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Abstract: This paper proposes a new observer approach used to simultaneously estimate both vehicle
lateral and longitudinal nonlinear dynamics, as well as their unknown inputs. Based on cascade
observers, this robust virtual sensor is able to more precisely estimate not only the vehicle state but
also human driver external inputs and road attributes, including acceleration and brake pedal forces,
steering torque, and road curvature. To overcome the observability and the interconnection issues
related to the vehicle dynamics coupling characteristics, tire effort nonlinearities, and the tire–ground
contact behavior during braking and acceleration, the linear-parameter-varying (LPV) interconnected
unknown inputs observer (UIO) framework was used. This interconnection scheme of the proposed
observer allows us to reduce the level of numerical complexity and conservatism. To deal with the
nonlinearities related to the unmeasurable real-time variation in the vehicle longitudinal speed and
tire slip velocities in front and rear wheels, the Takagi–Sugeno (T-S) fuzzy form was undertaken
for the observer design. The input-to-state stability (ISS) of the estimation errors was exploited
using Lyapunov stability arguments to allow for more relaxation and an additional robustness
guarantee with respect to the disturbance term of unmeasurable nonlinearities. For the design
of the LPV interconnected UIO, sufficient conditions of the ISS property were formulated as an
optimization problem in terms of linear matrix inequalities (LMIs), which can be effectively solved
with numerical solvers. Extensive experiments were carried out under various driving test scenarios,
both in interactive simulations performed with the well-known Sherpa dynamic driving simulator,
and then using the LAMIH Twingo vehicle prototype, in order to highlight the effectiveness and the
validity of the proposed observer design.

Keywords: vehicle safety; vehicle dynamics; state estimation; unknown inputs estimation;
interconnected observers; interlinked vehicle dynamics

1. Introduction

Autonomous driving and driver assistance systems are today the focus of several
research works conducted both in public institutions and in industry. The motivation
behind these research efforts and the massive investments related to driving automation is
the potential benefits promised by this technology to improve road safety, provide mobility
suitable for the elderly and disabled people, increase road capacity, save fuel, and reduce
greenhouse gas emissions. Nevertheless, the complexity of vehicle models (coupling
and nonlinear dynamics, parameter uncertainties, etc.) and the lack of knowledge of
dynamic states and external inputs make the embeddability of advanced driver assistance
systems (ADASs) more complex. All of these ADASs can be enhanced using real-time
knowledge of the vehicle state evolution and unknown inputs, such as driver actions and
road attributes. For example, vehicle stability and shared steering control systems require
side slip angle and driver torque information for their control purposes [1–4], and future
steer-by-wire systems, in which the mechanical steering of today will be replaced with
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either electrical, hydraulic, or electro-hydraulic steering, will require such information for
full-state feedback shared control [5,6]. However, the vehicle state, as well as the inputs,
are not all directly measurable: necessary sensors do not exist yet or are still too expensive
for use in commercial vehicles. For example, current vehicles are not equipped with the
ability to measure the side slip angle directly. With a cost of 20, 000 EUR or more, the optical
“Correvit” sensor is much too expensive for automotive applications. To solve this problem,
virtual sensors based on estimation algorithms are usually used instead.

1.1. Related Works on Virtual Sensors

During the last few decades, a notable interest in designing virtual sensors (observers)
using model-based estimation algorithms was demonstrated by a large body of literature
for potential vehicle control and security applications in order to minimize the physical sen-
sors’ cost [7–9]. Nonlinear estimation schemes were investigated to face nonlinear vehicle
dynamics issues. A well-known method for estimating time-varying parameters of nonlin-
ear models is the extended Kalman filter (EKF), adopted in [10] to overcome nonlinearities
leading to performance deterioration. The vehicle longitudinal forces were reconstructed
using an adaptive neural network nonlinear observer in [11]. A dual unscented Kalman
filter algorithm, based on the nonlinear least-squares approach and the hybrid Levenberg–
Marquardt, was used in [12] to estimate tire lateral and normal forces. A nonlinear observer
for tracking vehicle motion trajectories on highways using a radar or laser sensor was
addressed in [13]. Adaptive observers were introduced to study the convergence of state
estimation jointly with system parameters identification [14,15]. The parameter estimation
of nonlinear vehicle dynamics was investigated using a fuzzy unknown input observer
(UIO) [16] and with a nonlinear adaptive observer [17].

When the estimation method is based on a physical vehicle model, the presence
of unmodeled coupled dynamics, faults, or unknown inputs, which can be regarded as
disturbances, can deteriorate the estimation. Different strategies have been investigated
to simultaneously estimate vehicle dynamic states, external disturbances, or unknown
inputs and faults. An LPV unknown inputs observer with Takagi–Sugeno representation
formalized in the LMI framework was proposed in [18,19] for the estimation of both
vehicle lateral dynamics and the driver’s steering torque. A simultaneous estimation of
lateral dynamics and road attributes, including curvature, slope, and superelevation, was
addressed in [20–24]. Steering and torque actuators’ faults detection was studied in [25],
where the nonlinear vehicle dynamics were reformulated as an N-TS fuzzy form with
both measured and unmeasured nonlinear outcomes in order to design a fault detector
based on a nonlinear observer. However, only the lateral dynamics were estimated by
the N-TS observer. In addition, it has already been pointed out that, for complex or
large-scale systems, the limitations of the model-based observer concept are related to the
complexity from a computation point of view for real-time implementation. The problem
of finding the minimal representations for reducing the complexity and conservatism was
studied by using different LPV representations [26], e.g., the linear fractional transformation
(LFT) form, by investigating the polytopic descriptor form [27], etc. Recent research
was conducted to study cascade systems or two-stage structures [28,29], which are very
common configurations in engineering applications. The results reported in [30,31] for
cascade systems reveal interesting results that provide parameters identification or a
robust estimation of slow and fast dynamics variables. Particular attention was paid to
the estimation of the tire–ground contact forces in [32] to improve vehicle safety using a
delayed interconnected cascade–observer structure.

