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Abstract: Satellite edge computing has attracted the attention of many scholars due to its extensive
coverage and low delay. Satellite edge computing research remains focused on on-orbit task schedul-
ing. However, existing research has not considered the situation where heavily loaded satellites
cannot participate in offloading. To solve this problem, this study first models the task scheduling of
dynamic satellite networks as a minimization problem that considers both the weighted delay and
energy consumption. In addition, a hybrid genetic binary particle swarm optimization (GABPSO)
algorithm is proposed to solve this optimization problem. The simulation results demonstrate that
the proposed method outperforms the other three baseline algorithms.
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1. Introduction

In recent years, the terrestrial Internet has rapidly developed, with applications such as
smart cities and environmental monitoring [1,2] attracting widespread attention. However,
terrestrial Internet services are concentrated mainly in urban areas, and providing quality
services in remote areas, such as islands, oceans, and deserts, is challenging. The instabilities
of terrestrial networks become apparent when faced with natural disasters, such as floods
and earthquakes [3]. Satellite networks have significant advantages, such as wide global
coverage and high destructive resistance. They have been used in emergency communications,
navigation, positioning, and smart city applications [4,5], effectively compensating for the lack
of terrestrial Internet services and providing critical support for 6G global interconnection [6,7].
However, previous research has considered primarily satellite networks as relay networks
in a satellite–ground fusion architecture. Ground access terminal services and raw satellite
remote sensing data, for example, are transmitted back to the ground cloud center for unified
processing, despite the possibility of performing tasks directly on the satellite [3,8,9]. Both
result in significant delays and the waste of valuable satellite communication resources [10,11].

Mobile edge computing (MEC) [12] is an emerging architecture that brings the tra-
ditional cloud-centric computing model down to the edge of the user node. It provides
the services and computing power needed at the user’s periphery, creating service edge
nodes with low latency and high processing rate for a better quality of service (QoS). MEC
principles and low-latency, high-capacity low-Earth orbit (LEO) satellite networks are
combined to create edge computing satellites (ECS). In this manner, satellite acquisition
data can be processed in real-time at satellite edge nodes [4,8,9,13], conserving bandwidth
and allowing for quick mission reaction. The TIANSUAN Constellation test satellite [14],
co-chaired by Beijing University of Posts and Telecommunications and other institutions,
for example, has validated remote sensing image inference and computing services on
orbit with the equipped KubeEdge and Sedna edge intelligence inference platform. The
researchers also compared it with traditional ground-based backhaul analysis strategies
and verified that on-orbit edge processing can effectively reduce transmission traffic and
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latency. At the same time, they also investigated the on-orbit verification of the distributed
cognitive service-oriented architecture for the 6G core network.

However, satellite on-orbit processing tasks face the challenge of a single satellite’s
limited computing power, resulting in delayed processing of tasks and difficulties in meet-
ing user requirements due to long task delays. Additionally, reducing energy consumption
in satellite edge computing is a major concern for scholars [15,16]. Therefore, utilizing
multiple satellites for assisted computing is a valuable research direction to achieve smaller
latency and energy consumption.

The contribution of this research work includes the following:

• This research proposes a computation offloading strategy based on satellite edge
computing, where large dependent tasks can be divided into multiple subtasks and
computed on other satellite nodes.

• On the basis of the shortcomings of computation offloading strategies for satellite edge
computing of other literatures, study paper considers the scenarios where the satellite
network topology changes, and high-load satellites are not involved in offloading. The
optimization problem of weighted minimization of task completion delay and energy
consumption is then investigated.

• To solve the optimization problem, the modified GABPSO algorithm is utilized. The
proposed algorithm is extensively simulated, demonstrating its superior performance
compared with other benchmark algorithms.

The remainder of this paper is organized as follows: Section 2 summarizes the related
work. Section 3 describes the system model and problem formulation. Section 4 describes
the proposed hybrid genetic binary particle swarm algorithm and analyzes the simulation
results. Section 5 concludes the paper.

2. Related Works

Task scheduling in edge computing can be divided into two categories: static task
scheduling and dynamic task scheduling [17]. When task information and network infor-
mation are known, static task scheduling can be used directly for task offload scheduling.

Dynamic task scheduling involves reassigning the scheduling policy at each schedul-
ing moment when the number of tasks, network information, and other factors change at
any time. For the purpose of this paper, we focus on static task scheduling.

Static tasks that are offloaded to the edge can be classified into two types: independent
tasks and dependent tasks [18]. Independent tasks can be split into multiple tasks processed
in parallel, and each node returns the result after completing the task processing. In contrast,
dependent tasks include several subtasks with logical dependencies. In addition, the processing
of a subtask can be performed when all the preceding subtasks of the subtask are completed.

Due to the constraint relationship among subtasks, scheduling dependent tasks is
more challenging than scheduling independent ones. With the rise of big data, dependent
tasks are becoming more common, including target tracking and identification, which
require combining and processing multiple tasks [18]. As a result, developing effective
scheduling strategies for dependent tasks is crucial. Although static task scheduling in
terrestrial MEC scenarios has been extensively studied, research on task scheduling for
LEO satellite constellations is still in its early stages, particularly for dependent tasks.

For independent-type task scheduling, Ren et al. [19] proposed an inter-satellite col-
laborative computation method for formation-flying satellites. The authors characterized
the formation-flying satellite network using a weighted undirected graph, dividing the
computational tasks into multiple parallel computational subtasks assigned to each satellite
node and solving the delay optimization problem under the energy consumption constraint
using the modified particle swarm algorithm (MPSO). However, because the work was
limited to formation-flying satellites with a constant topology, its applicability for task
scheduling of LEO satellite constellations with dynamic topologies is limited.

