Source, and Mark, work collaboratively to regulate the
output states of the GPIO port, and their values are modified in accordance with the Finite
State Machine (FSM) state transitions designed in FPGA. In detail, these four parameters
control the internal logic to complete the functions required for different states, such as reset
charging of the GPIO port, high voltage level stability detection, and hold-off time control.
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Figure 2. Diagram of active quenching logic in the FPGA: (a) logic function circuit of active quenching;
and (b) sequential logic states of the whole quenching process.

The Trigger is a digital logic signal whose rising edge is synchronized with the moment
when the avalanche current is actively quenched, and the AQC is the output value of the
GPIO port. At the same time, two transition parameters are set, Enable and Feedback, which
control the change in the tri-state gate. The Feedback control turns off the high-resistance
state when the signal arrives and determines whether a transition to a low-potential-level
state is needed to perform the quenching process, and Enable is the enabling parameter of
the tri-state gate that controls the change between the high-impedance (“Hi-Z”) state and
low-potential level to perform the quenching process. Figure 2a shows the combinational
logic of the active quenching circuit when the photon arrives after the synthesis of FPGA,
in which the transition of the tri-state gate from the “sensing” state to the “quenching” state
is achieved by the combined logic of the inverter and the multiplexer. In Figure 2b, the
working sequence diagram of the active quenching logic circuit is shown, in which CLK is
a clock signal that indicates the timescale of state changes. In other words, it indicates the
sequential relationship of the changes and settings of input and output parameters, as well
as the transformation of the “complete”, “steady”, “hold-off” and “reset” states.

3. Implementation Method

The present work employed a 4 × 4 N-on-P type avalanche photodiode (APD) array
designed by NDL (Novel Device Laboratory, Beijing, China) and fabricated by a foundry.
Figure 3a shows the schematic structure of the APD pixels, where the P-Spray is P type to
avoid surface inversion, the P-Stop is heavy P type to achieve ohmic contact for the front
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anode and prevent lateral spread of the depletion region for the PN junction of the guard ring
to cutting edge, a guard ring is employed to prevent premature breakdown of the PN junction
at the surface, the resistance and thickness of the epitaxial layer are 100 Ω·cm and 33 µm,
respectively, and the typical phosphorus and Born doping levels for the N++ and enrichment
P+ are 5 × 1015 cm−2 and 3–4 × 1012 cm−2. Figure 3b is a micrograph of the bare die of
the APD array, where the 16 APD pixels are labeled by sequence number. The active area
of each APD pixel is 60 µm × 60 µm, and the size of the APD array is 0.65 mm × 0.65 mm.
The 16 N-electrodes (i.e., cathodes) are led out to bonding pads separately, and the front
P-electrodes (i.e., anodes) are led out to the bonding pads located at the four corners.
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The bare SPAD array was integrated with a bare FPGA “GW2A-18” (Gowin Semiconduc-
tor Corporation, Guangdong, China) by a stacked die package [12]. As shown in Figure 4, the
bare FPGA die with a size of 5.7 mm × 4.7 mm was first placed on the center of the package
substrate, and the 4 × 4 bare SPAD array die was stacked on and bonded to the bare FPGA
die with insulating glue. The lead-out pads of the N-electrodes were connected one-to-one to
the lead-out pads of the GPIO pads on the FPGA by gold wire bonding. The lead-out pads of
the P-electrodes on the front of the SPAD array were bonded to the package substrate directly,
which provided the SPAD array with a negative bias voltage. All the other lead-out pads of
the FPGA were wire bonded to the pads on the package substrate for power supply, ground
connection and function configuration. Finally, the surface of the laminated dies was sealed
by transparent epoxy resin (Epoxy Technology Inc, Billerica, MA, USA), and its transmittance
at 400–1000 nm was greater than 99%. The area and thickness of the packaged SPAD array
were 14 mm × 14 mm and 1.4 mm, respectively.
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4. Results and Discussion
4.1. Characterization of the Static Properties