1.2. Proposed Methodology and Contributions

Most of the aforementioned papers assume that the observer design neglects tire–road
contact efforts, or regard vehicle driving conditions as a small variation or a constant
speed in order to have independent dynamics, which significantly simplifies the system
design. Although a very interesting development from a theoretical point of view, this



Sensors 2023, 23, 4236 3 of 23

simplification is not an adequate representation of the real physical system when it is sub-
jected to strong coupling dynamics, disturbances, and external unknown inputs. Despite
extensive literature, the unknown input observer design for the simultaneous estimation
of the vehicle longitudinal and lateral dynamics, the human driver actions, and the road
attributes have not been well addressed. The effective integration of the interlinked vehicle
observer presents several theoretical and technical challenges and very few works related
to this topic can be found in the open literature. An interesting solution was proposed in
our previous work in [33] for dealing with coupled vehicle lateral and longitudinal dy-
namics estimation using a quasi-LPV interconnected observer with hardware experiments
performed with the well-known SHERPA dynamic car simulator under real-world driving
situations. This version of the observer was extended in this paper by proposing a novel
two-stage LPV interconnected unknown input observer (NI-UIO) for the estimation of
the coupled and dependent lateral and longitudinal nonlinear vehicle motion together
with tire–road interaction forces and unknown external inputs, namely driver traction and
braking and steering torques, as well as the road curvature. More precisely, this estimation
scheme has several merits:

• The main distinction of the proposed LPV estimation approach compared to the existing
methods is that no decoupling of the vehicle interconnected dynamics nor nonlinearities
considered as non-measurable time-varying external parameters are required for the
reconstruction of both vehicle lateral and longitudinal nonlinear dynamics, as well
as the unknown inputs. In particular, variations in the forward speed and tire slip
velocities of the front and rear wheels are considered as unmeasurable nonlinearities in
the interconnected scheme and processed through the boundary domain.

• The proposed interconnection configuration presents an interesting way to reduce the
conservatism and give more relaxation for a complete vehicle observer design. This
relaxation allows us to derive fewer linear matrix inequality (LMI) conditions for the
optimization problem, which can be efficiently solved with numerical solvers.

• Based on the input-to-state stability property, the usual sign definition of the Lyapunov
principle can be relaxed. It provides a framework in which we can formulate stability
arguments with respect to input disturbances. Thus, it has the advantage of providing
further theoretical guarantees of robustness against unknown inputs and disturbances,
as well as non-measurable non-linearity terms.

• The effectiveness of the new interconnected configuration of the proposed UI observer
algorithm was evaluated in a hardware interactive simulation on the “SHERPA full-scale
car driving simulator” and then experimentally using the “TWINGO” vehicle prototype
platform, with a robustness test performed regarding road friction uncertainties.

The remainder of the paper is structured as follows. Section 2 describes the vehicle
interlinked model with the tire–ground contact efforts. Section 3 presents this model
through the interconnected T-S fuzzy model. Then, Section 4 illustrates the observer design
and the convergence analysis based on the ISS-Lyapunov theory. Section 5 discusses the
results obtained from both interactive simulations and real-world experiments. Finally,
some concluding remarks with perspectives are given in the last section.

2. Interlinked Road–Vehicle Lateral and Longitudinal Dynamics

Ground vehicles are complex systems with totally nonlinear and coupled dynamics
that involve interlinked mechanical parts such as braking, suspension, steering, the pow-
ertrain, etc. The vehicle dynamics are described in the vehicle’s fixed frame with 12-DoF
(twelve degrees of freedom), in which nonlinear longitudinal, lateral, and yaw motions,
the vehicle steering system, and accelerator and brake pedals are considered with tire–
ground forces, respectively. In addition, the vehicle positioning on the road is described via
a standard vision dynamic model [34]. In the following, we describe the nonlinear model
that captures the essential dynamics of the vehicle, developed under the assumption that
the left and right wheels of each axle are grouped together to form a single equivalent
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tire, as shown in Figure 1, and the dynamics of the vertical, pitch, and roll movements are
neglected [29].

Figure 1. Nonlinear vehicle bicycle model.

• Longitudinal, lateral, and yaw motions:

mv̇y = Fx f sin(δ) + Fy f cos(δ) + Fyr −mvxr + Fw (1)

mv̇x = Fx f cos(δ)− Fy f sin(δ) + Fxr + mvyr− Fa − Frr

Iz ṙ = l f Fy f cos(δ)− lrFyr + l f Fx f sin(δ) + lwFw

• Wheels’ rotational movements:

Iω f ω̇ f = −RFx f + Tf + B f

Iωr ω̇r = −RFxr + Br (2)

• Vehicle positioning on the road:

ẏL = vy + lsr + ψLvx

ψ̇L = r− κvx (3)

• Electronic power steering system dynamics:

δ̈ =
1

Rs Is
Ts −

tsβ
Rs Is

δ +
tsβ

Rs Is

vy

vx
+

tsr

Rs Is
r− Bs

Is
δ̇ (4)

The main objective of considering a vision system is to estimate the road curvature
κ, which will give us an additional degree of freedom in reconstructing the motion of
the vehicle. Moreover, the lateral vehicle model is augmented with the steering system
to estimate the total steering torque (Ts), which is composed of both the power assist
torque and the driver torque. The driver torque can be easily reconstructed from the
estimation of the total steering torque and the known assistance torque. B f , Br are the
braking torques applied to the front and rear tires, respectively, and TB f = B f + Tf is
the total braking and traction torque, where Tf is the engine torque applied on the front
wheels. The vehicle parameters and variables are defined in the nomenclature section (see
Appendix A). For small values of the tire side-slip angle α or slip velocity ratio λ, the lateral
Fy and longitudinal Fx forces can be approximated by

σ

vx
Ḟyi = −Fyi + Cαi αi and

σ

vx
Ḟxi = −Fxi + Cλi λi (5)
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σ is the tire relaxation that represents the transient time. The tire side slip angle α and
the longitudinal tire slip ratio λ for the front and rear tires, respectively, are given as