Chen Wang [11] presented a strategy for LEO satellite collaborative computing. The
authors used time-expanded graphs to generate a steady-state matrix for dynamic LEO
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satellite networks. Furthermore, a generalized discrete algorithm based on transmission
capacity and computational power addressed the time-delay optimization problem for
multi-satellite collaborative computing applications. The scheduling of independent tasks
was simpler because there were no logical dependencies between tasks.

For dependent task scheduling, Wu et al. [20] proposed a task collaborative scheduling
algorithm for small satellite cluster networks. The research authors assigned dozens of jobs
with logical relationships to separate satellites for collaborative computation. Considering
that satellite nodes fail, the authors proposed an improved task scheduling strategy based
on three heuristic algorithms so that the system can effectively guarantee that all tasks
are completed by the deadline as much as possible while also providing some robustness
to the scheduling algorithm. The effectiveness of the proposed algorithms was verified
by comparing them with genetic algorithms, for example. However, again, the authors
considered the same network of small satellite clusters and formation-flying satellites, and
the topology between satellites remained fixed, which lacked a reliable reference value for
the dynamic LEO satellite network.

Guo et al. [21] first characterized the LEO satellite network using the weighted time
extended graph (WTEG) model, in which a uniform delay weight parameter was added to
each edge in the steady-state graph to analyze the delay of the on-orbit computation and
transmission. A directed acyclic graph (DAG) was used to characterize the task model, and
the nodes and edges of the task model were mapped to the steady-state graph to find the
minimum task completion delay. The authors employed a binary particle swarm algorithm
to optimally solve the optimal mapping problem and verify the algorithm’s feasibility in
comparison with ground cloud processing and other basic scheduling algorithms.

Han et al. [4] constructed a satellite edge cluster computing architecture using LEO and
geostationary earth orbit (GEO) satellites as edge nodes for collaborative task computing
and characterized the logical relationships and constraints among subtasks using the DAG
model. Furthermore, the author designed a scheduling algorithm that considered the
dynamic changes in the priority and link bandwidth of subtasks in different time slots. At
each scheduling moment, the unresolved subtasks were assigned to the appropriate satellite
nodes for processing to ensure that the corresponding metrics of interest were optimized.

Most authors included all edge computing satellites in the spectrum of task scheduling
assignable nodes in the work mentioned above. In fact, due to factors such as unequal
population distribution and varying business demands, the load of each satellite node
varies significantly. Enough computing power for new task processing is difficult for high-
load satellites. However, this problem has not been considered in any the above research.

At the same time, the satellite was powered by solar energy, and the energy consump-
tion was an optimization target of great interest in satellite terrestrial networks [22,23]. This
was basically not mentioned by the authors in the above work. As a result, the remainder
of this paper will focus on investigating a strategy in which satellite nodes with high loads
are excluded from task scheduling in the dynamic LEO satellite network task scheduler.
Task latency and energy consumption will be considered together. In addition, the research
concentrates on the dependent tasks. The difference between our work and the existing
literature is summarized in Table 1.

Table 1. A summary of the literature.

References Independent
Task

Dependent
Task

Dynamic
Network Topologies

High-Load
Satellites

Task
Delay

Energy
Consumption

[11,19]
√ √

[20]
√ √

[4,21]
√ √ √

Our paper
√ √ √ √ √
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3. Model Introduction and Problem Analysis
3.1. Satellite Edge Computing Architecture

In this paper, we introduce a classic satellite edge computing architecture, as shown
in Figure 1. Task requests uploaded by users on the ground can be continually received
by the LEO satellite during its motion. These tasks include the analysis of monitoring
data from some sensors, assistance with communication from ocean-going ships, requests
for emergency communication from the ground, and analysis of remote sensing images
from the satellite itself. Traditionally, the satellite acts as a relay node to transmit the
tasks back to the ground central station, i.e., the ground cloud center, for batch processing.
However, as the satellite gains access to more powerful computing resources, it may
think about processing tasks on the satellites while in orbit instead of sending them back
to the ground cloud center. The satellites will carry the edge computing servers. The
functional components are shown in Figure 1. The satellite edge computing server can
autonomously perform work, such as resource allocation and task scheduling, in orbit. This
edge computing satellite model, which is close to the users on the ground, may efficiently
decrease the backhaul network traffic while also reducing task-processing latency.

Figure 1. Satellite edge computing architecture.

When a satellite receives many tasks, it considers the resource usage of each satellite
in the constellation. In addition, a suitable strategy for offloading in orbit is developed. The
inter-satellite offloading issue for a single dependent task in this edge computing satellite
scenario is the focus of this article. Each satellite can establish contact with the four satellites
around it using the inter-satellite link (ISL), as depicted in Figure 2. Due to the various
operation conditions, each satellite has a unique load state, which can be broadcast to other
satellites via the ISL. For example, when SAT1 receives a complete task request, it will select
the appropriate low-load satellite in the constellation to offload parts of subtasks, while the
high-load satellite cannot be selected for offloading.
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3.2. SatTEG Construction

Unlike traditional terrestrial MEC networks, which have a fixed topology, satellite
MEC networks have periodic topological changes due to the high-speed movement of satel-
lites. It makes the transmission time delay between satellites uncertain. The fundamental
difficulty to be addressed in the subsequent study is how to design the satellite MEC net-
work as a mathematical model in a reasonable manner. Like the previous works [11,24,25],
our paper first characterizes the dynamic satellite network using time-expanded graphs.
The LEO satellite network experiences periodic topological changes as it travels around the
globe, separating each operational period T into N time slots and determining the length of
each time slot ∆t = T

N . Within each time slot, the topological state of the satellite network
can be considered relatively stable and constant.

