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Abstract: In sub-surface drilling rigs, one key critical crisis is unwanted influx into the borehole
as a result of increasing the influx rate while drilling deeper into a high-pressure gas formation.
Although established risk assessments in drilling rigs provide a high degree of protection, uncertainty
arises due to the behavior of the formation being drilled into, which may cause crucial situations
at the rig. To overcome such uncertainties, real-time sensor measurements are used to predict, and
thus prevent, such crises. In addition, new understandings of the effective events were derived
from raw data. In order to avoid the computational overhead of input feature analysis that hinders
time-critical prediction, EventTracker sensitivity analysis, an incremental method that can support
dimensionality reduction, was applied to real-world data from 1600 features per each of the 4 wells
as input and 6 time series per each of the 4 wells as output. The resulting significant input series
were then introduced to two classification methods: Random Forest Classifier and Neural Networks.
Performance of the EventTracker method was understood correlated with a conventional manual
method that incorporated expert knowledge. More importantly, the outcome of a Neural Network
Classifier was improved by reducing the number of inputs according to the results of the EventTracker
feature selection. Most important of all, the generation of results of the EventTracker method took
fractions of milliseconds that left plenty of time before the next bunch of data samples.

Keywords: drilling disaster; feature selection; forward selection; sensitivity analysis; random forest
classifier; neural networks

1. Introduction
1.1. Basic Concepts

In sub-surface drilling, critical or crisis events, such as unwanted influx into the
borehole, usually arise not abruptly, but have rather a more gradual nature. For instance,
the hazard potential of an unwanted influx into the borehole is small, as long as the influx
rate affected by the permeability of the formation is low, and as long as the accumulated
volume of the influx down the hole is small, and thus both have no further impact. If the
influx rate increases while drilling deeper into a high-pressure gas formation, the chance
for a crisis to emerge will increase too. Figure 1 demonstrates the importance of crisis
prevention among the interactions in drilling disasters [1].

Sensitivity Analysis (SA) allows for linking of normal operational events to the ones
that may arise later to disrupt the overall system, i.e., crisis events. It is not always the
case that operational events are understood when manually viewing the raw input data.
Instead, a better understanding can be gained through analyzing features in the raw data.
The next sections will explain the drilling events of interest and the types of features that
can be analyzed. Moreover, it will be explained how those events can be linked using
event-based Sensitivity Analysis.
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Figure 1. Timeline for drilling interaction leading to a disaster. The vertical axis represents both
curves of Event Improbability (the declining curve) and Hazard Potential (the growing curve) ranging
between two generally defined bands of low and high.

1.2. Critical Drilling Operations

There are certain critical operations in the process of decision making for drilling
disaster management. The schematic diagram in Figure 2 shows these operations in the
time order that they may be applied.
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Figure 2. Four Critical Operations in Decision Making for Drilling Disaster Management.
The following sub-sections explain each critical operation.

1.2.1. Crisis Detection

The most important type of decision support is the just-in-time detection of an upcom-
ing critical situation [2]. Note that in contrast to crisis prediction, described later, missing
the detection of a critical situation leads to inevitable damages at physical entities, injury
for humans, and last but not least financial losses.

1.2.2. Crisis Prediction

Early detection of an upcoming crisis may enable a system to avoid the occurrence of
a critical event, or at least to limit its physical and financial impacts. It is evident that the
prediction of a possible critical situation is uncertain. The longer the prediction periods are
(i.e., the timespans between the predictions made and the actual times the critical events
would occur) the more uncertain crisis prediction may be.

1.2.3. Counter-Action Support

Besides the detection of already occurring or possible upcoming crises, there is also
a need for counter-action support. This means that the system provides guidelines and
suggestions for the particular handling of crises to system operators. This can involve the
use of simple electronic crisis handling checklists (similar to the practices used by aircraft
crew). In addition, more sophisticated methods, e.g., semantic decision tables or even
offline trained classifiers based on the experience of a large amount of rig data (aggregating
offline knowledge from multiple rigs and boreholes), might be feasible [3].

1.2.4. Crisis Prevention

Crisis prevention is a type of system interaction where, even without any signs of an
upcoming crisis occurring, recommendations for “crisis-prevention operations” (such as
ream and wash operations) are provided to a system operator. First, an important aspect
of this is the provision of feasible parameters for regular operations. For instance, the
parameters to guarantee an appropriate pump startup should be proposed by the system
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so that the operation does not cause an evolution towards a potential critical situation.
Second, a justification for the recommended system actions should also be generated.
Third, the system should be aware of whether or not an operator has followed the system
recommendations. Thus, in the case that the proposed counter-actions are ignored by
operators, the system can adapt the recommendations to the new situation or even issue
an alarm.

1.3. Response Time

Response time is defined as the time to respond to significant events that may oth-
erwise lead to an operational crisis. The required time strongly depends on the detected
critical event. If the reaction is set earlier, it gives a higher chance of managing any crisis
that develops, although early intervention may also be associated with more uncertainty
as to how an event could develop and unfold. Thus, it would be not enough to answer
the question for the timing of the response, as it should be the minimum possible. Nev-
ertheless, it can be stated that the overall magnitude of a response time is in the range of
seconds to minutes. For example, for a drill kick, the response time strongly depends on
the parameters of the subsurface formation, such as permeability, fluid properties, as well
as pressure conditions [4]—therefore, an extension in the magnitude of minutes may be
required for the response time. Furthermore, often ream and wash operations are applied
to prevent a stuck pipe, usually after a stand is drilled and before connecting a new stand to
the drill string. Thus, waiting for a decision to recommend or not such an operation makes
no sense if the response time is in the magnitude of the duration of that operation. Each
decision support function has to meet estimated response time requirements, as shown
in Table 1.

