
Citation: Kolosov, D.; Fengou, L.-C.;

Carstensen, J.M.; Schultz, N.; Nychas,

G.-J.; Mporas, I. Microbiological

Quality Estimation of Meat Using

Deep CNNs on Embedded Hardware

Systems. Sensors 2023, 23, 4233.

https://doi.org/10.3390/s23094233

Academic Editor: Marco Grossi

Received: 24 March 2023

Revised: 20 April 2023

Accepted: 21 April 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Microbiological Quality Estimation of Meat Using Deep CNNs
on Embedded Hardware Systems
Dimitrios Kolosov 1,* , Lemonia-Christina Fengou 2, Jens Michael Carstensen 3, Nette Schultz 3,
George-John Nychas 2 and Iosif Mporas 1,*

1 School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
2 Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition,

School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece;
lefengou@aua.gr (L.-C.F.); gjn@aua.gr (G.-J.N.)

3 Videometer A/S, Hørkær 12B, 2730 Herlev, Denmark; jmc@videometer.com (J.M.C.);
ns@videometer.com (N.S.)

* Correspondence: d.kolosov2@herts.ac.uk (D.K.); i.mporas@herts.ac.uk (I.M.)

Abstract: Spectroscopic sensor imaging of food samples meta-processed by deep machine learning
models can be used to assess the quality of the sample. This article presents an architecture for
estimating microbial populations in meat samples using multispectral imaging and deep convolu-
tional neural networks. The deep learning models operate on embedded platforms and not offline
on a separate computer or a cloud server. Different storage conditions of the meat samples were
used, and various deep learning models and embedded platforms were evaluated. In addition, the
hardware boards were evaluated in terms of latency, throughput, efficiency and value on different
data pre-processing and imaging-type setups. The experimental results showed the advantage of the
XavierNX platform in terms of latency and throughput and the advantage of Nano and RP4 in terms
of efficiency and value, respectively.

Keywords: food quality; spectroscopy; multispectral imaging; embedded systems

1. Introduction

Ensuring the quality and safety of food products is expected by consumers, especially
for highly perishable (e.g., freshly ground meat) food commodities. Food products’ quality
and safety control must be accurate and efficient to meet consumers’ increasing expectations
and standards, which in turn results in more demanding and labour-intensive processes [1].
In addition, the increasing demand for food due to the increase in the world population,
especially in some developing countries such as China and India [2], has made it even more
challenging to ensure food quality and safety control processes.

Various food analysis methods, inspections and audits are taking place to evaluate
the quality and safety of raw and processed materials and the product, considered the
control measure [3,4]. In the case of monitoring microbiological food safety and quality,
microbiological analysis (e.g., colony counting methods), chemical analysis, or molecular
techniques are performed [5,6]. However, these methods are time-consuming, provide
retrospective results, are expensive or depend on high-tech infrastructure and require
specialized staff [7,8], which in turn allows microbiological inspection only of a small
sample of the food products available on the market [4].

The progress over the last decades in sensors technology and Artificial Intelligence,
particularly in machine learning and computer vision, has enabled the development of
solutions for automatic quality and authenticity assessment of food products, like meat and
fish [3,9], dairy products [10], food powders [11] or oil [12]. Such technological solutions
allow the quick and low-cost assessment of the quality of food products without the need

Sensors 2023, 23, 4233. https://doi.org/10.3390/s23094233 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2116-785X
https://orcid.org/0000-0002-2673-6425
https://orcid.org/0000-0001-6984-0268
https://doi.org/10.3390/s23094233
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094233?type=check_update&version=1

Sensors 2023, 23, 4233 2 of 17

for time-consuming lab-based analysis and without the need for expert/specialised staff,
which anyway can cause human errors [1].

Regarding sensors, a wide range of technologies has been used for food products’
quality and safety assessment. The most typical sensor technologies used include high-
performance liquid chromatography, gas chromatography, high-performance liquid
chromatography–mass spectrometry, gas chromatography–mass spectrometry (GC-MS),
nuclear magnetic resonance, near-infrared (NIR), Fourier transforms infrared spectroscopy
(FT-IR), and Raman spectrometry [13]. In addition, the commercial availability of portable
spectroscopic-based sensors (e.g., NIR, FTIR, Raman, multi-, hyper-spectral imaging) and
the current research interest towards miniaturization of the sensors [14,15] is of great im-
portance since it could allow the real-time control of several stages of the food production
on-site for quality, safety, and authentication aspects.

As regards Artificial Intelligence, the development of deep machine learning and
computer vision methods over the last decades has enabled the processing of information
extracted from sensors to automatically assess food products. Well-known and widely
used machine learning algorithms, such as support vector machines (SVMs) [3,10,11],
logistic regression [12], k-nearest neighbours [11] and convolutional neural networks
(CNNs) [12,16–18], have been presented in the literature. However, most of the approaches
for food processing using spectroscopy sensors and machine learning are operating the
machine learning modelling and analysis offline on a computer using food data measure-
ments collected in chemical and microbiological labs, apart from some ([18], Table 1 in [15])
where portable spectrometers were used. Moreover, the machine learning modelling and
estimation analysis are running offline on a computer, except for [19] presenting a handheld
spectroscopic device with onboard statistical data analysis, but not machine learning-based
analysis. The recent development of powerful microprocessors and embedded systems
has allowed the development of solutions which run the artificial intelligence algorithms
on the edge device, with the most popular applications of ‘AI on edge’ being in computer
vision [20,21].