The I-V curves of the APD pixels, obtained in a probe station with a Keithley 237
(Keysight Technologies Inc., Santa Rosa, CA, USA) Source Measure Unit (SMU) before
packaging, are shown in Figure 5a. The first inflection point of the I-V curve is defined
as the breakdown voltage (VB), and the reciprocal of the slope of the I-V curve above the
breakdown voltage is regarded as the junction resistance, which is the sum of the depletion
zone resistance and the neutral zone resistance and is distributed in the range of 2.1–8.4 kΩ.
As shown in Figure 5b, the breakdown voltages of the 4 × 4 APD array are distributed in
the range of 47.2–48.0 V. Figure 5 shows that the variations in both the breakdown voltages
and the junction resistances have little relation with pixel positions, which can be attributed
to the nonuniformity of the fabrication process and may have an impact on the overvoltage
on each pixel. However, due to the digital feature of the APD pixels, the nonuniformity of
the junction resistance had no significant influence on the performance of the device, such
as digital signal generation and counting.
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In the graph presented in Figure 6, the logarithmic y-axis is employed to highlight the
differences in capacitance among the 16 APD pixels prior to packaging. The capacitance-
voltage (C-V) characteristics were measured using an Agilent E4980A precision LCR meter
(Agilent Technologies Co. Ltd., Santa Clara, CA, USA), revealing junction capacitances that
are distributed in the range of 0.45–2.24 pF near the breakdown voltage. Interestingly, there
was no correlation between the capacitance values and the pixel position. However, the
nonuniformity of both the junction capacitance and resistance may affect the consistency
of the response time of APD pixels due to the variation in the resistance-capacitance (RC)
time constant.
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in the APD array shown in Figure 3b. The middle cluster corresponds to APD positions 10 and 14,
while the bottom cluster corresponds to APD positions 3, 4, 6, 8, 12, and 16.

4.2. Characterization of Dynamic Properties

In this study, because the yield of packaging was not very high, not all SPAD cells
could operate normally. One typical SPAD was chosen to verify the feasibility of the device
concept presented in this manuscript. Its breakdown voltage was approximately 47.2 V,
and the bias voltage on the P-electrode was set to −47.1 V. Therefore, the overvoltage
was approximately 3.2 V when the N-electrode was provided with a high level of 3.3 V
by the FPGA.

4.2.1. Waveform

The setup used to measure the pulse waveform is illustrated in Figure 7. The P elec-
trode was connected to an adjustable voltage source Keithley 6430 (Keysight Technologies
Inc., Santa Rosa, CA, USA) set to −47.1 V to provide the DC bias. To suppress power
alternating current (AC) fluctuations, a low-pass filter circuit comprising R1 and C1 was
employed. The AC signal, carried by capacitance C2, was sampled by resistance R2 and
then outputted to an oscilloscope “LeCroy 640Zi” (Teledyne LeCroy Inc., Chestnut Ridge,
NY, USA). Finally, the FPGA was connected to a personal computer to act as the power
supply of the N-electrode.
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Figure 7. Experimental setup for measuring the pulse waveform, dark count, and afterpulse proba-
bility. The “biasing” loop is used to provide bias to the device, and R1 and C1 are used to create a
low-pass filter circuit. The “waveform measure” loop is designed to monitor the active quenching
process via waveform analysis from this output. R2 is the sampling resistance, and C2 is the capaci-
tance that allows the AC signal to pass but not the DC signal. Cs represents the sum of the parasitic
capacitances of the FPGA, SPAD, and their packaging. The “Count & Time Measure” loop is designed
to measure count information combined with time information and send it to the personal computer.
Typical values for R1, R2, C1, C2, and Cs are 500 Ω, 50 Ω, 1 µF, 10 nF, and ~4.4 pF, respectively.