Table 1. Required response time in drilling disasters.

Event Response Time
Kick magnitude of minutes
Stuck pipe support magnitude of seconds
Pump startup magnitude of seconds
Lost circulation magnitude of seconds

During drilling, the driller needs continuous knowledge about the borehole stability
and, even more urgently, about any significant borehole instability. The actual state of the
borehole is used for any immediate or any eventual urgently required counter-actions or
to make any revisions to improve the drilling plan. Its state is typically evaluated using
a number of different information sources and is, as far as possible, incorporated into a
geological model. Such information sources usually supply real-time data, measurements
at regular intervals, and drilling reports [5].

Real-time data typically originate from sensors mounted at the surface, as well as, in
some special cases, from down hole; the data are sampled and provided with an interval
in the magnitude of seconds. Real-time data are, in general, used also by third-party data
providers, such as mud-loggers and directional drillers, to supply an additional set of
information in real time. Other measurements, such as mud properties, are provided in
intervals in the magnitude of hours, and drilling reports are available on daily basis. Drilling
reports contain much more information about the drilling process, wellbore geometry
parameters such as diameter and depth, mud properties, wellbore trajectory data, and
descriptions of normal and abnormal situations and corresponding counter-actions.

1.4. Features

In heuristic model-building, features usually play an important role. They are used
as an input to reduce the required complexity of a subsequent (heuristic) problem-solver.
Although feature calculation does not extend the information in the input data, it can
prepare such information, in many cases, in a way such that the complexity of a given task
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reduces dramatically. As a rule of thumb, the lower the complexity of a heuristic model,
the better is its generalization property, and the more successful it is at processing data that
the model has never seen before [6].

In numerous practical cases, features relevant for solving a problem are well known,
but in other cases such knowledge must be created from scratch. A common way to
create features for such cases is to integrate domain know-how as much as possible and
to create numerous features that might be relevant, sometimes based upon gut instinct.
Currently, we need to be able to efficiently process large amounts of feature data, and
thus we need to reduce the dimension of the generated features. Out of those, sometimes
a huge number of features, the relevant ones, can be identified by use of sophisticated
methods such as forward selection or backward elimination in combination with principal
or independent component analysis [6]. However, these methods are computationally
intensive. Therefore, we need to investigate incremental classification methods that could
feasibly lend themselves to the problem of dimensionality reduction.

2. Related Work

Currently, there is an important trend in using real-time data streams in the oil and
gas community [7]. In particular, the research community and the related drilling industry
is very active applying new types of data analysis strategies to build decision systems
supporting drilling engineers and companies in their daily work.

While the main purpose of such supporting systems is an improvement in efficiency
and a decrease in drilling costs, real-time data analysis can also be used for the discovery
of critical events such as kick, pump startup, or lost circulation. Standard approaches for
analysis use different reasoning strategies to detect deviations in physical models. A typical
example is early symptom detection using real-time data [8]. This has been the case in this
work, i.e., the deviated models have been applied to the detection of several symptoms (e.g.,
sliding or rotational friction) under real-world conditions. Another interesting real-time
system for decision support for high-cost oil-well drilling operations is presented in [9].
“DrillEdge” uses case-based reasoning techniques to predict problems and give advice to
mitigate them.

Although the application of such standard strategies to observations of real-time
data streams to predict critical events is clearly feasible, reliable and stable detection and
prediction require robust and novel machine learning strategies in order to promote even
more reliable and even safer drilling operations. This problem is far from trivial, and to our
best knowledge, most of the work using machine learning methods are works in progress
for specific events (e.g., stuck pipe) or look at all unusual events. In most cases, the analysis
modules or set of analysis modules are only integrated into research prototypes; examples
include [10,11] where stuck pipe events are analyzed.

Another general observation of related research is the fact that a single method is
not usually sufficient. It is necessary to develop systems that integrate various machine
learning methods (with specific advantages and disadvantages) to solve such complex
problems. For example, Murilla [12] proposes the use of a hybrid system based upon
fuzzy logic and neural networks to predict a stuck pipe. A decision support system can
use influence diagrams [13] that seem well-suited for real-time support and for large and
complex drilling decisions where there is some uncertainty. They used Bayesian Decision
Networks. They came to the conclusion that solutions that take into account techniques to
determine how strongly the result of an influence diagram computation depends on the
values of the observable variables (sensitivity analysis) are very promising.

Recently, it also turned out that efficient machine learning strategies allow for the
increasing of information content via multiple real-time data stream analysis. Thus, the
data cannot only be analyzed on a single rig, but also in real-time operating centers (RTOC),
which has several advantages, as discussed by Booth in [14].

Besides the use of simple data-streams, it is also feasible to construct deduced (com-
bined) features in order to enrich the variety of information available for use. Sometimes
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it is easier for machine learning techniques to work with several “weak” features and
combine them into a more powerful classifier (ensemble methods and feature selection).
Hence, decision makers tend to spend extra effort on constructing new variables (or fea-
tures) based upon the original variables in order to help make sense of the initial (or raw)
measurements [15-18]. One important solution to address the problem of scalable data
processing in real-time is dimensionality reduction [19-23]. These solutions propose the
use of regression-based techniques including Projection Pursuit Regression and Principal
Component Analysis for variable transformation. The former technique is one of the most
common multivariate regression techniques, while the latter is a special case of the former.
Another group of methods, known as cluster analysis, aim to lower the number of data
entities by replacing a group of similar ones with a representative data entity [24,25].