α f = δ−
vy + l f r

vx
and αr = −

vy − lrr
vx

λ f =
(Rω f − vx)

max{vx, Rω f }
and λr =

(Rωr − vx)

max{vx, Rωr}
(6)

In order to consider the tire slip ratio during acceleration and braking, the following
switching signal (denoted as $i =

1
max{vx ,Rωi}

, i ∈ {r, f }) is considered:

$(t) =

{
$i =

1
ωi R

if Traction : {λi > 0, vx < ωiR}
$i =

1
vx

if Braking : {λi < 0, vx > ωiR}
(7)

Then, λ f = (Rω f − vx)$ f , λr = (Rωr − vx)$r. The variation in these nonlinear
switched parameters $i are treated as premise parameters and transformed into a T-S
representation by the upper and lower bounds. In addition, we assume a small variation in
the steering angle under normal driving conditions. In the next section, the T-S polytopic
representation is undertaken using the well-known sector nonlinearity approach [26].

3. T-S Structure of the Interlinked Dynamics

Herein, the mathematical formulation for the time-varying interconnected
system (1)–(5) leads to two-stage subsystems assembled in the interconnection scheme with
three strong nonlinearities in each subsystem. This representation with its q varying pa-
rameters is exactly rewritten as a compact T-S form with the rq = 2q multi-model weighted
by membership functions ηi(·) as follows:

Ẋ =

[
Āη 0
0 Ăη

]
︸ ︷︷ ︸

Aη

X +

[
B̄η 0
0 B̆η

]
︸ ︷︷ ︸

Bη

U +

[
0 D̄η

D̆η 0

]
︸ ︷︷ ︸

Dη

ξF

Y =

[
C̄ 0
0 C̆

]
︸ ︷︷ ︸

C

X

(8)

where X(t) = [X̄(t) X̆(t)]T represents the state vector, with X̄(t) referring to [vx, ω f , ω f , Fx f ,
Fxr]T for the longitudinal (∑x) and X̆(t) = [vy, r, ψL, yL, Fy f , Fyr, δ, δ̇]T for the lateral (∑y) dy-
namics, U(t) = [Ū(t) Ŭ(t)]T are the inputs of subsystems (∑x) and (∑y) with
Ū = [TB f , Br]T , Ŭ = [Ts, κ]T , Y(t) = [Ȳ(t) Y̆(t)]T is the output vector with Ȳ = [ω f , ωr, ax],
Y̆ = [r, ψL, yL, ay, δ]T the output vector for each subsystem, and ξF(t) = [ry, Frr, Fw],
ry = vyr. (D̄η, D̆η) are the coupling matrices in the interconnection scheme. Therein,
the nonlinearities considered here are related to tire slip velocities on the front and rear
wheels $ f , $r and forward speeds vx, 1

vx
, 1

v2
x
, considered as external immeasurable time-

varying parameters. Let us consider that the time-varying matrices Π̄ ∈ {Āη, B̄η, C̄η, D̄η}
of the longitudinal subsystems and Π̆ ∈ {Ăη, B̆η, C̆η, D̆η} of lateral subsystems in (8) are
continuous on the hypercube Θ̄, Θ̆, with

Π̄η =
rq

∑
i=1

ηi(θ̄)Π̄i and Π̆η =
rq

∑
i=1

ηi(θ̆)Π̆i rq = 2q (9)

where matrices Π̄i and Π̆i are constant for all i ∈ [1, ..., rq]. rq = 2q represents the number
of local sub-models, where the q nonlinearities related to θ̄ ∈ Θ̄, θ̆ ∈ Θ̆ are captured
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via membership weighting functions ηi(·), which satisfy the convex-sum property in the
compact set of the state space [26]

rq

∑
i=1

ηi(θ̄(t)) = 1,
rq

∑
i=1

η̇i = 0, 0 ≤ ηi ≤ 1
rq

∑
i=1

ηi(θ̆(t)) = 1,
rq

∑
i=1

η̇i = 0, 0 ≤ ηi ≤ 1

∀i =
{

1, 2, .., rq = 2q}
(10)

where θ̄(t) and θ̆(t) are called the premise variables vector

θ :

{
θ̄(t) = {vx, $ f , $ f } i f Longitudinal model
θ̆(t) = {vx, 1

vx
, 1

v2
x
} i f Lateral model (11)

The bounds of these smooth scheduling variables are defined in hyper-rectangles
∀θ̄ ∈ Θ̄ and ∀θ̆ ∈ Θ̆ given by

Θ̄ :
{

θ̄ ∈ Rq| θ̄min
i ≤ θ̄i ≤ θ̄max

i : i = {1, .., q} } (12)

Θ̆ :
{

θ̆ ∈ Rq| θ̆min
i ≤ θ̆i ≤ θ̆max

i : i = {1, .., q} } (13)

where θ̄min
i and θ̄max

i (respectively, θ̆min
i , θ̆max

i ) are known lower and upper bounds on
θ̄i (respectively, θ̆i) for i = {1, .., q}, and q = 3 is the number of nonlinearities for each
sub-model.

Remark 1. It was demonstrated in [27] that the descriptor structure can significantly reduce the
LMIs conservativeness compared to the classical state space form. Note that the interconnected
configuration (8) allows us to decrease the number of varying nonlinearities, which decreases the
number of LMIs related to the induced sub-models. Consequently, the usual optimization problem
is relaxed by exploiting the interconnected scheme, which leads to reducing the conservatism and
computational complexity when solving the observer. The theoretical design allowing for this
relaxation constitutes one of the main results of this paper.

Remark 2. Note that an adequate choice of the nonlinearities used in the polytopic transformation
allows for limiting the conservatism drawback, as stated in our previous works [35]. In this scope,
the numerical complexity can be further reduced by exploiting the relation between the vehicle speed
nonlinearities vx, 1

vx
and 1

v2
x

using the first-element Taylor’s series simplification and a variable
change as we proposed in our previous work [33].