This article presents an architecture for estimating microbial population on meat
samples using spectroscopic images and deep machine learning models operating on
board, i.e., on well-known and state-of-the-art embedded platforms. Specifically, the
performance of several different hardware platforms on microbial population estimation
from multispectral images of minced pork samples under different storage conditions is
evaluated in terms of latency of the AI-on-the-edge models used, throughput, efficiency
and value of the embedded systems used.

The remainder of this article is organised as follows. First, Section 2 presents the
architecture for microbiological quality estimation of meat samples using deep learning on
embedded boards. Then, in Section 3, we present the experimental setup followed, and
Section 4 discusses the evaluation results. Finally, in Section 5, the conclusion of the article
is provided.

2. System Architecture

In this section, we describe the proposed system for estimating the microbial popula-
tion of food, which consists of three phases: data acquisition, offline AI training, and online
operation. The modular architecture of the system allows it to be flexible. It can be applied
to different types of food and expanded upon with alternative algorithmic techniques for
data pre-processing on different embedded boards.

The first phase, data acquisition, involves collecting multispectral imaging (MSI) data
from the food samples. The MSI data is then used in the offline AI training phase. Next,
an AI model is trained to estimate the microbial population levels of the food samples
using a convolutional neural network for regression (numerical estimation of the microbial
population). Finally, the trained model is deployed on the edge device using an embedded
hardware board in the online operation phase. It processes the MSI food images in real-time
to provide microbial population estimates. Figure 1 illustrates the block diagram of the

Sensors 2023, 23, 4233 3 of 17

system. The following subsections provide further descriptions of each component of the
architecture.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 17

diagram of the system. The following subsections provide further descriptions of each
component of the architecture.

pre-
processing

regression
model

training

microbiological
analysis

acquired
MSI data

TVC

microbiological
quality regression

model

pre-
processing

regression
analysisacquired

MSI data

offline training phase

online operational phase (on embedded board)

microbial
estimation

food
sample

multispectral
imaging

Figure 1. Block diagram of the food microbial population estimation architecture using multispec-
tral imaging (MSI). The microbial population is estimated for total viable counts (TVC).

2.1. Acquisition of Food Imaging Data and Estimation of Microbial Population
Two datasets were formed in terms of packaging, minced pork samples that were

stored aerobically (AIR) and samples that were under modified atmosphere packaging
(MAP). The gas composition was 80% O2 and 20% CO2. Each dataset contained four ex-
perimental replicates (R1–R4). The samples were stored at different temperatures, from 4
°C to 12 °C and subjected to lab-based microbiological analysis. The MSI data were col-
lected from fresh to spoiled states, covering as much as possible a representative number
of samples throughout storage. The microbial population (i.e., the total viable counts,
TVC) was measured using the plate count method. In parallel to the acquisition of TVC,
multispectral images of the respective minced pork samples (ca. 70 g) were acquired using
the VideometerLab system [22] to form a suitable dataset for the training of the machine
learning regression models. Each minced meat sample was placed in a Petri dish, and the
latter was placed inside an Ulbricht sphere, in which the camera was top-mounted, and
the corresponding multispectral image of the product’s surface was taken. The MSI im-
ages had a resolution of 1200 × 1200 pixels and 18 different wavelengths, non-uniformly
distributed ranging from 405 to 970 nm (i.e., 405, 430, 450, 470, 505, 565, 590, 630, 645, 660,
850, 870, 890, 910, 920, 940, 950 and 970 nm). A more detailed description of the data ac-
quisition and storage conditions is available in [3].

2.2. Offline Training Phase
The acquired MSI meat images were pre-processed, as shown in Figure 2. The pre-

processing included image resizing to 224 × 224 pixels resolution to reduce the CNN
model complexity and, thus, the training time of the CNN regression models. Training on
the original MSI image resolution (1200 × 1200 × 18 pixels) would result in running out of
memory. Additionally, it prevents the increase of inference on edge devices, which typi-
cally have limited processing and memory resources. After resizing, the data sample is
optionally converted to an RGB image (224 × 224 × 3 pixels) via concatenating specific

Figure 1. Block diagram of the food microbial population estimation architecture using multispectral
imaging (MSI). The microbial population is estimated for total viable counts (TVC).

2.1. Acquisition of Food Imaging Data and Estimation of Microbial Population

Two datasets were formed in terms of packaging, minced pork samples that were
stored aerobically (AIR) and samples that were under modified atmosphere packaging
(MAP). The gas composition was 80% O2 and 20% CO2. Each dataset contained four
experimental replicates (R1–R4). The samples were stored at different temperatures, from
4 ◦C to 12 ◦C and subjected to lab-based microbiological analysis. The MSI data were
collected from fresh to spoiled states, covering as much as possible a representative number
of samples throughout storage. The microbial population (i.e., the total viable counts,
TVC) was measured using the plate count method. In parallel to the acquisition of TVC,
multispectral images of the respective minced pork samples (ca. 70 g) were acquired using
the VideometerLab system [22] to form a suitable dataset for the training of the machine
learning regression models. Each minced meat sample was placed in a Petri dish, and the
latter was placed inside an Ulbricht sphere, in which the camera was top-mounted, and the
corresponding multispectral image of the product’s surface was taken. The MSI images had
a resolution of 1200 × 1200 pixels and 18 different wavelengths, non-uniformly distributed
ranging from 405 to 970 nm (i.e., 405, 430, 450, 470, 505, 565, 590, 630, 645, 660, 850, 870, 890,
910, 920, 940, 950 and 970 nm). A more detailed description of the data acquisition and
storage conditions is available in [3].