The set of all satellites in the LEO satellite network can be stated as V = {v1, · · · , vi, · · · , vd},
in which d is the number of LEO satellites. In each time slot, every satellite establishes a
connection with the two satellites preceding and following it in the same orbit, as well
as the two satellites closest to it in adjacent orbits. The resulting network of connections
among satellites in time slot t can be represented by the connection status C(t).

C(t) =

C11 · · · C1d
...

. . .
...

Cd1 · · · Cdd

 (1)

where Cij = 1, i, j ∈ d means that the two satellites are connected, otherwise Cij = 0.
Further, the connectivity of LEO satellite nodes during their operation cycle can be

expressed as a route table SatTEG by combining the connection status C(t) of all time
slots. By using SatTEG, we can obtain the connectivity path of any satellite in any time
slot during the satellite network operation. In addition, we can get the number of hops
transmitted between satellites, denoted as hop.

3.3. Task Model

This section discusses a dependent task model. We assume that in the satellite working
stage, a satellite node can achieve a remote sensing image online reasoning task [14]. The
image reasoning task can be divided into several dependent subtasks. Each subtask can
be assigned to different satellites for AI online analysis according to the satellite channel
conditions and computing power. The division method for dependent subtasks [26] and AI
on-orbit analysis [27,28] have been investigated to some extent, but they are not the topic
of this paper. Hence, they are not discussed in detail.
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As shown in Figure 3, we use a typical DAG to represent the subsequent research’s
subtask dependence model. The DAG can be expressed as ϕ = (O, E). O =

{
o1, · · · , op

}
represents p subtask nodes, and E =

{
eij|(i, j) ∈ p} denotes the set of directed edges

in DAG. Furthermore, we define any subtask oi(i ∈ p) as oi = {Di, ζi}. Di(Mb) and
ζi(CPUcycle/Mb) indicate the quantity of computation and computational complexity of
subtasks, respectively. When the subtask oi calculation is finished, the calculated result data
quantity RDoi must be transferred to the subtask oj, as indicated by the weighted directed
edge eij = RDoi.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 19 
 

 

As shown in Figure 3, we use a typical DAG to represent the subsequent research’s 
subtask dependence model. The DAG can be expressed as 𝜑 = (𝑂, 𝐸).𝑂 = 𝑜 , ⋯ , 𝑜  rep-
resents  𝑝  subtask nodes, and 𝐸 = {𝑒 |(𝑖, 𝑗) ∈ 𝑝} denotes the set of directed edges in 
DAG. Furthermore, we define any subtask 𝑜 (𝑖 ∈ 𝑝)  as 𝑜 = {𝐷 , 𝜁 } .  𝐷 (𝑀𝑏)  and 𝜁 (𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒/𝑀𝑏)  indicate the quantity of computation and computational complexity of 
subtasks, respectively. When the subtask 𝑜  calculation is finished, the calculated result 
data quantity 𝑅𝐷𝑜   must be transferred to the subtask 𝑜 , as indicated by the weighted 
directed edge 𝑒 = 𝑅𝐷𝑜 . 

 
Figure 3. DAG model. 

At the same time, we represent the precursor subtasks set of the subtask 𝑜  as 𝑃𝑅𝐸 . 
The subtask  𝑜  is authorized to begin computation when all the subtasks in 𝑃𝑅𝐸  have 
been completed and the appropriate calculation results have been successfully sent to the 
satellite node where the subtask 𝑜  is situated. 

According to the above analysis, the task scheduling strategy in the LEO satellite net-
work is the mapping scheme from task graph DAG to the 𝑆𝑎𝑡𝑇𝐸𝐺. 

3.4. Mapping Analysis 
3.4.1. Node Mapping 

We define 𝑚 𝑜 , 𝑣 = 1 to mean that the subtask 𝑜  is assigned to the 𝑛th time slot 𝑗th satellite node for computational processing. When 𝑚 𝑜 , 𝑣 = 0, it indicates that the 
variable is not allocated. For all subtasks and satellite nodes of the complete time slot, the 
mapping connection can then be written as a decision matrix 𝑀 

M=

⎣⎢⎢
⎢⎢⎢
⎡ m o1,v1

1 ⋯ m o1,vd
1 ⋯ m o1,vd

N

m o2,v1
1 ⋯ m o2,vd

1 ⋯ m o2,vd
N

⋮ ⋮ ⋱ ⋮ ⋮

m op-1,v1
1 ⋯ m op-1,vd

1 ⋯ m op-1,vd
N

m op,v1
1 ⋯ m op,vd

1 ⋯ m op,vd
N ⎦⎥⎥

⎥⎥⎥
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At the same time, we represent the precursor subtasks set of the subtask oi as PREi.
The subtask oi is authorized to begin computation when all the subtasks in PREi have
been completed and the appropriate calculation results have been successfully sent to the
satellite node where the subtask oi is situated.

According to the above analysis, the task scheduling strategy in the LEO satellite
network is the mapping scheme from task graph DAG to the SatTEG.

3.4. Mapping Analysis
3.4.1. Node Mapping

We define m
(

oi, vn
j

)
= 1 to mean that the subtask oi is assigned to the nth time slot

jth satellite node for computational processing. When m
(

oi, vn
j

)
= 0, it indicates that the

variable is not allocated. For all subtasks and satellite nodes of the complete time slot, the
mapping connection can then be written as a decision matrix M

M =


m
(
o1, v1

1
)
· · · m

(
o1, v1

d
)
· · · m

(
o1, vN

d
)

m
(
o2, v1

1
)
· · · m

(
o2, v1

d
)
· · · m

(
o2, vN

d
)

...
...