4. Observer Design

The objective of this section is to design a two-stage nonlinear interconnected unknown
input observer (NI-UIO) with state-dependent matrices and immeasurable nonlinearities.
Therein, our analysis was conducted using the ISS-based Lyapunov function to guarantee
the stability of the observer, whose dynamics depend on unknown disturbances or other
inputs. An overall scheme of the system structure linked to the observer is depicted in
Figure 2. To begin with, the following assumptions were considered.
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Figure 2. Architecture overview of the proposed interlinked UIO-based estimation approach.

Assumption 1.
(i) The state (X̄, X̆) and the unknown inputs of the system are all bounded.
(ii) The pairs (Ăη, C̆) and (Āη, C̄) are observable or detectable in order to guarantee solutions to

the LMI problem.

– The polytopic sub-systems (8) are observable, i.e.,

rank
[

C CAi · · · CAn−1
i

]T
= n ∀i ∈

[
1, .., rq

]
(14)

– The polytopic LPV system (8) is detectable, i.e.,

rank
([

sIn − Ai Bi
C 0

])
= n + p s ∈ C (15)

holds for all complex numbers s withRe(s) ≥ 0 X(t) ∈ Rn, U(t) ∈ Rp.

(iii) Each sub-observer exchanges some information through the interconnection scheme.
(iv) The matching condition for the model holds

rank(C̄B̄i) = rank(B̄i), rank(C̆B̆i) = rank(B̆i) (16)

Assumption (i) holds in open-loop and the vehicle remains in a bounded state-space
region to guarantee stability. It is also assumed that, in manual operating mode, nor-
mal drivers can be expected to be capable of maintaining a stable vehicle motion. By
assumption (iii), we mean that the estimator requests current state information from the
neighboring subsystems through the interconnection because of the physical interactions
of the vehicle motions. Assumptions (ii) and (iv) can easily be checked numerically.

4.1. NI-UIO Stability and Convergence Analysis

The NI-UIO design can be stated as follows:

Ż =

[
N̄η 0
0 N̆η

]
︸ ︷︷ ︸

Nη

Z +

[
L̄η 0
0 L̆η

]
︸ ︷︷ ︸

Lη

Y +

[
0 Ḡη

Ğη 0

]
︸ ︷︷ ︸

Gη

ξ̂F

X̂ = Z−
[

H̄ 0
0 H̆

]
︸ ︷︷ ︸

Hη

Y

(17)

where Z = [Z̄(t) Z̆(t)]T is the state of the observer, X̂(t) = [ ˆ̄X(t) ˆ̆X(t)]T are the estimated
states, and Y(t) = [Ȳ(t) Y̆(t)] are the output vectors. The observer gains Nη, Gη, Lη, and
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Hη are written as (9). In the following, the observer design procedure aims to determine the
aforementioned observer’s matrices. Let us consider the following suitable state estimation
error:

e(t) = X(t)− X̂(t) = Tη X(t)− Z(t) (18)

with Tη =
rq

∑
i=1

ηi(θ)Ti and Ti = I + Hi C

According to the observer (17) and the system Equation (8), the dynamics of the
estimation error is given as

ė = ṪηX + Tη Ẋ− Ż

= ṪηX + Tη
(

AηX + Bη U + Dη ξF
)
− (NηZ + Gη ξ̂F + Lη Y)

=

[
N̄η 0
0 N̆η

]
e +

[
Φ̄η 0
0 Φ̆η

]
X +

[
T̄ηB̄η 0

0 T̆ηB̆η

]
U

+

[
Ḡη 0
0 Ğη

]
∆ξ +

[
T̄ηD̄η − Ḡη 0

0 T̆ηD̆η − Ğη

]
ξF (19)

with Φ̄η = T̄η Āη + ˙̄Tη − L̄η C̄− N̄ηT̄η

Φ̆η = T̆η Ăη + ˙̆Tη − L̆η C̆− N̆ηT̆η, ∆ξ = ξF − ξ̂F (20)

In order to satisfy the stability of the error dynamics (19), the following conditions must
be guaranteed:

Φ̄η = 0, Φ̆η = 0 (21)

T̄ηB̄η = 0, T̆ηB̆η = 0 (22)

T̄ηD̄η − Ḡη = 0, T̆ηD̆η − Ğη = 0 (23)

Consequently, the estimation error dynamics e(t) become

ė =

[
N̄η 0
0 N̆η

]
× e +

[
Ḡη 0
0 Ğη

]
∆ξ (24)

• e(t)→ 0 asymptotically if ∆ξ(t) = 0;
• Bounded error e(t) if ∆ξ(t) 6= 0.

This is a fundamental prerequisite for the main ISS analysis to verify the impact of
perturbation on the asymptotic bound of the solutions. The following steps in the design
approach are followed to satisfy the stability of the error dynamics: (24)

(1) Condition (21) allows us to compute the Hurwitz gains

N̄η = Γ̄η − K̄ηC̄, N̆η = Γ̆η − K̆ηC̆

With Γ̄η = T̄η Āη + ˙̄Tη, Γ̆η = T̆η Ăη + ˙̆Tη,
K̄η = N̄η H̄η + L̄η, K̆η = N̆η H̆η + L̆η

(25)

(2) In order to make the state estimation error independent of the UI, the equality con-
straint (22) can be equivalently written as the decoupling condition in (16). This leads
us to find matrices Hη, i.e., (H̄η, H̆η)

TηBη = 0 ⇔ (In + HηC)Bη = 0

H̄η = −B̄η(C̄B̄η)
† H̆η = −B̆η(C̆B̆η)

† (26)
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where (·)† = ((·)T(·))−1(·)T is the left pseudo-inverse of (·).
(3) After computing Hη, we obtain: Tη = In + HηCη; then, from (23), Gη = TηDη.

The following theorem 1 states the main result in terms of LMIs ensuring the ISS
convergence of the state vector.