Ref. [26] reports that by growing the dimension of input variables, the number of
possible regression structures increases faster than exponentially. This issue contributes
to the high unreliability of regression methods. In cluster analysis, grouping, which
according to [24] is related to the end goal of the user, requires analysis of similarity among
the input entities, which are in many cases a time series. This makes cluster analysis a
computationally heavy type of process for time-critical applications [24].

Sensitivity analysis has been discussed by [27-31] as a technique to minimize the
computational overhead by eliminating the input variables that have the least impact on
the system. The majority of sensitivity analysis methods tend to demonstrate the impact of
change in one variable on the other by means of a mathematical equation that describes the
relationship between them. Methods such as differential analysis [32], Green’s function [33],
and coupled/decoupled direct [34] are classified among the analytical sensitivity analy-
sis methods by [32]. However, the non-linear and non-monotonic relationships between
inputs and outputs of a given system may not necessarily lend themselves to the use of
such analytical methods [35]. Refs. [35,36] tackled the issue of the computational cost of
a “double-loop sample-generation strategy,” and the use of restrictive conditions for the
evaluation of dependent variables based on independent variables in sampling-based SA
methods by proposing an approximation approach that measures the entropy of variable
distributions in the original data samples. However, obtaining the appropriate indicator
functions for each independent variable requires knowledge of their distribution probabili-
ties [36]. EventTracker Sensitivity Analysis supports a reduction of computational cost by
eliminating the less-significant features in a timely manner and without use or building
knowledge of the distribution of the data.

3. EventTracker Sensitivity Analysis

The idea behind the proposed EventTracker platform is the assumption that modern
information management systems are able to capture data in real time and have the techno-
logical flexibility to adjust their services to work with specific sources of data/information.
However, to enable this adaptation to occur effectively in real time, online data needs to
be collected, interpreted, and translated into corrective actions in a concise and timely
manner. This cannot be handled by existing sensitivity analysis methods because they rely
on historical data and lazy processing algorithms. It is important to note that real-time
data acquisition and collection systems are equipped with data exchange middleware that
have some limited and controlled caching and queuing mechanism such that the published
data from the sources of data are not lost until they are collected by the consumer of
the data, e.g., the EventTracker platform, in the case of recovery from a malfunction in
network connectivity.

In event-based systems, the effect of system inputs on a state is of value, as events
could cause this state to change. This “event-triggering” situation underpins the logic of the
proposed approach. The event-tracking sensitivity analysis method describes the system
variables and states as a collection of events.

An event-based sensitivity analysis method (EventTracker) was proposed by [37].
The proposed event-tracking SA method uses an input-output occurrence [+, —] matrix.
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This matrix is populated at predefined time intervals. The current platform is designed to
allow a user (with domain knowledge) to set the initial system update time interval. For
example, in safety sensitive systems such as power plant reactor monitoring, the rate of
data table population will be in short intervals. In scenarios that employ less time-critical
systems, such as finance, the interval will be longer. This matrix is designed to map the
relationships between causes that trigger events (Trigger Data or TD) and the data that
describe the actual events (Event Data or ED). In this way, the “EventTracker” method is
able to construct a discrete event framework [37] where events are loosely coupled with
respect to their triggers for the purpose of sensitivity analysis.

The algorithm is designed to respond quickly, and in essence has a life cycle that is
equivalent to a Search Slot (SS). Within each SS, TDs and EDs are captured from two time
series and used to provide a value which is translated into a sensitivity index. This index
is then added to the indices of the subsequent search slots. At the end of each SS, the
sensitivity indices of all data series are linearly normalized. The main functions of the
EventTracker algorithm are depicted in Figures 3 and 4. The main steps of the algorithm
are as follows.

SS(i-1) SS(i) SS(i+1) Time
i e | S S ity SEEE
T 1 | AN S\
_________________ [ \ —————=_
v \ \I
IR 2 = 1 F--=s | 4
ED \ [ \ |
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Figure 3. Overall functionality of the EventTracker algorithm.
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Figure 4. Trigger—Event Detection functionality on each Search Slot.
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3.1. Stepwise Scan

A First-In-First-Out queue is allocated to every data batch in an SS. The size of the
queues is unbounded. The content of the queues is flushed at the end of each SS. The data
is then passed to the EventTracker detection and scoring algorithm. The next SS continues
to fill the queue immediately. Using this technique, no data is lost. Figure 3 shows a few
stepwise scans and their analysis operations in the search slots.

3.2. Trigger—Event Detection

Figure 4 shows that within each SS a pair of {ED, TD} are examined for evidence of
a trigger and event. The batch of TD values is searched for fluctuations greater than the
specified TT threshold, and ED values are similarly checked for changes larger than the ET
threshold. This functionality results in a true value being generated, provided at least one
of the above changes is found in a particular batch.

3.3. Give-and-Take Matching Score

In each SS, the simultaneous existence or non-existence of a change in each pair of data
batches is scored as +1, otherwise the score is —1. This operation is similar to a weighted
logical Exclusive-NOR and is shown in Table 2. This aggressive approach is adopted to
better emphasize the impact of inputs on a given output rather than simply scoring +1 for
existence and 0 for non-existence.

Table 2. Weighted Exclusive-NOR Functionality.