2.2. Offline Training Phase

The acquired MSI meat images were pre-processed, as shown in Figure 2. The pre-
processing included image resizing to 224 × 224 pixels resolution to reduce the CNN
model complexity and, thus, the training time of the CNN regression models. Training
on the original MSI image resolution (1200 × 1200 × 18 pixels) would result in running
out of memory. Additionally, it prevents the increase of inference on edge devices, which
typically have limited processing and memory resources. After resizing, the data sample
is optionally converted to an RGB image (224 × 224 × 3 pixels) via concatenating specific
wavelengths into a group of three channels (i.e., 645 nm for Red, 505 nm for Green, and

Sensors 2023, 23, 4233 4 of 17

470 nm for Blue) to reduce further the amount of input data channels (6× times less) or
remain in the MSI format (224 × 224 × 18 pixels). Next, the RGB or the MSI image is
optionally masked to remove the background, petri dish and fat present in the meat images.
The masking is performed by image segmentation using the k-means clustering algorithm
applied to the RGB image. The resulting mask is used to segment the meat part of either
the MSI or the RGB image, with the values of the pixels of the non-meat part of the images
being set equal to 0 (black colour). As a final pre-processing step, pixel value normalization
([0, 1] values range) is applied, resulting in 224 × 224 × C images with C = 18 for MSI and
C = 3 for RGB images.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17

wavelengths into a group of three channels (i.e., 645 nm for Red, 505 nm for Green, and
470 nm for Blue) to reduce further the amount of input data channels (6× times less) or
remain in the MSI format (224 × 224 × 18 pixels). Next, the RGB or the MSI image is op-
tionally masked to remove the background, petri dish and fat present in the meat images.
The masking is performed by image segmentation using the k-means clustering algorithm
applied to the RGB image. The resulting mask is used to segment the meat part of either
the MSI or the RGB image, with the values of the pixels of the non-meat part of the images
being set equal to 0 (black colour). As a final pre-processing step, pixel value normaliza-
tion ([0, 1] values range) is applied, resulting in 224 × 224 × C images with C = 18 for MSI
and C = 3 for RGB images.

image
resizing... ...

1200x1200

18

224x224

18

RGB
convertion

224x224

3

maskingnormalisation
[0,1]

resized MSI image

RGB image

pre-processed image

MSI image

...

...

224x224

C

masked image

...

...

224x224

C

Figure 2. Pre-processing flow diagram of the MSI meat imaging data.

Various machine learning regression models were evaluated to find the best-suited
and most accurate deep learning architecture for predicting microbial populations. The
pre-processed meat images, MSI or RGB, were used as input (X) at the training phase of
the CNN regression models. At the same time, the ground truth labels (TVC values) were
calculated from the microbiological analysis. During the offline training phase, various
CNN models were trained for hyperparameter optimisation and evaluated using the im-
age pre-processing steps described above.

2.3. Online Operation Phase
Regarding the online operation phase, the same pre-processing steps were used as in

the offline phase, as shown previously in Figure 2. However, during the online operation
phase, the most accurate CNN regression models were deployed on various edge devices
(embedded systems) with distinct architectures. For each edge device, the regression
models were optimized (quantized) for the target hardware to maximise the performance.
By doing this, the model size is vastly reduced, which in turn requires fewer processing
capabilities, benefiting the embedded devices’ memory requirements and compute con-
straints.

3. Experimental Setup
The experimental setup section includes a detailed description of the datasets used

to train and test the CNN regression models, as well as descriptions of the models used
for image segmentation and regression for microbial population estimation. It also in-
cludes a description of the edge devices benchmarked for the online operation phase and
their key features.

3.1. Evaluation Datasets

Figure 2. Pre-processing flow diagram of the MSI meat imaging data.

Various machine learning regression models were evaluated to find the best-suited
and most accurate deep learning architecture for predicting microbial populations. The
pre-processed meat images, MSI or RGB, were used as input (X) at the training phase of
the CNN regression models. At the same time, the ground truth labels (TVC values) were
calculated from the microbiological analysis. During the offline training phase, various
CNN models were trained for hyperparameter optimisation and evaluated using the image
pre-processing steps described above.

2.3. Online Operation Phase

Regarding the online operation phase, the same pre-processing steps were used as in
the offline phase, as shown previously in Figure 2. However, during the online operation
phase, the most accurate CNN regression models were deployed on various edge devices
(embedded systems) with distinct architectures. For each edge device, the regression models
were optimized (quantized) for the target hardware to maximise the performance. By doing
this, the model size is vastly reduced, which in turn requires fewer processing capabilities,
benefiting the embedded devices’ memory requirements and compute constraints.

3. Experimental Setup

The experimental setup section includes a detailed description of the datasets used to
train and test the CNN regression models, as well as descriptions of the models used for
image segmentation and regression for microbial population estimation. It also includes
a description of the edge devices benchmarked for the online operation phase and their
key features.