Theorem 1. In view of the two-stage longitudinal and lateral subsystems subject to unknown
inputs, if the polytopic interlinked models (8) satisfy the stated Assumptions 1, an NI-UIO observer
is designed by (17), and the ISS convergence of the estimation errors is ensured, then the origin of the
system will be practically finite-time stable, i.e., the system states will converge to the neighborhood
of the origin in finite time.
Step 1: Give the varying parameter-dependent matrices (N̄η and N̆η), (L̄η and L̆η), (Ḡη and Ğη),
and (H̄η and H̆η).
Step 2: For given real positive scalars α, a, and matrices G = {Ḡ, Ğ}, if there exist two symmetric
positive definite matrices P̄ and P̆, and gains matrices Ω̄i and Ω̆i, i = 1, ..., rq, positive scalars
η = diag{η1, η2} are the solutions of the following LMI optimization problem:

min
P̄,P̆,η1,η2

aη1 + (1− a)η2 a ∈ [0, 1] (27a)

[
Γ̄T

i P̄ + P̄Γ̄i − C̄TΩ̄T − Ω̄C̄ + αP̄ P̄Ḡi
ḠT
η P̄ −Ḡ−1

]
< 0 (27b)

[
Γ̆T

i P̆ + P̆Γ̆i − C̆TΩ̆T − Ω̆C̆ + αP̆ P̆Ği
ĞT
η P̆ −Ğ−1

]
< 0 (27c)

[
αη1In P̄

P̄ αη1In

]
> 0,

[
αη2In P̆

P̆ αη2In

]
> 0 (27d)

P̄ ≥ In P̆ ≥ In (27e)

Step 3: The observer gains are given by

K̄η = P̄−1
η Ω̄η, N̄η = Γ̄η − K̄ηC̄, L̄η = K̄η − N̄ηH̄

K̆η = P̆−1
η Ω̆η, N̆η = Γ̆η − K̆ηC̆, L̆η = K̆η − N̆ηH̆ (28)

4.2. Algebraic Reconstruction of Unknown Inputs
In this section, we address the unknown input reconstruction of the vehicle’s longi-

tudinal and lateral dynamics. We focus our interest on the front and rear braking and
traction torques, the steering torque, and the road curvature, since they play a key role in
guaranteeing vehicle stability in driving maneuvers. In order to avoid the direct use of
the output derivative, we first consider a high-order sliding mode differentiator that can
provide an exact estimation of the output derivatives [36]. From the vehicle dynamics (8)
and Ŷ = CX̂(t), we obtain

Ẏ(t) = CAη X̂(t) + CBηU(t) + CDη ξ̂F (29)

From the design of the derivatives estimates ˙̂Y obtained from the high-order sliding
mode differentiator and the states estimate X̂, the unknown inputs Û can be reconstructed
by an algebraic inversion of the previous equation under the fulfilled rank condition
rank(CBη) = rank(Bη)

Û :

 ˆ̄U = (C̄B̄η)†
(

˙̄Y− C̄Āη ˆ̄X(t)− C̄D̄η
ˆ̄ξF

)
ˆ̆U = (C̆B̆η)†

(
˙̆Y− C̆Ăη

ˆ̆X(t)− C̆D̆η
ˆ̆ξF

) (30)
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On the other hand, the convergence of Û toward U can be analyzed by defining the
unknown part estimation error and replacing ∆ξ = G†

η(ė− Nηe) as

eU = U− Û = −(CBη)
†
(

CAηe + CDηG†
η(ė− Nηe)

)
(31)

e(t) satisfy the ISS performance; then, the unknown inputs converge toward a small region
to achieve the ISS property.

5. Experimental Results and Discussions
5.1. Hardware Experiments

The NI-UIO performance was validated first using hardware experiments through
a series of driving maneuvers conducted with a human driver in the SHERPA–LAMIH

dynamic driving simulator. This interactive car simulator reproduces the vehicle dynamics
taking into account a wide variety of parameters, such as weather conditions, grip, and
the road surface [35]. It includes a full car mock-up PEUGEOT 206 vehicle installed on a
six-DoF Stewart platform, presented in Figure 3a.

The test maneuver was performed on the Satory test track considering a dry asphalt
road with the maximum mobilizable friction coefficient fixed at µ = 1. This test track
as presented in Figure 3b is composed of straight lines followed by several narrow and
big bend profiles. It is very interesting to evaluate the proposed observer and the ISS
performance of this path trajectory configuration since we can test a wide spectrum of
the vehicle dynamics under and over its linearization interval. The data were collected
with a sampling time of 0.01 s from the simulator and the observer was implemented
to work with the same frequency. The estimation of the wheels’ angular velocities, yaw
rate, and steering angle, as well as the vehicle positioning on the road defined by the
lateral deviation and the heading errors, provided by the NI-UIO using their counterpart
measured vehicle data coming from the driving simulator, are depicted in Figure 4. Since
these signals are measured and used in the observer design, the state estimation results of
Figure 4 demonstrate a finite-time estimation convergence. Hence, Figures 5 and 6 depict
the estimation results of unmeasured state variables, namely the lateral and forward speeds
vy, vx, the front/rear lateral tire forces Fy f , Fyr, and the front/rear longitudinal tire forces
Fx f , Fxr. Comparing the estimated states with those provided by the car dynamic driving
simulator, we can see that the observer has a fast dynamic transition and a good estimation
convergence.

For a more faithful validation, the unmeasured states (Fxi , Fyi ) were used to reconstruct
the lateral and longitudinal accelerations ay, ax given by mây = ∑ F̂yi and mâx = ∑ F̂xi,
where i = { f , r}. It is obvious that the results reported in Figure 6 show a finite-time asymp-
totic estimation even for a coupled driving maneuver. On the other hand, the unknown
inputs, namely the two braking and accelerating torques on both front/rear wheels applied
to manage the forward speed and the total steering torque applied on the lateral model,
are well estimated from the model inversion together with the road curvature depicted
in Figure 7 compared to nominal values obtained from the simulator. According to these
results, it can be appreciated that the observer provides a good estimation accuracy under
highly dynamic maneuvering, and proves the effectiveness of the approach in simultane-
ously estimating the dynamic states and the unknown inputs with ISS performances.
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(a) Interactive car simulator. (b) SATORY test track.