Input 1 Input 2 Output
0 0 +1
0 1 -1
1 0 -1
1 1 +1

3.4. Summation of the Matching Scores

The +1 and —1 score for each SS is added to the overall score depicted by Equation
(1). The Sensitivity Index (SI) of the measured ED and TD values after time t (or in discrete
form after search slot), where 7 is the number of SS in an AS, can be calculated as:

n
Sl = ;SearchSIOtScores (1)

3.5. The Normalization Process

At the end of each SS, the values of the sensitivity indices are normalized (2). In other
words, given a lower bound / and an upper bound u for the set of all indices, each final
value of the sensitivity index is transformed to a value in the range [0, 1]; thus:

»Sv:SI—l

u—1 @

A summary example of the algorithm performance is shown in Table 3. In this table,
the flow of matching scores and sensitivity indices (SI1, SI2, and SI3) for one ED with
respect to three TDs (TD1, TD2, and TD3) over 10 SS is shown.

Star symbols in Table 3 indicate a detected event or trigger for the values of ED, TD1,
TD2, and TD3 within each search slot. Each value of 51, S2, and S3 is —1 or +1 depending
on the exclusive match between ED and TD1 and TD2 and TD3, respectively. SIn1 to SIn3
represent Normalized Sensitivity Indices values for SI1 to SI3.
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Table 3. An example of the sensitivity index generated by the EventTracker method. The star symbol
shows occurance of an event.

SS 0 1 2 3 4 5 6 7 8 9 10
ED * * * * * * * *
TDl * * * * *
S1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1
SI1 -1 -2 -3 —4 -3 -2 -3 —4 -5 —4 -3
SInl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TDZ * * * * * *

52 1 -1 1 -1 -1 1 1 1 1 1 -1
SI2 1 0 1 0 -1 0 1 2 3 4 3
SIn2 1.00 1.00 1.00 0.67 0.33 0.33 0.67 0.75 0.80 0.80 0.75

TD3 * * * * *

S3 -1 1 1 1 1 1 -1 1 1 1 -1
SI3 -1 0 1 2 3 4 3 4 5 6 5
SIn3 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Hormalized Sensitivity Index

The normalized sensitivity indices (SIn) in Table 3 show that ED is most sensitive to
TD3 and least sensitive to TD1. Figure 5 shows the values of SIn.
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Figure 5. Normalized sensitivity indices as in Table 3.

Average Hormalized 51

The overall average SIn values are shown in Figure 6; this figure illustrates the lateral
movement of the respective values towards a value that is analogous to a steady state.
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Figure 6. Averaged normalized sensitivity indices for the data in Table 3.
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3.6. Time Efficiency

In order to maintain the analysis in real time, generation of one set of Sensitivity
Indices of the data belonging to one Search Slot (SS) is allowed to be as long as one SS.
Iteration over all Trigger Data (TD) and Event Data (ED) time series for one SS would
require a time period as long as that given by Equation (3).

TScoreg” = TScore; NTriggerNEvent (3)

in which Tsy, is the time required to generate each single Sensitivity Index of one
ED with regards to one TD, Nryjge., is the number of TDs, and NEge; is the number of
EDs. Therefore:

TSCoreu” < TSS (4)

is the time constraint for real-time analysis of the ETSA. This implies that:

_ Tss
NTriggerNEvent

Q)

TScorei(Max)

if the time taken to generate each single Sensitivity Index of one ED with regards to one
TD is shorter than this value, i.e., Ts,re,(Max) then the EventTracker SA can follow the data
series in real time. This will also be discussed at the end of the following Section 4.

4. Experiments and Results
4.1. TRIDEC Dirilling Support Components

The TRIDEC drilling support system (TDS) monitors the drilling operations performed
at drilling rigs. It is scheduled to detect and show trends for critical situations in real time [1].
The system is designed to be used both onsite and offsite at a rig at a real-time operating
center (RTOC); see Figure 7. It also guides the drillers during routine operations and
presents counter-actions and recommendations for abnormal situations. The RTOC is
dedicated to be used by a special stakeholder, the so-called RTOC engineer. That RTOC
engineer monitors multiple rigs at the same time and is therefore typically located at a
remote operating center.

Well | 2=

el =

Plan \:
e

Figure 7. TRIDEC Drilling Support Components (DSC). The different color line in the left block is the
plan of the drill in the layers of the soil.

System System
Training Setup

Such an operation center is connected to multiple rigs. The RTOC engineer is provided
with an overview of all monitored rigs, enabling the user to get a clear view of the overall
situation. It is possible to switch to a more detailed view in order to monitor a single
rig on demand. With this system, the RTOC engineer analyzes long-running trends,
giving learning feedback to the system and responding to any provided counter-actions
and recommendations.
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The following subsections briefly introduce three of the drilling support components
relevant to the scope of this paper.

4.1.1. System Training Component

In a self-learning computer system, a training component is of utmost importance.
Basically, system training is the process of learning. This component enables users to replay
historical rig data, to annotate undetected events, and to provide feedback for any existing
events detected. Based on such feedback, the system can build up the learning models for
subsequent use in real-world installations.

4.1.2. Data Analysis Component

The purpose of the data analysis component is to provide and prepare information
and know-how on historical items such as data, inferences, and relations between them.
It features the analysis of these items in a fashion similar to conventional online analytic
processing techniques. Unlike such systems, it additionally provides analysis methods for
generating new knowledge.