3.1. Evaluation Datasets

The dataset containing multispectral images of raw minced pork was pre-processed
into MSI and RGB image types, each having a set with and without masking. Each
CNN model was trained on these categories using a 4-fold cross-validation experimental
protocol to avoid overlapping between train and test subsets. The distribution of the AIR

Sensors 2023, 23, 4233 5 of 17

(424 samples) and MAP (423 samples) subsets divided into 4-fold training is tabulated in
Tables 1 and 2, respectively.

Table 1. Train and test data sets used for model development, collected during AIR storage. R stands
for the replicate subset, and TVC for the total viable count (i.e., microbial population).

Train Set
(Number of Samples)

Train TVC Range
log CFU/g

Test Set
(Number of Samples)

Test TVC Range
log CFU/g

R1, R2, R3 (312) 3.08–10.32 R4 (112) 3.08–9.45
R1, R2, R4 (312) 2.00–9.93 R3 (112) 3.60–9.90
R1, R3, R4 (324) 2.00–10.32 R2 (100) 3.36–9.93
R2, R3, R4 (324) 2.00–10.32 R1 (100) 3.08–9.80

Table 2. Train and test data sets used for model development, collected during MAP storage. R
stands for the replicate subset, and TVC for the total viable count (i.e., microbial population).

Train Set
(Number of Samples)

Train TVC Range
log CFU/g

Test Set
(Number of Samples)

Test TVC Range
log CFU/g

R1, R2, R3 (308) 3.76–9.45 R4 (115) 3.81–9.37
R1, R2, R4 (307) 2.30–9.37 R3 (116) 3.76–9.22
R1, R3, R4 (323) 2.30–9.45 R2 (100) 4.60–8.90
R2, R3, R4 (331) 2.30–9.45 R1 (92) 4.70–8.70

3.2. Models
3.2.1. K-Means Masking

To segment the minced meat images, to remove redundant information from the
image samples, such as the background, the petri dish and the fat, the k-means clustering
algorithm was used. By fitting a k-means model on an RGB image sample, the undesirable
areas of the images were removed with an additional step of a threshold operation on the
pixels. An example of the effect of masking is shown in Figure 3. The k-means model
parameters were empirically optimised, and the k-means model weights were stored for
reuse during the online, operational phase.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 17

The dataset containing multispectral images of raw minced pork was pre-processed
into MSI and RGB image types, each having a set with and without masking. Each CNN
model was trained on these categories using a 4-fold cross-validation experimental proto-
col to avoid overlapping between train and test subsets. The distribution of the AIR (424
samples) and MAP (423 samples) subsets divided into 4-fold training is tabulated in Ta-
bles 1 and 2, respectively.

Table 1. Train and test data sets used for model development, collected during AIR storage. R stands
for the replicate subset, and TVC for the total viable count (i.e., microbial population).

Train Set
(Number of Samples)

Train TVC Range
log CFU/g

Test Set
(Number of Samples)

Test TVC Range
log CFU/g

R1, R2, R3 (312) 3.08–10.32 R4 (112) 3.08–9.45
R1, R2, R4 (312) 2.00–9.93 R3 (112) 3.60–9.90
R1, R3, R4 (324) 2.00–10.32 R2 (100) 3.36–9.93
R2, R3, R4 (324) 2.00–10.32 R1 (100) 3.08–9.80

Table 2. Train and test data sets used for model development, collected during MAP storage. R
stands for the replicate subset, and TVC for the total viable count (i.e., microbial population).

Train Set
(Number of Samples)

Train TVC Range
log CFU/g

Test Set
(Number of Samples)

Test TVC Range
log CFU/g

R1, R2, R3 (308) 3.76–9.45 R4 (115) 3.81–9.37
R1, R2, R4 (307) 2.30–9.37 R3 (116) 3.76–9.22
R1, R3, R4 (323) 2.30–9.45 R2 (100) 4.60–8.90
R2, R3, R4 (331) 2.30–9.45 R1 (92) 4.70–8.70

3.2. Models
3.2.1. K-Means Masking

To segment the minced meat images, to remove redundant information from the im-
age samples, such as the background, the petri dish and the fat, the k-means clustering
algorithm was used. By fitting a k-means model on an RGB image sample, the undesirable
areas of the images were removed with an additional step of a threshold operation on the
pixels. An example of the effect of masking is shown in Figure 3. The k-means model pa-
rameters were empirically optimised, and the k-means model weights were stored for re-
use during the online, operational phase.

Figure 3. Example of the effect of k-means masking on minced pork RGB images.

3.2.2. CNN Regression Models

Figure 3. Example of the effect of k-means masking on minced pork RGB images.

Sensors 2023, 23, 4233 6 of 17

3.2.2. CNN Regression Models

For the estimation of the microbiological quality of meat samples, 2D CNN regression
models were used. Various well-known and widely used CNN architectures were tested,
namely the MobileNet [23], DenseNet [24], EfficientNet [25], VGG16 [26], and ResNet [27].
ResNet-18 and Resnet-34 achieved significantly higher performance than the other four
CNN architectures. Thus, in the remainder of this article, we considered only ResNet-based
evaluations. The inputs of the ResNet-18 and ResNet-34 models were adjusted according
to the input data (MSI or RGB). Finally, the output was set for regression, with detailed
layer information for both architectures shown in Table 3.