Figure 3. LAMIH SHERPA car driving simulator.
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Figure 4. SHERPA car driving simulator data (solid red line) and estimation (dashed blue line).
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Figure 5. Longitudinal tire forces and velocities estimation performance: SHERPA car driving simula-
tor (solid red line) and observer (dashed blue line).
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Figure 6. Lateral tire forces and accelerations estimation performance: SHERPA car driving simulator
(solid red line) and observer (dashed blue line).
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Figure 7. Unknown input estimation performance: SHERPA (solid red line) and observer (dashed
blue line).
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5.2. Observer Sensitivity Against Road Friction Uncertainties

It is important to note that the observer was designed for a nominal case with road
friction coefficient µ = 1 (dry asphalt). To assess the observer sensitivity to the road
uncertainties, the observer was tested with respect to the friction coefficient variation.
To this end, two cases (moderately wet road µ = 0.6 and very wet road µ = 0.4) for the
same digital database of the Satory test track were considered and compared with the
nominal case by means of the root-mean-square errors (RMSE%) and normalized mean-
square errors (NMSE%) considering the difference between the estimated and measured
states and UI presented in Table 1. The metrics used in Table 1 are defined as

NMSE% = 100− 100(‖y− ŷ‖2)

‖y−mean(y)‖2 , RMSE% = 100

√√√√ 1
N

N

∑
i=1

(y− ŷ)2 (32)

where ‖‖ indicates the 2-norm of a vector and ŷ is the estimate of y of length N. The errors
must not contain any NaN or Inf values. We omitted the large picks in the computed
metrics. From Table 1, the observer gives the better estimation for the nominal case where
µ = 1, where the maximal values of (RMSE%) are the lowest and NMSE% the largest. As
expected, the estimation errors increase when the road friction decreases, with a maximum
RMSE% degradation of (3%). Moreover, the amplitudes of the deviation errors are more
notable for the torques (TB f , Br, Ts) estimations. Otherwise, it can be seen that the RMSE%
for the yaw rate and curvature remains approximately constant, so the observer is more
robust against the friction parameter uncertainty. Indeed, even with road uncertainties,
the deviation amplitude is quantified with RMSE% < 9.18% and NMSE% > 84.61%.
From the quantification result, we note that the observer still has good ISS performances in
limiting the effect of the road grip variation on the vehicle state estimation.

Table 1. Robustness to road friction uncertainties in the Satory test track (µ1 = 1, µ2 = 0.6, µ3 = 0.4).

r (%) ω f (%) ωr (%) TB f (%)

RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE

µ1 1.302 99.73 5.22 97.48 6.05 98.32 5.48 99.69

µ2 1.36 98.19 5.25 97.78 6.65 97.08 5.64 99.62

µ3 1.47 97.94 6.61 97.75 8.09 96.89 5.87 99.72

ax (%) ay (%) δ (%) Br (%)

RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE

µ1 2.4 97.75 1.97 97.02 4.9 96.78 5.99 99.26

µ2 2.91 98.78 2.292 99.76 6.7 92.41 6.12 99.39

µ3 3.27 92.26 2.54 93.77 8.03 94.4 7.82 95.73

κ (%) vx (%) vy (%) Ts (%)

RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE

µ1 0.356 98.9 4.72 97.01 5.12 89.9 6.28 98.54

µ2 0.373 98.37 5.23 96.64 5.96 86.62 7.81 98.29

µ3 0.384 97.25 5.86 95.42 7.57 84.61 9.18 92.26

5.3. Experiment Validation Procedure and Trials

These experimental log-data principally aim to point out the performance of the
proposed NI-UIO in real-world driving situations and to show that the observer fulfills the
unknown part reconstruction, which is one of the contributions of this paper.

The experiments were performed using the LAMIH Renault TWINGO experimental
vehicle prototype depicted in Figure 8. This test bench encloses an embedded computer
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interfaced with various sensors and actuators used to measure the vehicle’s lateral and
longitudinal dynamics. The data were collected with a sampling time of 0.01 s from the
sensors and transmitted to the vehicle through the CAN bus. The experimental vehicle
is equipped with a MicroAutobox unit from dSPACE for actuation purposes. Moreover,
the platform is fully equipped with a Correvit sensor that measures the side slip angle and
lateral speed, installed on the right back door at a height of 40 cm. The onboard acquisition
system also includes a six-degrees-of-freedom inertial measurement unit (IMU) placed near
the center of gravity to provide the acceleration, the three Euler angles, and their associated
angular velocities in the three directions. The camera and GPS can record the scenario and
the test path, respectively. The front-wheel steering angle was obtained from an optical
encoder, whereas the angular speed of the wheels was directly obtained from the ABS
sensors of each wheel.

(a) TWINGO experimental vehicle.

0 20 40 60 80 100 120 140

0

10

20

30

40
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60

(b) X-Y path positions.

Figure 8. LAMIH experimental test track.

5.4. Vehicle Model Adequacy Evaluation

The parameters of the road–vehicle model (1)–(5) describing the interconnected longi-
tudinal and lateral vehicle dynamics were obtained from an identification process using
recorded experimental data. Figure 9 compares the experimental data and the simulation
results obtained from the model. Consequently, Table 2 summarizes the different computed
metrics characterizing the model fit in percentage by means of the normalized values of the
mean-square errors (NMSEs), the normalized root-mean-square errors (RMSEs), and the
normalized mean errors (MEANs), considering the difference between the model outputs
and the measured one. The variable states obtained from the vehicle model have a nor-
malized RMSE approximately lower than 5%. Moreover, the comparison of the tire forces
obtained from the model and those calculated from the measured data reveals a normalized
RMSE lower than 10%. It can be seen from Figure 9 and Table 2 that the simulation results
are quite good and that they are near the experiment ones, which demonstrates the ability
of the model used to reproduce the dynamic behavior of the vehicle. Table A1 summarizes
the parameters values of the LAMIH Renault TWINGO experimental vehicle prototype.