4.1.3. Knowledge Editor Component

The knowledge editor is a component that enables a user to create, update, and delete
detected events as well as any proposed counter-actions and recommendations. Moreover,
the component provides comfortable views on certain critical events in a time-oriented
fashion. In certain cases, particular know-how of human experts is required to directly edit
model parameters such as thresholds, weights, data type prototypes, or cluster centers.

Data transmission is a big challenge because of the amount of data with regards to
real-time transmission. For data transmission, a standard encoding such as WITSML [38]
is used. Such standards are based on XML. For instance, one rig currently provides more
than 700 real-time channels sampled with a frequency of 1 Hertz. Figure 8 shows a portion
of such data together with the associated information on some states of the drilling rig.
The transmission of such a large amount of data from one rig is accomplishable by the use
of DSL or satellite communication channels. Continuously receiving such data streams
concurrently from numerous rigs may exceed the capacity of such channels.

LA

i

flowinav (raw)

50(0

Us

0

44
Ay |

o i R A

- _.___m}m

3000

mdhole (raw)
3000 m

0

AT jisa 1l

Trip-Out

- —Drilling A

Figure 8. Sensor data time series (four upper charts) and state of the drilling (bottom chart) for one
rig sampled at 0.1 Hz. The top chart shows the block position (red) and drill string rotation speed
(green). The second chart shows the torque applied to the drill string (yellow) and the hook load
(green). The third chart shows the pump pressure measured at the standpipe (orange) and the mud
flow rate (blue). The fourth chart shows the measured depth of the bit (green) and the measured
depth of the borehole (blue); also, the main operations trip-in, drilling and trip-out can be identified
by the bit depth in this chart. The bottom chart shows the 10 possible operational state labels that
may occur at a rig; the predominant light and dark blue encoded states indicate drilling.
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4.2. Feature Construction

Some real-time data channels are shown in Figure 8. Taking, for instance, the stuck
pipe scenario into account, it can be presumed a priori that the block position and hook
load play some role. If the pipe is stuck, the block cannot be moved with the drill string
connected. Attempting to move the block up will drastically increase the hook load without
giving the block a chance to move—or, to be more precise, the block speed is nearly zero.
So, the block speed, which is the first derivative with regards to time of the block position,
might be a feature that simplifies the problem of stuck pipe detection. The same applies to
drill string rotation and torque.

In terms of real-world tasks, stuck pipe detection is an actual but rather simple problem.
A more complex task is stuck pipe prediction, and, as a consequence, stuck pipe prevention
through using some precautionary counter-actions. The assumption that hook load and
torque contain information about a possibly emerging stuck pipe is still valid. How that
information is provided is actually unknown, and therefore a challenge whose importance
should not be underestimated.

Figure 9 sketches a typical borehole drilled nearly vertical at its beginning which
then changes direction to nearly horizontal. The main components of the hook load Fy,ox
are the acceleration force F,, the component of the total weight of the whole drill string
(Fr) aligned with the drilling direction Fy, (according to the principles of mechanics the
component that is vertical to the drilling direction Fy is to be ignored), the friction forces
Fr (that according to the principles of mechanics could depend on Fy), and some other
non-quantifiable forces denoted as ¢. In case of creating a deterministic model, the mass
influx of the drill string, the borehole trajectory, especially the inclination and friction
factors, amongst others, need to be known.

Drill Pipe
above BOP
BOP

Borehole — |

Drill Pipe
in Borehole

F“M=FA+FthF+S

Figure 9. Forces influencing the hook load.

Since it appears unpromising to identify and estimate all input factors with a rea-
sonable certainty and accuracy to predict and thus prevent a stuck pipe (as well as other
crises), a heuristic approach incorporating deterministic know-how seems to be the most
feasible solution. To incorporate as much deterministic know-how as possible, a systematic
approach to generate features based on specific laws of physics appears to be appropriate.
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For feature creation, the physical rules of kinematics and dynamics were applied to
the drill string in a first approach to create some heuristics for the features created via the
available data channels. For instance, the simple rule for the acceleration force F4 based on
the mass of m and the acceleration of g,

Fo=m-a, (6)

leads to the resulting heuristic that F4 can be expressed as
Fa=0 (dha + dsa> + coa. 7

In Equation (7), dj, denotes the length of the drill string above a rotary table and
thus out of the borehole, ds is the length of the drill string in the borehole, and a is the
acceleration applied to the total drill string. The constants c; and ¢, need to be evaluated.
If a deterministic model builder is used, they are probably automatically estimated using a
heuristic model builder and thus can be ignored if the same features are derived. In fact,
the features from Equation (7) are dj, * a, ds * a and the acceleration a of the drill string itself.

Combining all the kinematic and dynamic rules heuristically and normalizing the
results by the length of the drill string, a set of exactly 100 feature rules was obtained. Those
rules were applied to the 10 base channels as shown in Table 4 as well as to the extended
base channels shown in Table 5, resulting in a total of 1600 features.

Table 4. Base channels.

ID Symbol Unit Description
C0108 mdBit m Total (measured) depth of bit
C0110 mdHole m Total (measured) depth of hole
C0112 posBlock m Block position
C0113 ropAv m/s Drill rate
C0114 hkld Av kg Hookload, measured at surface
C0116 wobAv kg Weight on bit, measured at surface
C0118 tqAv J Rotary torque, measured at surface
C0120 rpmAv rad/s Rotary speed, measured at surface
C0121 presPumpAv Pa Pump pressure, measured at surface
C0130 flowInAv m3/s Mud flow into the hole

Table 5. Extended base channels.