. . .
...

...
m
(
op−1, v1

1
)
· · · m

(
op−1, v1

d
)
· · · m

(
op−1, vN

d
)

m
(
op, v1

1
)
· · · m

(
op, v1

d
)
· · · m

(
op, vN

d
)

. (2)

Any node m
(

oi, vn
j

)
∈ M needs to satisfy

m
(

oi, vn
j

)
∈ {0, 1}, ∀oi ∈ O,∀vn

j ∈ V, (3)
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N

∑
n=0

d

∑
j=0

m
(

oi, vn
j

)
= 1,∀oi ∈ O. (4)

3.4.2. Path Mapping

After each subtask node is completely mapped to the corresponding satellite node,
the weighted directed edge eij between subtasks can be converted to the shortest path,

Pathend(v(oi))start(v(oj))
, between mapping nodes. m

(
oi, vn

j

)
= 1 guarantees the node as-

signment of subtasks, and each subtask may span multiple time slots from the start of
transmission to the completion of the computation. start

(
v
(
oj
))

signifies the satellite node
assigned by subtask oj in the beginning time slot, and end(v(oi)) denotes the satellite node
in the time slot when the subtask oi computation is completed. The shortest path Path
is obtained by Dijkstra’s shortest path algorithm with the route table SatTEG as input.
Similarly, we can also obtain the minimum hop, Hopend(v(oi))start(v(oj))

.

3.5. Objective Function

As analyzed in the task model, the subtask oi is authorized to begin computation when
all the subtasks in PREi have been completed. Therefore, the subtasks are not all offloaded
in the first time slot. Considering that the subtask assignment may select a certain satellite
node after several time slots, we use Ti

wait to signify the inter-slot duration of waiting before
the transmission of this subtask.

Assume that the source node initiating the scheduling is v1
1. When subtask oi is

assigned from source node v1
1 to node vn

k , it needs to wait for n − 1 time slots at the source
node. Ti

wait can be expressed as

Ti
wait = (n− 1)∆t. (5)

In addition, the original data of subtask oi is transferred from source node v1
1 to vn

k in
the following time

Ti
trans =

Di
B

hopi, (6)

where B(Mb/s) denotes the transmission rate of the ISL, and hopi denotes the minimum
number of hops required for a subtask oi to transmit to the destination node vn

k .
Additionally, the energy consumption resulting from the transmission of the subtask

oi through the ISL is defined as

Ei
trans = Ti

transPtrans , (7)

where Ptrans is the transmission power of the ISL.
When the data of subtask oi are all transmitted to the destination node vn

k , the compu-
tation time for this subtask is

Ti
com =

Diζi
Ck

, (8)

where Ck(CPUcycle/s) is the on-orbit processing performance of satellite node vk, and the
calculated energy consumption of oi on satellite node vk is defined as

Ei
com = Ti

comPk
com, (9)

where Pk
com is the computational power of satellite node vk.

The processing result RD must be transferred to the node allocated to the succeeding
task oj once the subtask oi is computed, and the transmission time is stated as

Ti
re =

RDoi

B
hopre

i , (10)
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where hopre
i denotes the minimum number of hops required for RDoi to transmit to the

node allocated oj.
The transmission energy consumption of RDoi is defined as

Ei
re = Ti

rePtrans (11)

Then, the final completion time of subtask oi is

Ti
end = Ti

wait + Ti
trans + Ti

com + Ti
re. (12)

and the final energy consumption of subtask oi is

Ei = Ei
trans + Ei

com + Ei
re. (13)

We have specified that the start of subtask oj’s computation must occur after the
completion of its preceding subtask set PREj. That is, the original data transfer completion
time of subtask oj follows the constraint

Ti
wait + T j

trans ≥ T
PREj
end . (14)

The depth-first algorithm can be used to determine the order in which subtasks
are executed. We must perform the calculations in the logical order of the activities for
dependent subtasks. The task’s total completion time is then equal to the time it took to
complete the last exit subtask ol , i.e.,

T = Tl
end. (15)

To simplify the model, the satellite nodes assigned to the exit subtask ol in this study
can be thought of as directly sending the calculation results to the ground cloud center
after completing the task computation; the accompanying feedback delay is ignored, then
Tl

re = 0.
The total energy consumption can be defined as

E =
p
∑

i=0
Ei. (16)

Furthermore, we define Ω as the set of satellite nodes with high service load, any
satellite node vg ∈ Ω can only be utilized as an auxiliary node for subtask transmission,
and no subtasks can be scheduled for computational processing. The scheduling procedure
should then satisfy

m
(

oi, vn
g

)
= 0,∀oi ∈ O,∀vg ∈ Ω,∀n ∈ N. (17)

Both task completion delay and system energy consumption are issues to consider
during the satellite task scheduling process. The system cost obtained by weighting them
together is defined as

COST = αT + βE. (18)

where α and β are used as weights to indicate the importance given to latency and energy
consumption, respectively. In summary, the optimization problem for dependent task
scheduling based on SatTEG can be represented as follows:

min COST
s.t. (2)(3)(4)(14)(17).