Table 3. ResNet-18 and ResNet-34 CNN model architectures.

Layer Name Output Size ResNet-18 ResNet-34

input 224 × 224× C * -
conv_1x 112 × 112 7 × 7, 64, stride 2

conv_2x 56 × 56
3 × 3, maxpool, stride 2[

3 × 3, 64
3 × 3, 64

]
× 2

[
3x × 3, 64
3 × 3, 64

]
× 3

conv_3x 28 × 28
[

3 × 3, 128
3 × 3, 128

]
× 2

[
3 × 3, 128
3 × 3, 128

]
× 4

conv_4x 14 × 14
[

3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 256
3 × 3, 256

]
× 6

conv_5x 7 × 7
[

3 × 3, 512
3 × 3, 512

]
× 2

[
3 × 3, 512
3 × 3, 512

]
× 3

output 1 × 1 average pool, linear
* C is number of channels; C = 3 for RGB images; C = 18 for MSI images.

3.3. Embedded Systems

Seven embedded systems were evaluated for this application: a 4 GB and 8 GB
Raspberry Pi 4 (RP4), Intel Neural Compute Stick 2 (NCS2), and NXP i.MX 8M Plus
(IMX8P), NVIDIA Jetson Nano (Nano), NVIDIA Jetson Xavier NX (XavierNX), AMD-Xilinx
FPGAs Ultra96v1 (ULTRA96) and Kria (KV260). Each platform is unique regarding the
underlying technology, external memory bandwidth and density, different type of AI
acceleration, power consumption and cost. Table 4 presents the list of embedded systems
used in the present evaluation with their core specifications, with more details on the setup
explained below.

Table 4. List of embedded systems and their core specifications.

Hardware CPU Memory AI Accelerator AI Runtime Engine

1 RP4_64bit [28] ARM Cortex-A72 8 GB (LPDDR4) N/A * TFLITE

2
RP4_32bit [28] ARM Cortex-A72 4 GB (LPDDR4) N/A * OpenVINO

NCS2 [29] N/A 500 MB (Internal) VPU
3 IMX8P [30] ARM Cortex-A53 4 GB (LPDDR4) NPU TFLITE
4 Nano [31] ARM Cortex-A57 4 GB (LPDDR4) GPU: 128-core Maxwell TensorRT
5 XavierNX [32] Carmel ARM®v8.2 8 GB (LPDDR4) GPU: 384-core Volta TensorRT
6 Ultra96 [33] ARM Cortex-A53 2 GB (LPDDR4) PL: DPU (B1600) VART
7 KV260 [34] ARM Cortex-A53 4 GB (LPDDR4) PL: DPU (B4096) VART

* N/A = Not Applicable.

1. RP4_64bit (Raspberry Pi 4 Model B 8 GB)

The main compute element of Raspberry Pi 4 Model B is its quad-core ARM Cortex-
A72 CPU that supports NEON 128-bit wide vector instructions, running at a maximum
clock speed of 1.5 GHz. In addition, this variant (RP4_64bit) is fitted with 8 GB LPDDR4
and runs a 64-bit OS (Bullseye). The CNN models targeted for this embedded system were
quantized (FP16, DINT8 or INT8) and inferred using TFLITE v2.8 runtime engine.

Sensors 2023, 23, 4233 7 of 17

2. NCS2 (Raspberry Pi 4 Model B 4 GB + Intel Neural Compute Stick 2)

Intel NCS2 (NCS2) is a vision processing unit (VPU) accelerator with 16 low-power
vector processing units 128-bit wide (a.k.a. SHAVE), running at 700 MHz. It comes in the
form of a USB stick, so it does require a host controller, where an RP4 fitted with 4 GB
LPDDR4 running 32bit OS (Buster) was used to act as the host. The CNN models used on
NCS2 were quantized (FP16) and inferred using OpenVINO v2022.2 runtime engine.

3. IMX8P (NXP i.MX 8M Plus)

NXP i.MX 8 M Plus (IMX8P) includes a quad-core ARM Cortex-A53 running at
1.8 GHz, an ARM Cortex M7, a HiFi4 DSP running at 800 MHz, and most importantly, a
Neural Processing Unit (NPU). The NPU includes several hardware features, such as a
128-bit vector engine and tensor processing cores capable of accelerating INT8 models. Any
models of unsupported datatypes (e.g., FP16 and DINT8) have their inference fall back
to being executed in the CPU. TFLITE v2.9.1 runtime engine was used, which meant the
previous TFLITE quantized models could be reused.

4. Nano (NVIDIA Jetson Nano)

NVIDIA Jetson Nano (Nano) includes an embedded GPU with 128 CUDA cores, a
quad-core ARM Cortex-A57 64-bit CPU and 4GB LPDDR4. From the two power modes
supported, we used the power mode MAXN (10 Watts), where the 4× CPU cores run
at 1.48 GHz and the GPU at 921.6 MHz. Running Jetpack v4.6.1, the CNN models were
quantized (FP16) and executed using TensorRT (TRT) runtime engine.