ID Symbol Unit Description
D0101 n.a. m mdHole — mdBit
D0201 n.a. m mdHole + posBlock
D0301 n.a. m mdBit + posBlock
E0101 n.a. W tqAv * rpmAv
E0201 n.a. w pressPumpAv * flowInAv
E0301 n.a. W ropAv * wWobAv

The denotation of the features is based on the channel from where it originates (e.g.,
C0108) and the feature index (1 out of 100, HOO denotes the first and H99 the last of the
features). Thus, the denotation C0108:HO1 stands for the feature with index-1 based on bit
depth, which is in fact the drill string acceleration.

Figure 10 shows a portion of such features generated within a 42-h window. The base
channels in that case were sampled with a sampling frequency of 0.1 Hz equivalent to a
sampling interval of 10 s. In all charts, the bit depth is assigned to the right axis and drawn
as a black line. In Figure 10a, the bit velocity is drawn as a yellow line within a range of
about +0.8 m/s. The bulk of the positive bit velocities on the left (3:20 to 6:10) is due to the
trip-in of the drill string into the borehole. The middle part of the chart indicates the actual
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drilling operation starting at 6:10 and ending the next day at 9:20. Over this period, the
average bit velocity is about 16 m/h (equivalent to 5 mm/s) and thus not really perceptible
in the chart. The large spikes in that range (e.g., at 14:00) indicate so-called ream and wash
operations applied for cleaning the borehole. The right part of the chart shows, again, a
period of large bit velocities due to a trip-out operation when the drill string is removed
from the borehole.

a) 1.0 0
CO108:HO1 (Bit Velocity) =——C0108 (Bit Depth)
Los 500
£
= £
E -
S 00 - 1000 £
w [
> (=]
- -
£.05 1500 £
-1.0 . . . . . . 2000
Time 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
b) 0.1 0
€0108:H02 (8it Acceleration) —C0108 (Bit Depth)
~
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S 00 1000 £
S o
< )
E S
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0.1 y . . . . . 2000
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<) 800 0
E0201 (Pump Power) =—=C0108 (Bit Depth)
2600 - 500
5 £
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Figure 10. Some of the features based on the sensor data. (a) Bit Velocity, (b) Bit Accel., (c) Pump
Power.

In Figure 10b, the bit acceleration is drawn against the time and the chart is similar to
that above; a period of large acceleration values occurs during a trip-in and trip-out. Some
acceleration spikes during drilling are caused by the ream and wash operations. Figure 10c
shows the pump power (E0201, cp. Table 5), the product of the pump pressure (C0121),
and flow rate (C0130). It is obvious that the most pump power is required for drilling; for
the trip-in and trip-out it is almost zero.

4.3. Validation

To show the feasibility of the proposed Sensitivity Analysis method for borehole
state classification tasks, we performed several experiments on real-world datasets. First,
we used the EventTracker Sensitivity Analysis for a reduction of the number of possible
features mentioned in Section 1.4 to a manageable, “important” subset. Later, the obtained
reduced feature set (features ranked due to their “importance”) was used with standard
methods to solve the borehole operational state classification task.

4.4. Validation Dataset

The dataset used for our experiments consists of five anonymized well data recordings
(5055, S075, S085, S140, and S240) containing about 1.14 million valid data sets in total
(297,033, 277,146, 153,145, 207,217, and 208,696). Besides the 10 base channels directly
recorded from the rig and 6 calculated basic features (cp. Table 4 for details), 1600 extended
features (see Section 4.2 for details) have been calculated and taken into account. An expert
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team of drilling engineers has labelled each of the data sets according to one of the ten
corresponding borehole operational states (see Table 6), thus providing a reliable ground
truth for evaluation.

Table 6. Possible Operational States Labels.

State Code Comments

DrlSld Drilling Sliding

DrlRot Rotary Drilling
MakeCN (Dis)Connect a Drill String

CircHL Mud Circulation in Borehole
MoveUP Move Up Dirill String
MoveDN Move Down Dirill String
WashUP Move Up/w Circulation
WashDN Move Down/w Circulation
CleanUP Move Up/w Circulation & Rotation
CleanDN Move Down/w Circulation & Rotation

4.5. Obtaining a Feature Ranking from SA Algorithm

As a first experiment, the EventTracker SA algorithm was run on the datasets S055,
5075, S085, and S140 individually. We looked for indications of correlation among several
SA algorithm runs.

For example, Figure 11 shows the raw importance scores (SI as in Table 3), i.e., all
Sensitivity Index values obtained for all features obtained from the channel C0108 (mdBit)
and CodeQOS labels. The correlation of SA importance values among several boreholes can
be easily seen. Similar results have been observed for other channels and their deduced
features. This motivates the assumption that sorted SA importance values, or, in other
words, importance rankings, can be averaged over several boreholes. Thus, we calculate
the mean normalized importance values for each of the 10 base channels and 6 base features
and take the 2 most significant channels as “SA-selected” features for all of the following
experiments. Table 7 shows the most and second-most important features selected by the
SA algorithm for several boreholes.

Table 7. Data Subsets used for Feature Selection based on Neural Network Classification.

Hole Depth, m Bit Depth, m
Run . . .
Well . Duration  Samples Min Max Span Min Max Span
Description

Run-5,

TDL-S055 . 34.1h 12,281 1407.4 1775.8 368.4 16.6 1775.8 1759.1
Drilling
Run-2,

TDL-5075 . 355h 12,792 158.9 601.9 443.0 21.6 601.9 580.3
Drilling
Run-3,

TDL-5085 . 17.7h 6361 354.2 624.4 270.2 24.0 624.3 600.4
Drilling

TDL-5140 Run-5, 36.7h 13,202 368.5 1229.0 860.5 21.3 1229.0 1207.7

Drilling
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Figure 11. EventTracker SI value correlation behavior.