(19)
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4. Algorithm Introduction and Simulation Analysis
4.1. Algorithm Introduction

The binary particle swarm optimization (BPSO) algorithm was utilized to solve the
similar model [21]. The BPSO algorithm has a memory function and can converge to a
stable solution in a short time, but it is easy for it to fall into a local optimum. The genetic
algorithm (GA) algorithm has a wide range of spatial search capability and variational
capability, with strong global search capability, and can effectively overcome the problem of
falling into a local optimum in the search process, making it suitable for massively parallel
computing. To compensate for the limitations of the BPSO algorithm, we combine the BPSO
algorithm and the GA in this work to obtain the GABPSO algorithm. It not only ensures a
better information exchange mechanism but also avoids the deficiency of falling into a local
optimum, enhances the search velocity, and improves the success rate of optimal solutions.

First, we design the position and velocity of the u < U particles in the i < I iteration
of the BPSO algorithm as

Xi
u =

(
xi

u(1), · · · , xi
u(k), · · · , xi

u(p)
)

, (20)

Vi
u =

(
vi

u(1), · · · , vi
u(k), · · · , vi

u(p)
)

. (21)

In (23), xi
u(k) ∈ Xi

u , [1, J]{0, 1}, where [1, J] represents a 1× J-dimensional array,
and 2J > d× N. Then each particle position Xi

u is represented by a binary combination of
p groups, and the corresponding task allocation node can be obtained by combining the
decision matrix M after decimal decoding. That is, ∀Xi

u(u ∈ U, i ∈ I) is a possible solution
to the objective function. In (24), the initial value of vi

u(k) ∈ Vi
u is defined as a random

array within [0,1], which is matched with Xi
u.

The velocity update formula is

V = W ×V + C1× r1× (pbest− X) + C2× r2× (gbest− X), (22)

where W is the inertia weight, r1, r2 is a random number between 0 and 1, and C1, C2 is the
learning factor.

The position update formula is

xi+1
u (k)[j] =

0, r ≥ 1
1+e−vi+1

u (k)[j]

1, r < 1
1+e−vi+1

u (k)[j]

(23)

where r is a random number.
The GA’s crossover and mutation operations are introduced after updating particle

positions. The updated particle positions in the ith iteration is polled in turn. A particle
position Xi

f is randomly chosen from the particle population, and its partial encoding is
crossed with the polled particle position. The crossed particle position is inverted with
a particular probability to obtain the mutation. Finally, the particle positions are utilized
as input of the decision matrix M to find the fitness function, which is the value of the
optimization objective function COST in (19). When we find the minimum fitness function,
the minimum system cost can be obtained.

The specific steps of the improved GABPSO hybrid algorithm are shown in Algorithm 1.
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Algorithm 1 GABPSO Task Scheduling Algorithm

Input: task ϕ; route table SatTEG; high load satellites set Ω; weights
α, β; ISL bandwidth B; power Ptrans, Pcom
1: Initialization a particle swarm
2: while u < Udo
3: Initialization X0

u, V0
u

4: end while
5: Calculate fitness function f it of the particle swarm by substituting the particles into decision

matrix M, i.e., f it = COST.
6: Set the current position as the best position for each particle Pxbest
7: Set the position of the particle with the smallest f it among all particles as the global best

position Gxbest
8: for i < I do
9: for u < U do
10: Update the particle velocity based on (22)
11: Update the particle position based on (23)
12: Perform crossover and mutation on particles position
13: Calculate the fitness function f it for the new particle position

14: if f it
(

Xi+1
u

)
< f it(Pxbest) then

15: Pxbest = Xi+1
u

16: end if
17: if f it(Pxbest) < f it(Gxbest) then
18: Gxbest = Pxbest
19: end if
20: end for
21: end for
Output: Fitness function f it(Gxbest)

4.2. Algorithm Convergence Analysis

Rudolph et al. and Van et al. proved that the typical genetic algorithm and the BPSO
algorithm are unable to converge to the global optima, respectively [29,30].

Solis et al. proposed the rules for the random search algorithm to converge to the
global optima with probability 1 [31], stated as follows:

• Assumption (H1)

f (D(x, ξ)) ≤ f (x) and i f ξ ∈ S, f (D(x, ξ)) ≤ f (ξ), (24)

where D is the function that generates the solution to the problem, ξ is the random vector
generated from the probability space (Rn, B, µk), f is the objective function, S is a subset of
Rn, denotes the constraint space of the problem, µk is the probability measure on B, and B
is the σ-domain of a subset of Rn.

• Assumption (H2)

For any (Borel)subset A o f S with the measure v(A) > 0, we have that
∞

∏
t=0

[1− µt(A)] = 0, (25)

where µt(A) is the probability of generating A from the measure v(A).

• Convergence Theorem (Global Search)

Suppose that f is a measurable function, S is a measurable subset of Rn, and (H1) and
(H2) are satisfied. Let

{
xt}∞

t=0 be a sequence generated by the algorithm. Then,

lim
t→∞

P
[
xt ∈ Rε

]
= 1, (26)
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where P
[
xt ∈ Rε

]
is the probability at step t, and Rε is the global best points set. The

theorem shows that for any random search algorithm, it can converge to the global optimal
with probability 1 as long as it satisfies Assumptions H1 and H2.