5. XavierNX (NVIDIA Jetson Xavier NX)

NVIDIA Jetson Xavier NX (XavierNX) is a more powerful family than Nano, as it
includes more GPU cores, a more powerful CPU, and higher density and speed LPDDR4.
Its GPU comprises 384 cores and 48 Tensor Cores, while its CPU is a 64-bit 6-core NVIDIA
Carmel ARMv8.2. From the various power modes, we used power mode 1 (15 watts,
4 cores), where the 4× CPUs were running 1.4 GHz and the GPU at 1.1 GHz. Running
Jetpack v5.0.2, CNN models were quantized (FP16/INT8) and executed using TensorRT
(TRT) runtime engine.

6. Ultra96 (Avnet Ultra96-V1)

Avnet Ultra96-V1 (Ultra96) is an AMD-Xilinx FPGA fitted with a ZU3EG variant,
capable of accelerating AI models using a soft Deep Learning Processor Unit (DPU) in the
Programmable Logic (PL). The DPU architecture is configurable with various parallelism
and performance settings at the expense of PL resources. The Ultra96 was configured with
the B1600 variant of DPUCZDX8G running at 300 MHz. The models were quantized (INT8)
using Vitis-AI v2.5 and inferred with VART runtime engine.

7. KV260 (Xilinx Kria KV260 Starter Kit)

Xilinx Kria KV260 is System-on-Module with a carrier card containing an FPGA with
a higher resource count than Ultra96, aimed for vision AI application. Similarly, to the
Ultra96 setup, a DPU was implemented, but the main difference was configured with a
more capable B4096 variant running at 300 MHz.

4. Experimental Results

The architecture presented in Section 2 was evaluated according to the experimental
setup presented in Section 3. In Section 4.1, the performance metrics used in the training
phase are outlined, the microbial population estimation results using three different CNN
models on the minced pork dataset are presented, and the quantization loss results for
the target edge devices are explored. Finally, in Section 4.2, the metrics used to evaluate
the online (edge device) microbial population estimation and the results obtained from
benchmarking each edge device on the proposed architecture, as illustrated in Figure 1.

Sensors 2023, 23, 4233 8 of 17

4.1. Microbial Population Estimation
4.1.1. Accuracy Metrics

The metrics used to evaluate the performance of the CNN regression models are the
Root Mean Square Error (RMSE), the Pearson Correlation Coefficient (r), the Mean Absolute
Error (MAE), and the Residual Prediction Deviation (RPD), which have also been used as
the performance metrics in [3,35–38]. The equations of the metrics are described below:

MAE =
1
N

N

∑
n=1

∣∣∣ ∼yn − yn

∣∣∣ (1)

RMSE =
1
N

N

∑
n=1

(∼
yn − yn

)2
(2)

r = ∑N
n=1 (yn − y)(

∼
yn −

∼
y)√

∑N
n=1 (yn − y)2(

∼
yn − y)

2
(3)

RPD =
σ∼

y

RMSE
=

1
RMSE

√√√√ 1
N

N

∑
n=1

(
∼
yn −

∼
y)

2
(4)

where yn is the real TVC value of the n-th meat sample as calculated from the microbiologi-
cal analysis,

∼
yn is the TVC value estimated by the CNN regression model, y is the average

real TVC value,
∼
y is the average estimated TVC value, and σ∼

y
is the standard deviation of

the estimated TVC values.

4.1.2. CNN-Based Microbial Population Estimation

The training was performed using k-fold cross-validation, with k = 4, due to the
number of available replicates for each AIR and MAP dataset. The type of data that the
regression models were trained with were MSI (224 × 224 × 18) or RGB (224 × 224 × 3)
images, with two different pre-processing types, i.e., with masking and without masking.
The training was implemented with the Root Mean Squared Propagation (RMSprop)
optimizer and Mean Squared Error (MSE) as the loss function.

Tables 5 and 6 present the averaged 4-fold cross-validation results for the AIR and
MAP data. The results indicate that most CNN models have comparable performance
regarding r, RMSE, and MAE metrics. However, ResNet-18 on MSI data with masking
achieved the highest RPD metric. Notably, better results were observed in the AIR data than
the MAP, with masking improving the RPD results on average by approximately 2.5% for
AIR and 4.0% for MAP data. Some reasons for the better performance of the model based
on AIR data compared to MAP data may be the different batches (e.g., initial microbial
population) and the dominance of the different microbial groups due to different packaging
conditions. It needs to be stressed that there is an assembly of quality characteristics of the
samples contributing to the development of models. For example, as expected, the obtained
better performance of the models based on aerobic samples could not be attributed to the
colour since this was maintained better in the samples stored under MAP due to high
oxygen presence.

Although ResNet-34 has twice as many hyperparameters as ResNet-18, slight over-
fitting was observed, indicating that the model may have been too complex for the given
task. Furthermore, for the RGB data, despite the input data being six times less than MSI
(3 channels instead of 18), the RMSE, MAE, and r values were near the MSI-based CNN
model results. However, the RPD was much lower for the RGB image data.

Sensors 2023, 23, 4233 9 of 17

Table 5. CNN Model Performance of microbial population estimation under AIR storage conditions;
averaged results from 4-fold cross-validation on the test sets.