Figure 8 displays the current pulse of the P electrode for the active quenching SPAD
pixel. When an avalanche occurs on the SPAD pixel, the parasitic capacitance in the FPGA
discharges rapidly through the P electrode, resulting in a rapid decrease in voltage across
the two ends of the parasitic capacitance to a low level. Meanwhile, the voltage on the P
electrode increases rapidly, as indicated by the first analog pulse of the P electrode labeled
with a yellow line. The internal logic of the FPGA detects this potential change in parasitic
capacitance, and when it falls below a preset threshold (0.8 V in this study), the FPGA
generates a digital signal labeled with a purple line. The pulse width of ~50 ns for the
analog pulse represents the time between photon impingement and a triggered response,
which is referred to as the response time. The high-frequency noise of 50 MHz is caused by
the crystal oscillator providing clock signals to the FPGA, but it has no influence on the
SPAD operation, as shown by the digital logic pulse. Moreover, the avalanche information
can be determined by extracting the digital logic pulse, and these counts can also be used
to obtain a characterization of the device’s overall quality parameters, such as dark count,
afterpulsing probability, and PDP. The response time primarily depends on the capacitance
and resistance influence, and the input buffer of the FPGA detects the voltage at both ends
of the parasitic capacitance (Cs in Figure 7) to determine the “1” and “0” status. The voltage
at both ends of the parasitic capacitance decays exponentially when an avalanche occurs.
The time constant of the exponential decay is the product of the total capacitance and the
total resistance, where the total capacitance is the sum of the parasitic capacitance and
the junction capacitance and the total resistance is the junction resistance. The device’s
junction capacitance is approximately 0.45–2.24 pF, and the parasitic capacitance of the I/O
buffer in the FPGA is approximately 4.4 pF, while the junction resistance is approximately
2.1–8.4 kΩ. Therefore, reducing the time constant will effectively decrease the response
time in future studies.
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Figure 8. Output pulse of the P electrode (the yellow line) and generated digital logic pulse (the
purple line) of an active quenching SPAD pixel.

4.2.2. Dark Count and Afterpulse Probability

The dark count rate refers to the number of avalanche pulses generated by a device
due to various effects, such as thermal excitation, field-induced tunneling, optical crosstalk,
and afterpulse, in the absence of any illumination. This parameter plays a crucial role in
determining the signal-to-noise ratio. In our study, we measured the dark count rate using
the counting module designed in the FPGA (shown as the Count Module in Figure 1b)
without the need for an oscilloscope. The module sent the information to the LabVIEW
control program on the computer via a USB cable. The device schematic is illustrated in
Figure 7, where the “Waveform Measure” loop is not required during the measurement
process. For the P electrode, we set the bias voltage to −47.1 V. In Figure 9, we show the
relationship between the dead time (i.e., the sum of the hold-off time, response time, reset
time and reset stability detection time) and the dark count rate of the SPAD pixel. We
controlled the dead time of the device by adjusting the hold-off time, and the results show
that the dark count rate decreased significantly as the hold-off time decreased, indicating
effective suppression of the afterpulse. By adjusting the hold-off time to 84 ns, the dead
time was approximately 157 ns, and the dark count rate was 2.44 kHz, with a response time
of 50 ns, a reset time of 13 ns, and a reset stability detection time of 10 ns.
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Depending on whether the generation of dark counts occurs independently and
randomly, dark count sources can be divided into two categories: primary dark counts
and correlated noise. The correlated noise mainly comes from the afterpulse and optical
crosstalk. The afterpulse occurs in the process of the delayed release of carriers trapped
by defects in the bulk material after the avalanche pulse. The primary dark pulse mainly
originates from thermal excitation and field-induced tunneling, and it satisfies the Poisson
distribution. Therefore, the probability density of zero occurrences in time is in the form of
exponential decay as presented in Equation (1) [13]. This paper represents the statistical
histogram of the time interval in logarithmic form to more intuitively visualize the distri-
bution of the afterpulse. The statistical calculation of the time interval is converted from
the original [t, t + dt] to [log (t), log (t) + d[log( t)]]. As the probabilities that events will
occur within equal time intervals dt are equal, the probability y′(t) of an event occurring at
logarithmic coordinates can be expressed by Equation (3):

y(t) = a·e−b·t (1)

y(t)·dt = a·e−b·t·dt = y′(t)·d[log( t )] = y′(t)·1
t
·dt (2)

y′(t) = a·t·e−b·t (3)