Next, we will analyze whether the GABPSO algorithm satisfies the above assumptions.
In the GABPSO algorithm, the solution sequence is

{
pg,t
}

, where t is the number of
evolutionary generations, and pg,t is the best particle position at the tth generation. The
function D is defined as

D
(

pg,t, xi(t)
)
=

{
pg,t, f

(
pg,t
)
≤ f (xi(t))

xi(t), f
(

pg,t
)
> f (xi(t))

. (27)

Then, it is easy to prove that it satisfies Assumption H1.
To satisfy Assumption H2, the union of the sample space of a particle population of

size N must contain S, i.e., S ⊆ ⋃N
i=1 Mi,t, where Mi,t is the support set for the sample space

of ith particle at the tth generation. It has been shown that the basic PSO algorithm does
not satisfy Assumption H2 [32,33]. In the PSO algorithm, as the number of iterations t
increases, v(Mi,t) and v

(⋃N
i=1 Mi,t

)
decrease. Thus, v

(⋃N
i=1 Mi,t ∩ S

)
< v(S) is established,

which means that there exists an integer t′ such that when t > t′, there exists a set A ⊂ S
such that ∑N

i=1 µi,t(A) = 0. This is not consistent with Assumption H2.
However, the GABPSO algorithm adds the crossover and mutation operations of the

genetic algorithms. For a normally evolved particle, we set the union of its support set to α;
for a particle recreated using crossover and mutation, we set the union of its support set
to β. Due to the randomness and variability of crossover and mutation operations, there
must exist an integer t2 such that β ⊇ S when t > t2. Therefore, for the GABPSO algorithm,
there must exist an integer t2 such that α ∪ β ⊇ S when t > t2. Define any Borel subset
of S to be A = Mi,t. When v(A) > 0, µt(A) = ∑N

i=1 µi,t(A) = 1, i.e., ∏∞
t=0[1− µt(A)] = 0.

Therefore, the GABPSO algorithm is satisfied by Assumption H2.
According to the Convergence Theorem, it is known that the GABPSO algorithm can

converge to the global optima with probability 1.

4.3. Algorithm Complexity Analysis

In the GABPSO algorithm, the population size is U, the number of iterations is I, and
the problem size is N. For a single particle, the complexity of each operation is as follows:

• Velocity update: each particle gets a new velocity based on (25), and the time complex-
ity is O(1)

• Position update: each particle gets a new position based on (26), and the time com-
plexity is O(N).

• Fitness calculation: each particle needs to be calculated on the basis of the decision
matrix M to obtain the corresponding fitness, and the time complexity is O(N).

• Fitness evaluation: each particle is compared with the historical best particle, and the
time complexity is O(1)

• Crossover and mutation: each particle performs a crossover and mutation operation
with a certain probability, and the time complexity is O(1)

Thus, for a single particle, the time complexity of one iteration is proportional to the
problem size as O(N). Therefore, the time complexity of the algorithm is IUO(N)

4.4. Simulation Analysis

This research first created a 6 × 5 = 30 LEO satellite network based on the Iridium
NEXT architecture. STK was used to obtain the shortest distance between satellites in each
time slot in order to obtain the route table SatTEG. The specific scene parameters [19,21]
and the related parameters of the GABPSO algorithm were set as shown in Table 2. In
this paper, we provide the following reference algorithms for comparison to confirm the
effectiveness of the proposed approach.
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• Binary particle swarm algorithm (BPSO): Guo et al. proposed a similar offloading
problem in the satellite edge computing scenario and used the BPSO algorithm to
provide a solution [21].

• Genetic algorithm (GA): Genetic algorithms are frequently utilized to resolve compu-
tational offloading issues in the ground cloud edge computing scenarios [34,35].

• Modified particle swarm algorithm (MPSO): Ren et al. proposed using the MPSO algo-
rithm to solve the task-offloading problem of formation-flying satellites [19]. The authors
inverted the flight velocity of some particles with a certain probability and perform posi-
tion updates. The “variant particles” were created to obtain better search performance.

Table 2. Parameter setting.

Algorithm Parameter Value

Maximum number of iterations, I 4000
Number of particles, U 100
Learning factor, C1, C2 2, 2

Inertia weights, W 0.8
Crossover probability, Pc 0.6
Mutation probability, Pm 0.1

Scene Parameter Value

Time slot, ∆t 10 s
Subtask original data size, D [200, 250] Mb
Subtask result data size, RD [2, 5] Mb
Computational complexity, ζ 1900

8
ISL bandwidth, B

ISL transmission power, Ptrans
Satellite computational power, Pcom

10 Mb/s
100 J/s

[5, 10] J/s
Satellite computational performance, Ck [5, 10] Ghz

The same parameters were set equally throughout the algorithms to avoid losing
generality, and the scene parameters were identical. Meanwhile, the relevant simulation
results were averaged over 30 runs to reduce the impact of stochasticity.

Since the optimization objective of this study is the system cost obtained by weighting
the delay and energy consumption, different combinations of weights will be studied first.
The energy consumed during offloading is far greater than the time delay. When α is 1 and β
is 0.1, the two are nearly equal. Therefore, we will keep α at 1 and explore the impact on the
system cost as β grows. As illustrated in Figure 4, the energy consumption had an increasing
impact on the system cost as β rose, and the system cost grew gradually. However, the
GABPSO algorithm was able to solve for the lowest system cost whether the delay and
energy consumption were essentially equal or the energy consumption was given much
more importance than the delay. In subsequent simulations, α was set to 1 and β was set to
0.1 to simulate the scenarios where delay and energy consumption were equally important.