Model Parameters Type Masking r RMSE MAE RPD

ResNet-18 11,186,625 RGB NO 0.86 0.07 0.08 1.71
ResNet-18 11,233,665 MSI NO 0.95 0.07 0.05 2.83
ResNet-34 21,349,249 MSI NO 0.95 0.07 0.05 2.72
ResNet-18 11,186,625 RGB YES 0.86 0.11 0.08 1.76
ResNet-18 11,233,665 MSI YES 0.94 0.07 0.05 2.90
ResNet-34 21,349,249 MSI YES 0.95 0.09 0.05 2.68

r: Pearson correlation coefficient; RMSE: root means squared error; MAE: mean absolute error; RPD: residual
prediction deviation.

Table 6. CNN Model Performance of microbial population estimation under MAP storage conditions;
averaged results from 4-fold cross-validation on the test sets.

Model Parameters Type Masking r RMSE MAE RPD

ResNet-18 11,186,625 RGB NO 0.80 0.09 0.07 1.37
ResNet-18 11,233,665 MSI NO 0.90 0.06 0.05 1.81
ResNet-34 21,349,249 MSI NO 0.89 0.07 0.05 1.84
ResNet-18 11,186,625 RGB YES 0.76 0.08 0.07 1.29
ResNet-18 11,233,665 MSI YES 0.89 0.09 0.05 1.88
ResNet-34 21,349,249 MSI YES 0.89 0.11 0.06 1.68

r: Pearson correlation coefficient; RMSE: root mean squared error; MAE: mean absolute error; RPD: residual
prediction deviation.

The region from 405 nm (VIS) to 970 nm (NIR) is associated with protein, fat, and
moisture [39]. Therefore, it is more informative for the ‘description’ of meat deteriora-
tion compared to changes only of colour (RGB models). Hyperspectral imaging (HSI)
and multispectral imaging have been used for the prediction of freshness, quality, and
safety parameters, with the region 400–1000 nm being the most utilized in animal-origin
foods [40,41]. In the case of HSI, feature selection methods are applied to select key wave-
lengths to improve performance and computational time, and avoid overfitting [42,43].
The results of these studies show the potential in a wide range of applications. The studies
by [44,45] showed great potential for the prediction of quality (i.e., TVC and TVB-N) in
terms of RPD (>3). In the present study, the highest RPD was 2.83. Comparing the data
acquisition workflow, in the present study, the samples were stored simulating real-life life
conditions in a range of storage temperatures from 4 ◦C (refrigeration conditions) to 12 ◦C
(abusive temperature), including a high number of samples (n > 400 for each packaging
condition) and independent batches (R1–R4).

4.1.3. CNN Performance with Data Quantization

After evaluating the FP32 data type CNN regression models, the next step was to
quantize each model for the target embedded system and its compatible run time engine.
As mentioned previously in Section 3.3, each hardware supports specific data types. The
results of the quantization were averaged across all CNN models and compared to the
original results (FP32 data), with Table 7 showing the delta change in each metric. For the
metrics r and RPD, the higher is, the better, while the opposite applies to RMSE and MAE.
While for the case of FP16, no loss was observed, PTQ-INT8 (Post Training Quantization)
models did show a slight drop in accuracy except TRT (Xavier NX), which showed a huge
drop and was unsuitable for further hardware testing. As for the rest of the INT8 results
(orange coloured), the delta in loss could be minimized further via Quantization Aware
Training (QAT). However, this was not explored further as the results were satisfactory to
proceed with hardware evaluations.

Sensors 2023, 23, 4233 10 of 17

Table 7. Averaged performance ∆ change for all quantizations versus original FP32 results.

Type Data Type r RMSE MAE RPD

TF FP32 (original) 0.89 0.08 0.06 2.04
TFLITE FP16 0.00 0.00 0.00 0.00
TFLITE DINT8 0.00 0.00 0.00 0.01
TFLITE PTQ-INT8 * 0.03 −0.03 −0.03 0.35

OpenVINO FP16 0.00 0.00 0.00 0.04
TRT FP16 0.00 0.00 0.00 0.00
TRT PTQ-INT8 0.27 −0.07 −0.06 1.33

VITIS PTQ-INT8 0.02 −0.02 −0.02 0.30
VART PTQ-INT8 0.01 −0.02 −0.02 0.25

* PTQ-INT8: Post Training Quantization. Green coloured results is for minimal delta change. Orange coloured
results is for slight delta change. Red coloured results is for large delta change and not suitable.

4.2. Embedded Systems Performance
4.2.1. Hardware Performance Metrics

Following the evaluation and comparison of the performance of each embedded
system, the following main metrics were defined and used:

1. Latency: Execution time from start to finish of a specific stage. To accurately extract
this measurement, the application was run multiple times, and the average latency
time was calculated for each stage. The overall test time was at least 30 s; apart from
the target application process, other OS processes use the hardware resources too (such
as CPU cores, cache memory, etc.), which may add noise to the experimental results.
Stages of interest included loading MSI data, pre-processing, and model inference.

2. Throughput

Calculating the maximum sample per second throughput of each embedded system,
considering all stages of the data pipeline, but not including the loading of models.

Throughput =
1

(Read MSI) + (Pre − Process) + (Model Inference)
(5)

3. Efficiency (Throughput/Watt)

Measuring the throughput per watt each embedded system can offer.

Efficiency =
Throughput

Runtime Power Consumption
(6)

4. Value (Throughput/Cost)

Measuring the through per cost ($) each embedded system can offer.