Pafterpluse =
Nafterpulse

Nprimary
(4)

where a is the normalization coefficient and b is the count rate of the primary SPAD dark
pulse [14]. We fitted the statistical histogram in Figure 10 to visually show the distributions
of the afterpulse and the primary dark pulse. The count outside the fitted curve (the part of
the afterpulse in Figure 10) is recorded to represent the count of the afterpulse (indicated as
Nafterpulse), and the count of the fitted curve (the part of the primary dark count in Figure 10)
is recorded to represent the count of the primary dark pulse (indicated as Nprimary). The
afterpulsing probability is defined as the ratio of the afterpulsing count Nafterpluse to the
primary dark pulse count Nprimary in Equation (4).
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of primary dark events.
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Due to the lack of a time digital conversion (TDC) module in the GW2A-18 bare
FPGA chip, measuring the generation time of each pulse with ps-level accuracy is not
possible using this FPGA. However, because the SPAD exhibits low dark count rates and
the temporal precision requirement for measuring the afterpulse probability is relatively
low, we employed a 300 MHz clock with a time accuracy of approximately 3.3 ns to
obtain the time interval information of adjacent pulses. The time module designed in the
FPGA (Figure 1b) was used to process the information, and the information was sent to the
LabVIEW control program in the computer via USB cable for further processing, as depicted
in Figure 7. The afterpulse probability density P(t) was expressed using Equation (5) with
the double level model described in Refs [15,16]. The relationship between the dead time
and afterpulse probability is analyzed in Figure 11, and the red curve represents the fitting
curve of the afterpulse probability with the deadtime, expressed as Equation (6), which was
used to explain the theoretical model of afterpulse generation in the fitting curve model.

P(t) = Napf /τapf ·e−t/τapf + Naps /τaps ·e−t/τaps (5)

P(tN) =
∫ ∞

tN

(
Napf /τapf ·e−t/τapf + Naps /τaps ·e−t/τaps

)
dt = Napf ·e−tN /τapf + Naps ·e−tN /τaps (6)
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Here, the fit quality can be significantly improved by using two different time con-
stants, τapf and τaps, one describing a fast component of afterpulse generation and the
other a slow one. Napf and Naps correspond to the integrated numbers of fast and slow
afterpulses, respectively, tN represents the value of the dead time. However, due to the
long response time, the time required for reset, and the high voltage level stability detected
(“complete” state) after resetting, the fast component of afterpulse generation could not be
obtained. The release time of the slow component of afterpulse generation was determined
to be approximately 36.1 ns through fitting, which is determined by the material and
structure of the detector. Furthermore, it was observed from Figure 11 that the hold-off
time drops below 7% with a dead time greater than 157 ns.

4.2.3. Photon Detection Probability and Linear Response Dynamic Range

In this study, the photon counting method was utilized to measure the photon detec-
tion probability (PDP) of the SPAD pixel [17]. The experimental setup included measure-
ment equipment and a light source, as shown in Figure 12, and this method used a xenon
lamp light source “LSH-X 150 W” (ZOLIX INSTRUMENTS Co. Ltd, Beijing, China). This
light source with a monochromator was employed to provide a tunable monochromatic
light source. Regarding the measurement equipment, the current value of a calibrated PIN
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photodiode “Hamamatsu S1227-33BQ” (Hamamatsu Photonics Co., Ltd., Shizuoka, Japan)
measured by SMU “Keithley 2635B” was used to monitor the intensity of light impinging
on the SPAD pixel. Another SMU (Keithley 6430) was used to provide a negative bias to
the SPAD. The count information of the SPAD was observed with the counting module in
FPGA and sent to the computer for further processing.
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Figure 12. Experimental setup for the measurements of the photon detection probability and dynamic
range. The dynamic range measurement uses an LED light source, and the PDP measurement uses a
xenon lamp light source.