4.6. Experiments with a Random Forest Classifier

Experiments were undertaken to assess how well the resulting Sensitivity Indices
correlated with the results of other state-of-the-art classification methods, first the Random
Forest Classifier (Section 4.6), and then Neural Networks (Section 4.7). Random Forest Clas-
sifiers (RFC) [39,40] are well-known classification methods used in the machine learning
community. They have shown better, or at least comparable, performance in comparison
to other state-of-the-art classification algorithms, such as SVMs [41] or boosting [42], and
show a series of advantages such as efficiency when used on large databases and robustness
to missing data.

For this experiment, we used an adapted version of the online algorithm proposed by
Saffari et al. [43]. All our experiments were performed on MATLAB (R2011-64bit) running
on an Intel Xeon 3.2 GHz—Windows 7 machine (Austria, Graz). Due to the randomized
nature of the algorithm, we performed 10-fold cross-validation for the datasets. For each
validation run, we used a random selection of 90% of the data for learning, while the
remaining part of the data was used for testing. The main performance criterion is the
correct classification rate (CCR), which is the ratio between the correctly classified datasets
and the number of valid test datasets. Due to the unbalanced nature of classes, individual
correct classification rates were calculated to emphasise any effects on smaller classes.

At first, we used the 32 most important features suggested by the EventTracker SA
algorithm. The results obtained can be seen in the second column of Table 8.

Table 8. Main results for features selected only by the SA algorithm and the best results obtained by
taking into account the domain expert’s knowledge.

Well ID CCR Best Possible CCR
S055 56% 86%
S075 69% 92%
S085 71% 91%
5140 62% 92%
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As one can see, the classification rates vary between about 55% and 70%, which
indicates the feasibility of the proposed EventTracker SA method. The worst performance
for S055 may be explained both by the complexity of the task (This is indicated by the fact
that the best possible correct classification rate is also the worst one for this dataset) and the
fact that the SA algorithm did not see the specific well data during the selection procedure.

In order to check the performance of RFC using added knowledge from an expert,
an offline experiment incorporating an expert’s knowledge for the selection of channels
was performed. In particular, we added the first and second derivatives (H01 and H02), as
well as the H12 of the base channels C0108 (mdBit), C0110 (mdHole), and C0112 (posBlock)
as additional features and obtained the results shown in the third column of Table 8. The
results show a correlation between the performance of the EventTracker SA method and
the ones from incorporating an expert’s knowledge.

4.7. Experiments with a Neural Network Classifier

In addition to the Random Forest Classifiers, Neural Networks were applied to classify
the operational states shown in Table 6. In combination with the well-known Sequential
Forward Selection (SFS) [6], an estimate of the channels and features relevant for the
classification task was made in order to compare it to the features recommended by the SA
method. In addition, the performance of the classifier is of interest for comparison to the
Random Forest Classifiers.

Neural Networks in general generate a substantive computational load in computers.
In addition, feature selection increases this. To constrain the computation time to some
acceptable time, a subset of the data was extracted from each of the four wells.

A drilling process is usually separated into so-called runs. For each such run, a rough
description of what happened in the well or at the rig is provided. A drilling run includes
all the operations applied during the actual drilling of a well and typically consists of trip-in
the drill string, drill the well, and concludes with a drilling trip-out of the drill string (see
Figure 8).

For the experiments with the Neural Networks, the data were extracted as shown in
Table 9. From each well, one single drilling run was selected, and that data was separated
into 3 subsets for learning (60%), validation (20%), and testing (20%).

Table 9. List of Base Channels and Corresponding Features Used.

Features (Intuitive Selection) Features (SA Recommendation)

Base 1st 2nd 3rd 1st Ml 2nd Ml
C0108 :HO1 :H02 :H12 :H19 1.000 :H59 1.000
C0110 :HO1 :H02 :H12 :H30 1.000 :H19 0.637
C0112 :HO1 :H02 :H12 :H16 0.999 :H25 0.980
C0113 :H17 0.996 :H72 0.994
C0114 :H36 1.000 :H39 0.560
Co0116 :H36 1.000 :H39 0.546
C0118 :H63 0.708 :H89 0.682
C0120 :HO8 0.994 :HO07 0.994
C0121 :H10 0.863 :H60 0.863
C0130 :HO1 0.997 :H14 0.994
D0101 :H15 0.995 :HO3 0.985
D0201 :H16 0.998 :HO04 0.988
D0301 :Hl6 0.999 :H56 0.995
E0101 :H51 0.930 :H89 0.907
E0201 :H36 1.000 :H39 0.288
E0301 :H36 1.000 :H39 0.980

For the classification, a special network architecture, the improved completely con-
nected perceptron (iCCP) shown in Figure 12a, was used. The design of the network
layer, number of hidden layers, and number of neurons in each hidden layer, is one of the
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major challenges in designing a multi-layer perceptron network. The advantage of the
iCCP architecture compared to the multi-layer perceptron is that all neurons in the hidden
block are completely connected, and thus the search for the optimal network complexity
is straightforward. In oil and gas exploration tasks, this architecture has been applied
successfully to simulate drilling hydraulics [44].

1/0 Shortcut
a) Connections
—
—_— —
—_—

t t t

1 1 1 Input  Hidden Output
Layer Layer Layer

Input Hidden Output

Layer Block Layer
Figure 12. Neural Network Architectures: (a) Completely Connected Perceptron and (b) Multi-
Layer Perceptron.