Table 2. Vehicle model adequacy evaluation.

vx vy r Fy f Fyr Fx f Fxr ax ay

NMSE(%) 91.67 76.10 90.11 85.22 87.45 79.99 77.13 70.34 89.68
RMSE(εx)
max(|x|) (%) 1.96 8.67 3.57 5.26 4.47 5.31 8.15 10.98 3.67

MEAN(|εx |)
max(|x|) (%) 1.61 5.26 2.58 3.56 3.07 2.83 3.93 8.62 2.42
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Figure 9. Vehicle model validation: measured data (solid blue line), model data (dashed red line).

5.5. NI-UI Observer Validation

The validity of the NI-UI observer was investigated on an urban dry road depicted in
Figure 8. In this scenario, we considered a variable and a rapid change in the longitudinal
speed of the vehicle with different driving conditions, including intensive braking and a
high coupling of the longitudinal and lateral dynamics. The experimental data provided
by the IMU sensor coupled with a dual GPS, including an RTK (real-time kinematic) base
station used to improve the positional accuracy, were processed by a fusion system. All
of the measured variables were sampled at 0.01 s. The comparison of Figure 10 shows
that the observer gives a good estimation of the measured variables used in the estimation
algorithm. It should be noted that, during the experimental maneuver, the true torque
inputs and the curvature are unknown and immeasurable. The state estimation results are
presented in Figures 11 and 12. Braking, traction, and driver steering torques, as well as
the curvature, were reconstructed from the inversion method and are plotted in Figure 13.
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Figure 10. Cont.
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Figure 10. Experimental test results: Real measurements (solid red line) and observer estimation
(dashed blue line).
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Figure 11. Experimental test results: Correvit speeds measurements (solid red line) and observer
estimation (dashed blue line).
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Figure 12. Experimental test results: longitudinal and lateral forces estimation.
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Figure 13. Experimental test results: Unknown input reconstruction.

Note that the lateral and longitudinal speeds provided by the high-precision Correvit
sensor serve only for observer validation and were not used in the design process. The
performances of the lateral and longitudinal forces estimation were compared with the
one measured by the IMU sensor through the accelerations, as shown in Figure 14. The
experimental results illustrate that the observer quickly and accurately estimates the states
with minimal error. The mobilized friction in longitudinal and lateral directions, computed
from the force estimates obtained by the nonlinear NI-UI observer, was compared to
the normalized acceleration (ax/g, ay/g) measured by the IMU sensor and is plotted in
Figure 15. It can be seen from this figure that the conditions of the experimental test greatly
exceed the linear domain of the tire forces evolution, represented by the friction ellipse
with cyan color. Moreover, the proposed nonlinear observer is able to reconstruct the
nonlinear dynamics of the vehicle even under heavy braking and coupled longitudinal
and lateral dynamics conditions. Hence, the ISS performances are guaranteed and the
estimation is acceptable under high deceleration and soft acceleration, as we can see in
Figure 15. Finally, the interest in using a nonlinear NI-UIO estimation with immeasurable
nonlinearities was validated with two test benches against road friction uncertainties and
for different levels of acceleration and braking to evaluate the observer sensitivities. In
particular, the immeasurable switching signal of Equation (7) used to represent the tire slip
ratio during acceleration and braking is a very interesting contribution.
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Figure 14. Experimental test results: acceleration estimation through tire force estimates.

Figure 15. Experimental test results: longitudinal and transversal mobilized friction.

6. Conclusions

This paper presented a novel LMI-based virtual sensor for a simultaneous state and
input estimation of nonlinear interconnected vehicle dynamics. In order to deal with
nonlinearities related to the unmeasurable real-time variation in the vehicle’s longitudinal
speed and tire slip velocities in front and rear wheels, and to overcome the interconnection
issues, the vehicle model was first represented through a polytopic LPV interconnected
T-S fuzzy model, and then the LPV interconnected unknown inputs observer framework
was investigated. In particular, the interconnection scheme of the proposed observer was
exploited to reduce the level of numerical complexity for the practical applicability of
the virtual sensor. The proposed observer gives a very promising solution because it is
capable of more precisely estimating not only the vehicle state, but also human driver
external inputs and road attributes, including acceleration and brake pedal forces, steering
torque, and road curvature, whose necessary sensors are very expensive. Another technical
solution proposed in this paper is the estimation of the tire’s forces, which are very hard
to measure with physical sensors. Moreover, the interconnection structure of the observer
allows for the relaxation of the mutual dependence and coupling between the longitudinal
and lateral motion, and thus reduces conservatism and the computational complexity.

Based on the ISS property, the stability and robustness of the proposed unknown
input observer against unknown inputs and disturbances terms are guaranteed, taking
into account real constraints such as the variations in the forward speed and the tire slip
velocities considered immeasurable for the observer design. The interest of our method is
highlighted through both hardware interactive simulations conducted with a human driver
in the SHERPA-LAMIH dynamic driving simulator and experimental validation performed
using the LAMIH Renault TWINGO experimental vehicle prototype. The obtained results
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demonstrate the effectiveness and applicability of the proposed estimator under nominal
conditions, and then under road friction uncertainties. Finally, the insights that can be
gained from our proposed structure can offer valuable conclusions under less restrictive
and more realistic assumptions for the interconnected estimation design, robustness, and
conservatism, as well as for the practical applicability of the estimation concept.