We first chose to explore the convergence performance of the four algorithms. It is
noteworthy that we simulated two representative scenarios in which the high-load satellite
ratios were 20% (30× 20% = 6) and 60% (30× 60% = 18), respectively. Most of the solutions
in the search domain were defined as infeasible solutions when there was a high percentage
of high-load satellites. When the number of high-load satellites is small, it will not have
much impact. It was necessary to perform corresponding simulations to explore the possible
consequences. The simulation figures demonstrate that the four algorithms performed
nearly identically for two different conditions. In the process of particle evolution of the
BPSO and MPSO algorithm, there were individual historical best position Pxbest and the
global best position Gxbest of the particle population controlling the direction of the optimal
solution. Therefore, compared with the simple GA, the BPSO and MPSO algorithms could
move more quickly toward the optimal solution. These two algorithms, however, reached
local optimality, while the particle swarm diversity vanished. The GABPSO algorithm
combined the benefits of the PSO algorithm’s quick convergence and the GA algorithm’s
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robust search capacity, enabling speedy convergence to a better solution, as illustrated in
Figure 5a. As the number of feasible solutions in the search domain decreased sharply, the
convergence speed and optimal solution deteriorated. However, the GABPSO algorithm
still outperformd the other three algorithms, which is shown in Figure 5b.
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Firstly, we explored the relationship between system cost and the number of high-load
satellites. The system cost of each algorithm gradually increased as the proportion of high-
load satellites rose, as indicated in Figure 6. This is because there were more satellite nodes
available that were closer to the source satellite node when there were fewer high-load
satellites. This resulted in a smaller number of hops required for offloading through the
ISL, which led to a subsequent decrease in transmission delay and energy consumption. In
contrast, when the percentage of high-load satellites was large, there were fewer available
satellite nodes closer to the source satellite node, causing inter-satellite offloading to be
longer delayed and more energy-intensive. The GA algorithm was able to obtain lower
system cost than the MPSO and BPSO algorithms. This was the same as the analysis of the
convergence curve. The GABPSO algorithm, on the other hand, was able to maintain the
best performance over time because it combined the advantages of both.
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Figure 6. System cost vs. high-load satellite rate.

Next, we set the number of high-load satellites to 3 (30 × 10% = 3). On the basis of
this, we studied the effect of other system parameters on the system cost.

At first, we investigated how the quantity of original data in the subtasks would affect
the system cost. As seen from Figure 7, the system cost grew gradually and with a more
pronounced trend. The increased quantity of original data for subtasks led directly not only
to an increase in computational delay and energy consumption but also to an increase in
inter-satellite transmission delay and energy consumption. It led to a relatively fast curve
change. Similarly, the GABPSO algorithm consistently outperformed the other baseline
algorithms. The MPSO algorithm used the inverse of the particle velocity to achieve the
particle variation. It was difficult to make essential changes to the particle population, and
the entire search domain could not be fully explored. As a result, the MPSO method did
not significantly outperform the BPSO algorithm.
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Further, we explored the changes brought about by computational complexity. The
increase in computational complexity indicated that the task took longer to compute on the
satellite nodes. This, in turn, caused an increase in the overall system cost. As depicted in
Figure 8, all four algorithm times increased as the computational complexity grew. The MPSO
algorithm and BPSO algorithm lacked powerful global search capability for a better solution,
leading to the worst performance, while the GABPSO algorithm performed the best.

Finally, we incrementally increased ISL bandwidth while holding the other variables
constant to investigate how the transmission capacity of ISL affects the system cost. Figure 9
shows how effectively the ISL bandwidth affected the system cost. The increased bandwidth
enabled faster offloading of subtasks among satellite nodes. It allowed for the system cost
to be gradually reduced as well, and the GABPSO algorithm still performed the best. The
effect of the same growth on system cost was more noticeable when the ISL bandwidth
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was minimal. When the ISL bandwidth is large enough, the inter-satellite transmission
delay and energy consumption will be negligible. In that case, the system cost will almost
equal the delay and energy consumption required for the computation. It is anticipated
that inter-satellite task scheduling will be able to be finished in a relatively short time in the
future if satellite transmission performance is markedly enhanced.
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In the above simulation scenarios, the GABPSO algorithm was always able to achieve
the best performance because it took into account the fast converge capability of the BPSO
algorithm and the variational properties of the GA. Due to its cross-mutation property,
the GA algorithm was also better able to look for better solutions. The MPSO and BPSO
algorithms had the worst overall performances because they tended to fall into local optima.
The simulation results are consistent with the analysis in the convergence curve.

4.5. Statistical Analysis

The simulation findings provided some support for the GABPSO algorithm’s supe-
riority. Referring to research [36], a two-way analysis of variance (ANOVA) was used to
explore the system cost in relation to each parameter for a more in-depth analysis. This
process was used to test the effect of two factors on the dependent variable, consistent with
the type of simulation in this study. Firstly, the objective was defined to test whether there
was any difference in the scheduling algorithms or high-load satellite proportions at the
0.05 level of standard significance. The calculation parameters are shown in Table 3.

• Step 1: Null Hypotheses:
H0(1): There is no significant difference in the scheduling algorithms
H0(2): There is no significant difference in the high-load satellite proportions Alterna-
tive Hypotheses:
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H1(1): There is a significant difference in the scheduling algorithms
H1(2): There is a significant difference in the high-load satellite proportions

• Step 2: In this scenario, a = 4 and b = 7. At the 0.05 level of significance
H0(1): Fα((a− 1), (a− 1)(b− 1)) = F0.05(3, 18) = 3.16
H0(2): Fα((b− 1), (a− 1)(b− 1)) = F0.05(6, 18) = 2.66

• Step 3: Calculation

Total sum of squares: SST = ∑a
i=1 ∑b

j=1

(
xij −

=
x
)2

= 667,536.11

Variation between rows: SSR = ∑a
i=1 ∑b

j=1

(−
x i. −

=
x
)2

= 195,397.82

Variation between columns: SSC = ∑a
i=1 ∑b

j=1

(−
x .j −

=
x
)2

= 461,881.36
Variation due to error: SSE = SST − SSR− SSC = 10,256.93
The specific results of the two-way ANOVA analysis are shown in Table 3.