The photon detection probability (PDP) is defined as the product of the quantum
efficiency and the avalanche triggering probability. By setting an adequate long dead time
(~157 ns), the afterpulse probability was approximately 6.9%. Under these conditions,
a relatively accurate measurement of the photon detection probability (PDP) could be
obtained for the pixel. Figure 13 depicts the wavelength dependence of the PDP. At a bias
voltage of −47.1 V on the P-electrode, the PDP reached 17.0% at a peak wavelength of
760 nm and remained above 10% at 900 nm.
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For the measurement of dynamic range, a similar setup to that used for PDP mea-
surement was employed. However, a light emitting diode (LED) was used instead of the
xenon lamp light source, as the SPAD dynamic response range was still not saturated at the
maximum intensity of the xenon lamp. The LED light source had a wavelength of 770 nm,
and a schematic diagram of the LED light source and measurement equipment is shown
in Figure 12.

Figure 14 illustrates the relationship between the net photon count rate (i.e., the
photon count rate minus the dark count rate) and the photon count per unit time per
square millimeter incident on the SPAD (indicated as nts) at a bias voltage of −47.1V on
the P-electrode (corresponding to a bias voltage across the SPAD of 50.4 V). Here, nts is
obtained by Equations (7)–(9):

R·nhν
t

= I (7)

n
t
=

I
R·h·ν =

I·λ
R·h·c (8)

nts =
n
t·s ·

lf(SPAD)

lf(PIN)
=

I·λ
R·h·c·s ·

lf(SPAD)

lf(PIN)
(9)

where n represents the number of photons from the output port (PIN port) of the inte-
grating sphere; I represents the photocurrent; R represents the photon responsivity of the
abovementioned calibrated PIN at a 770 nm wavelength, which is approximately 0.37082; λ
represents the LED emission wavelength of approximately 770 nm (FWHM of 10 nm); h
represents the Planck constant; ν represents the frequency of light; s represents the area
of the PIN, which is 5.7 mm2; and lf(SPAD)

lf(PIN)
represents the ratio of light flux at both ports,

which is 98:100. Hence, the discrepancy between the horizontal and vertical coordinates in
Figure 14 is primarily dependent on the effective area of the SPAD (0.0036 mm2) and the
PDP (~16.5%). The light flux ratio was calibrated by utilizing the same PIN at both ends of
the integrating sphere, which is explained in Ref [16].
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The graph shows an approximately three-order linear dynamic range, ranging from
2.44 kHz to 2.11 MHz. The lower limit of the dynamic range is determined by the dark
count rate, while the upper limit is limited by the dead time (~157 ns) of the SPAD pixel.
Although the upper limit of the dynamic range can be increased by reducing the hold-off



Sensors 2023, 23, 4314 14 of 15

time, this would worsen the lower limit by increasing the dark count rate. In future studies,
the dynamic range could be effectively improved by decreasing the response time.

5. Conclusions and Perspectives

A preliminary active quenching SPAD array based on the tri-state gates of an FPGA
was demonstrated. It was implemented by stacking a bare 4 × 4 N-on-P SPAD array on
a bare FPGA die, and the electrodes of the SPAD pixels and the I/O ports of the FPGA
die were connected through wire bonding within the same package. Both the active
quenching action and digital signal processing were realized by the same FPGA. The
integration of the FPGA with a SPAD array allows for logical reconfiguration based on the
specific applications; i.e., it not only allows the reconfiguration of SPAD array operation
and quenching control but also allows the reconfiguration of subsequent digital signal
processing by using the same hardware. Such flexibility enables real-time algorithmic
implementation. Compared to the discrete component-based AQC SPAD array, it has the
merits of compactness and performance consistency. Compared to the ASIC-based AQC
SPAD array, it is cost effective and flexible as well as suitable for low investment, small
production volumes, fast innovation, and pre-research stages.

Stacking a bare SPAD array on a bare FPGA is beneficial because it uses the GPIO pins
of the FPGA as much as possible and makes the device as compact as possible. However,
bare FPGA dies are very difficult to obtain. As we were limited by the timing function of
the bare die employed in this study, the response time resolution of the device was not
investigated. In the next step, we will implement the active quenching SPAD array by
wire bonding a bare SPAD array with a commercial packaged FPGA via a printed circuit
board (PCB), and the trade-off between timing performance and achievable pixel number
will be considered.
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