In future work, various driving situations, such as severe double-lane-change ma-
neuvers for obstacle avoidance, will be investigated. Moreover, the NI-UIO technique
will be used together with a fault detection of abnormal driving behavior based on a
fault-tolerant controller.
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Appendix A. Vehicle’s Parameters Nomenclature

Variable Description

vy, vx Lateral and forward velocities
r, ax, ay Yaw rate and Longitudinal/lateral acceleration
ω f , ωr Angular velocities of the front and rear wheels
δ, α, λ Steering angle, side slip angle, and longitudinal slip ratio
yL, ψL, κ Lateral offset and angular displacement, road curvature
Fy, Fx, Fw Cornering/longitudinal forces and lateral wind force
Fa, Frr Aerodynamic and rolling resistance forces
B f , Br, Tf Braking torques and engine torque.
m, Iz Vehicle mass and inertia about the z-axis
Cα, Cλ Cornering and longitudinal stiffness parameters
Iω f , Iωr The wheels’ moment of inertia
l f , lr Distances between the C.G. and front and rear axles
ls, lw Look-ahead distance and distance of wind force action
Is, Rs Steering system inertia, column–wheels gear ratio
R, Bs Wheel radius and damping coefficient.
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Appendix B. Vehicle’s Parameters Values

Table A1. Parameters of the LAMIH Renault TWINGO experimental vehicle prototype.

Parameter Value Parameter Value

m 1210 [kg] l f 1.0065 [m]
Iz 1520 [kg.m2] lr 1.3605 [m]
C f 47135 [N/rad] ls 5 [m]
Cr 56636 [N/rad] lw 0.4 [m]

Cλ f
91165 [N/rad] R 0.2915 [m]

Cλr 62671 [N/rad] Is 0.02 [kg.m2]
Iω f 2.5 [kg.m2] Bs 5.7295 [Nm/rad/s]
Iωr 2.5 [kg.m2] Rs 16

Appendix C

Proof of Theorem 1. The observer stability was studied by using the following quadratic
storage Lyapunov function:

V = eT
(

P̄ 0
0 P̆

)
︸ ︷︷ ︸

P

e P = PT > 0 (A1)

Its time derivative is expressed as follows:

V̇ = ėT Pe + eT Pė

= eT(Nη
T P + PNη)e + ∆T

ξ GT
ηPe + eT PGη∆ξ (A2)

Remark A1. A more general solution to reduce the conservatives involves deploying more complex
structures for the Lyapunov function as a non-quadratic Lyapunov function (NQLF), which is
a fuzzy blending of multiple quadratic Lyapunov functions based on the same interconnection
structure as the T-S models to be analyzed. The main drawback of NQLF is that the derivative of the
Lyapunov function, in the case of continuous systems, involves the appearance of the membership
functions’ time derivatives under stability conditions [33]. The problem of the induced conservatism
can be partially counterbalanced by the use of the relaxed LMIs conditions— for instance, with some
factorizations performed on the weighting functions—by approximating membership functions
using staircase or piecewise-linear functions, by introducing additional slack matrices, using some
decoupling lemmas such as Tuan’s lemma [37] and Polya’s theorem [38], or Finsler’s lemma [39]
and expanding the degree of fuzzy summations [40].

Lemma A1. For every positive definite matrix G > 0, the following property holds:

eT PGη∆ξ + ∆T
ξ GT

ηPe ≤ eT PGηGGT
ηPe + ∆T

ξ G−1∆ξ (A3)

By applying the inequality (A3), replacing the suitable terms, and adding and sub-
tracting the term αeT Pe, where α is a positive scalar, the inequality (A2) yields

V̇ < eT(Nη
T P + PNη + PGηGGT

ηP)e + ∆T
ξ G−1∆ξ

< eTΨe− α eT
(

P̄ 0
0 P̆

)
e︸ ︷︷ ︸

V(e)

+∆T
ξ G−1∆ξ (A4)

Ψ = ΓT
ηP− KηCT P + PΓη − PKηC + PGηGGT

ηP + αP
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Now, if Ψ < 0, then the time derivative of the Lyapunov function (A4) can be bounded
as follows:

V̇(t) ≤ −αV(t) + ∆T
ξ G−1∆ξ (A5)

and the following definition holds. By integrating (A5) over the interval [0, t], we obtain

V(t) ≤ V(0)e−αt +
G−1

α

∥∥∆ξ(s)
∥∥2

∞ (A6)

Knowing that V(t) is a Lyapunov function, it can be bounded by λmin‖e(t)‖2
2 and

λmax‖e(t)‖2
2, where λmin and λmax are the min and max eigenvalues of the matrix P.

Under this condition, the state estimation error is reduced to

‖e(t)‖2 ≤

√
λmax(P)
λmin(P)

(
‖e(0)‖2e−

α
2 t +

√
G−1

α

∥∥∆ξ (t)
∥∥

∞

)
(A7)

Definition A1 ([41]). The state estimation error dynamics verify the ISS if there exists a KL
function f1 : Rn ×R −→ R, a K function f2 : R −→ R such that for each input ξ(t) satisfying∥∥∆ξ(t)

∥∥
∞ < ∞ and each initial conditions e(0), the trajectory of the error associated to e(0) and

∆(t) satisfies
‖e(t)‖2 ≤ f1(‖e(0)‖2, t) + f2

(∥∥∆ξ(t)
∥∥

∞

)
(A8)

Hence, when t→ ∞, the exponential converges to zero, implying the straightforward inequal-
ity (A9) from the ISS property

lim
t→∞
‖e(t)‖2 <

√
λmax

λmin

√
G−1

α
max(‖∆ξ(t)‖∞) (A9)

From the boundedness of ∆ξ(t) and thanks to Definition (A1), it is shown that the
error dynamics (A7) are stable and verify the ISS property from the perturbation term ∆ξ(t)
to the estimation error e(t). Assuming λmin(P) ≥ 1 (P > I) and since G can be imposed,
minimizing the ISS gain is equivalent to minimizing positive scalars η = diag(η1, η2)
such that √

λmax(P)
λmin(P)α

≤ √η ⇒ (αη)2 I − PT P > 0 (A10)

By applying Schur’s complement [42], inequality (A10) can be written as the LMI
constraint (27d). The positive quantities η1 and η2 are minimized in the objective function
given in (27a). This optimization step has been tested intensively, and a similar ISS result
was established for LPV systems in [43]. Using the Lyapunov formulation of the ISS
property and by exploring the convexity of weighting functions [42], the time-independent
LMI conditions of the optimization problem given in (27b)–(27d) can be obtained. Finally,
the NI-UIO observer gains are computed from (28) in Theorem 1.
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