• Step 4: Decision
As [Fr = 114.30] > [Fα((a− 1), (a− 1)(b− 1)) = 3.16], we can reject the H0(1) at the
0.05 level of significance. The results of the analysis show that different schedul-
ing algorithms produced significant differences. In addition, as [Fc = 135.09] >
[Fα((b− 1), (a− 1)(b− 1)) = 2.66], this verifies that different proportions of high-load
satellites can also have a significant impact. Similarly, other simulation results were
analyzed, and the specific results are shown in Table 4.

Table 3. Calculation parameters.

Scheduling
Algorithms

High-Load
Satellite

Proportions
as 10%

High-Load
Satellite

Proportions
as 20%

High-Load
Satellite

Proportions
as 30%

High-Load
Satellite

Proportions
as 40%

High-Load
Satellite

Proportions
as 50%

High-Load
Satellite

Proportions
as 60%

High-Load
Satellite

Proportions
as 70%

BPSO 532.41 559.63 623.39 672.36 746.15 871.16 963.73

GA 397.12 432.65 476.35 528.73 592.66 655.53 731.26

GABPSO 357.77 398.24 452.85 513.35 574.75 619.83 697.98

MPSO 505.32 547.28 600.11 653.75 692.68 830.77 926.85

Table 4. ANOVA results.

Sources Variance Degrees of Freedom Mean Square F-Value

Algorithms SSR = 125,633.16 (a− 1) = 3 ∆S2
R = SSR

a−1 = 41,877.72 Fr = ∆S2
R

∆S2
E

= 2765.48

ISL bandwidth SSC = 80,806.03 (b− 1) = 4 ∆S2
C = SSC

b−1 = 20,201.51 Fc = ∆S2
C

∆S2
E

= 1334.05

Error SSE = 181.72 (a− 1)(b− 1) = 12 ∆S2
E = SSE

(a−1)(b−1) = 15.14 -
Total SST = 206,620.90 (ab− 1) = 19 - -

Algorithms SSR = 196,415.00 (a− 1) = 3 ∆S2
R = SSR

a−1 = 65,471.67 Fr = ∆S2
R

∆S2
E

= 1759.82

Computational complexity SSC = 366,858.53 (b− 1) = 8 ∆S2
C = SSC

b−1 = 45,857.32 Fc = ∆S2
C

∆S2
E

= 1232.60

Error SSE = 892.89 (a− 1)(b− 1) = 24 ∆S2
E = SSE

(a−1)(b−1) = 37.20 -
Total SST = 564,166.42 (ab− 1) = 35 - -

Algorithms SSR = 1,383,009.98 (a− 1) = 3 ∆S2
R = SSR

a−1 = 461,003.33 Fr = ∆S2
R

∆S2
E

= 80.08

Subtasks original data quantity SSC = 3,325,662.57 (b− 1) = 8 ∆S2
C = SSC

b−1 = 415,707.82 Fc = ∆S2
C

∆S2
E

= 72.21

Error SSE = 138,166.68 (a− 1)(b− 1) = 24 ∆S2
E = SSE

(a−1)(b−1) = 5756.94 -
Total SST = 4,846,839.23 (ab− 1) = 35 - -

Algorithms SSR = 742,694.99 (a− 1) = 3 ∆S2
R = SSR

a−1 = 247,565.00 Fr = ∆S2
R

∆S2
E

= 32.51

β SSC = 6,956,029.66 (b− 1) = 9 ∆S2
C = SSC

b−1 = 772,892.18 Fc = ∆S2
C

∆S2
E

= 101.5

Error SSE = 205,587.88 (a− 1)(b− 1) = 27 ∆S2
E = SSE

(a−1)(b−1) = 7614.37 -
Total SST = 7,904,312.53 (ab− 1) = 39 - -
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5. Conclusions

The proposed research work explores the problem of offloading a single dependent
task to multiple satellites for collaborative processing in the satellite edge computing
scenario. Firstly, a model is proposed in which tasks are offloaded to multiple satellites
for collaborative computing without the participation of high-load satellites. Secondly, the
crossover and mutation operations of the GA are introduced in this paper to address the
drawbacks of the traditional BPSO algorithm. Utilizing the optimized GABPSO algorithm,
a lower system cost can be obtained under the scenario. The experiments verified that the
optimized algorithm has better performance than other baseline algorithms.

In practical satellite applications, the size of remote sensing images is huge. Adopting
the strategy proposed in this paper can effectively accelerate the on-orbit analysis of images.
In addition, in the future satellite-IoT architecture, the analysis of ground monitoring data
acquired by satellites, etc., is also applicable to the scenario studied in this work. The
strategy proposed in this paper has some reference value for all these applications.

6. Future Works

The scenarios studied in this work address only the single-user, single-service scenario.
Future research will concentrate on the task-scheduling problem of the multi-user, multi-
service satellite scenario. Furthermore, in practical engineering, the arrival of tasks is
continuous. Dynamic scheduling for continuous tasks also requires further research.

In terms of the algorithm, optimization objectives and heuristic algorithms are com-
bined through node mapping and algorithmic coding approaches in this study. Using
the algorithm’s own search to find the optimal solution will consume more time, and
combining some a priori methods can effectively improve the search velocity. In addition,
the decision matrix and the criteria defined in this paper will take up a lot of space. If these
problems are sufficiently improved in future work, they will have high engineering value.
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