For all our experiments identical configurations were used. A total of 10 networks
were trained in parallel to prevent them from being trapped in local error minima. Network
growth was started from scratch, with no neurons in the hidden block, equivalent to multi-
linear regression. Then, the hidden neurons were increased one by one until a maximal
number of five hidden neurons were obtained.

The number of inputs to all networks was at the utmost of the channels shown in
Table 9, but via application of SFS, the input to the networks was managed with forward
selection.

In the first experiment, the extracted data from all four wells were used as input to
the model. Using all of the 57 channels as inputs to the model, a correct classification rate
of about 93% was obtained, but the outcomes were improved by reducing the number of
inputs according to the results of the feature selection.

The results of the feature selection are shown in Figure 13, with 10 out of the
57 channels/features selected (4 of those inputs are recommendations from the ETSA method).
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Figure 13. Feature Selection Results—All Wells.

The most important input to the model was the difference between bit depth and bore-
hole depth (D0101). The second most important input is the hook load (C0114), followed
by rotary speed of the bit (C0120). The CCRs (learning, validation, and test subsets), using
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only those three channels as input, were all within a range of about 87%. Taking mud
flow rate as a fourth input actually provides no improvement to the classification rates,
but there is no other channel which provides better results at that position. Adding the
bit velocity improves the CCRs by about 4%, to an average of about 92%. Adding more
channels according to the SFS rules raises the CCR up to nearly 95%, which is slightly better
than the results obtained using all 57 channels as input.

Figure 14 shows the forward selection results of the first SFS cycle. The data are sorted
by the model’s validation error (increasing order). There are three channels/features at the
left side of the chart providing correct classification rates above 70%, i.e., the difference
between bit depth and borehole depth (D0101). The borehole depth was normalized by the
drill string length (C0110:H30) and the bit velocity (C0108:HO01). The insert in Figure 14
shows the correct classification rates obtained for all 57 channels/features.
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Figure 14. Feature Selection Results—All Wells, 1st SFS Cycle.
4.8. Time Efficiency of Applied Sensitivity Analysis

In terms of the time efficiency of the application of EventTracker SA in this paper,
according to Equation (3), using a 100 trigger data series (i.e., Nrygeer = 100), 6 event
data series (i.e., Ngyent = 6), and a search slot period of 100 s (i.e.,, SS = 100 s), the
maximum period allowed for generating 1 series of Sensitivity Indices (i.e., Tscore,) Was

160 ms. Generation of Sls took fractions of milliseconds that left plenty of time before the
next bunch of data samples filled one search slot.

5. Conclusions

Event tracking sensitivity analysis (ETSA) has been applied to facilitate drilling disaster
prediction in which the effect of system feature inputs on its state is continuously scored,
as input events could cause this state to change. ETSA can reduce the computational
burden of dealing with a large number of datasets that may not all necessarily contribute
to building an effective processing model. This was demonstrated in this paper by feeding
the introduced feature datasets into the ETSA algorithm. It was then observed that the
resulting Sensitivity Indices correlated well with the results of other classification methods
used in this paper, including Random Forest Classifiers (RFC) and Neural Networks (NN).

Without SA, only expert knowledge decides which of the 100 features is used as an
input to the two state-of-the-art event classifiers, RFC and NN. SA was adopted in order
to assess whether or not it can provide an alternative method to feature selection that
depends on expert knowledge alone or provides a cross-check for it. In the event that
expert knowledge is not available, it was shown that the SA outputs could feasibly be used
in place of the expert’s input. In addition, the SA (EventTracker) does this in real time. For
example, the time performance of the ETSA method was shown to support a time-critical
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application of data dimensionality reduction for a drilling disaster prediction system. No
other SA approach can currently do this in real time.

Oil firms would benefit from this research by replacing expensive and time-consuming
expert knowledge that is utilized at the stage of feature selection by the introduced Event-
Tracker Sensitivity Analysis method.

In this work, the methods were applied to the data volumes on the scale of 1000
features. Further research could benefit from covering this limitation by applying the same
methodology to much a higher scale of data sources and features that apply to the other
sectors of industry, such as manufacturing that usually deals with more than 10,000 data
sources and features. Such research is well underway by the main author of this article
using state-of-the-art computation platforms.

In addition, future work on the development of the ETSA method is expected to
be able to generate higher values for the correct classification rate (CCR) so that, as a
result, incorporation of expert knowledge is less critical to preventing environment crisis
events. There are two ways to achieve this improvement. First, the search parameters
of the implemented algorithm for the ETSA method that are currently fixed values will
be evaluated adaptively and dynamically. This will allow the events in the data series to
be detected more effectively without the use of expert knowledge. Second, the current
method measures the sensitivity of the system output with respect to individual inputs.
Accounting for this, the impact of the combination of the inputs on the system’s output
will be investigated. Although this will result in a more exhaustive algorithm in terms
of time and complexity, both Neural Network-based and Random Forest Classifier-based
classification methods can benefit from the generated combined sensitivity indices as the
number of dimensions to be processed is reduced. This is especially true for the Neural
Network-based method, but also for the Random Forest Classifier-based method where a
lower number of features might reduce the probability of incorrect decisions in early levels
of the trees.

A further interesting aspect for future work would be the development of an ETSA-
focused classification algorithm and working to determine the optimal benefit that the
features selected by ETSA provide for different classification methods.
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