Value =
Throughput

Hardware Cost in USD
(7)

4.2.2. Hardware Evaluation Results

The hardware performance of each embedded system used in the study was evaluated
using the metrics described above: latency, throughput, efficiency, and value. Latency is
measured for each stage of the data pipeline, while throughput is calculated by considering
the entire pipeline.

Sensors 2023, 23, 4233 11 of 17

1. Load CNN Model (Latency)

Loading the CNN model is performed once, and Figure 4 demonstrates that it could
be time-consuming. The NCS2 and Nano platforms were the slowest, requiring an average
of 3.6 and 2.9 s, respectively, to load the CNN model weights. In contrast, the remaining
platforms required between 12 ms (RP4_64bit) and 754 ms (Ultra96). This variation in
loading time depends on both the CPU capabilities and the size and data type of the
quantized model.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17

loading time depends on both the CPU capabilities and the size and data type of the quan-
tized model.

Figure 4. Time is required by the embedded boards to load the CNN models.

2. Load k-means Model (Latency)
When masking was used, the k-means model needed to be loaded once. After that,

the model weights were binarized for re-usage, and in this stage, they were deserialized.
The deserialization process depended solely on the CPU and the corresponding operating
system. The NCS2 platform, which uses RP4 with a 32-bit OS, had the slowest deseriali-
zation time by a significant margin (46.3 ms). In contrast, the XavierNX, which has the
latest and fastest ARM CPU with a 64-bit OS, had the fastest deserialization time (6.2 ms).
Figure 5 shows the results.

Figure 5. Time required by the embedded systems to load the k-means model.

3. Read MSI Samples (Latency)
Loading a multi-spectral image was found to be the most computationally intensive

task of the data pipeline, posing a significant bottleneck. The size of the MSI sample, which
typically had a resolution of 1200 × 1200 × 18 pixels and an average sample size of 100 MB,
further intensified the computational load. The results of loading the MSI samples across
different embedded systems are presented in Figure 6. It was observed that the slowest
system was the Ultra96, with an average loading time of 4.6 s, while XavierNX was the
fastest one, taking only 2 s. The loading time depended on the CPU’s capabilities, partic-
ularly the clock frequency.

Figure 4. Time is required by the embedded boards to load the CNN models.

2. Load k-means Model (Latency)

When masking was used, the k-means model needed to be loaded once. After that,
the model weights were binarized for re-usage, and in this stage, they were deserialized.
The deserialization process depended solely on the CPU and the corresponding operating
system. The NCS2 platform, which uses RP4 with a 32-bit OS, had the slowest deserial-
ization time by a significant margin (46.3 ms). In contrast, the XavierNX, which has the
latest and fastest ARM CPU with a 64-bit OS, had the fastest deserialization time (6.2 ms).
Figure 5 shows the results.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17

loading time depends on both the CPU capabilities and the size and data type of the quan-
tized model.

Figure 4. Time is required by the embedded boards to load the CNN models.

2. Load k-means Model (Latency)
When masking was used, the k-means model needed to be loaded once. After that,

the model weights were binarized for re-usage, and in this stage, they were deserialized.
The deserialization process depended solely on the CPU and the corresponding operating
system. The NCS2 platform, which uses RP4 with a 32-bit OS, had the slowest deseriali-
zation time by a significant margin (46.3 ms). In contrast, the XavierNX, which has the
latest and fastest ARM CPU with a 64-bit OS, had the fastest deserialization time (6.2 ms).
Figure 5 shows the results.

Figure 5. Time required by the embedded systems to load the k-means model.

3. Read MSI Samples (Latency)
Loading a multi-spectral image was found to be the most computationally intensive

task of the data pipeline, posing a significant bottleneck. The size of the MSI sample, which
typically had a resolution of 1200 × 1200 × 18 pixels and an average sample size of 100 MB,
further intensified the computational load. The results of loading the MSI samples across
different embedded systems are presented in Figure 6. It was observed that the slowest
system was the Ultra96, with an average loading time of 4.6 s, while XavierNX was the
fastest one, taking only 2 s. The loading time depended on the CPU’s capabilities, partic-
ularly the clock frequency.

Figure 5. Time required by the embedded systems to load the k-means model.

Sensors 2023, 23, 4233 12 of 17

3. Read MSI Samples (Latency)

Loading a multi-spectral image was found to be the most computationally intensive
task of the data pipeline, posing a significant bottleneck. The size of the MSI sample,
which typically had a resolution of 1200 × 1200 × 18 pixels and an average sample size of
100 MB, further intensified the computational load. The results of loading the MSI samples
across different embedded systems are presented in Figure 6. It was observed that the
slowest system was the Ultra96, with an average loading time of 4.6 s, while XavierNX
was the fastest one, taking only 2 s. The loading time depended on the CPU’s capabilities,
particularly the clock frequency.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17

Figure 6. Time required by the embedded systems to load an MSI sample.

4. Pre-Processing (Latency)
The pre-processing stage of the data pipeline involved several steps (refer to Figure

2) and varied depending on the input data type, whether it was MSI or RGB image, and
whether it was with or without masking. Masking had a negligible impact on pre-pro-
cessing time, as shown in Figure 7, due to the resizing of the input data at the start of the
pipeline, which reduced the amount of data to be processed in subsequent stages. Pro-
cessing RGB data, consisting of three channels, was slightly faster than the MSI data,
which had 18 channels, although the difference was not proportional. Among the plat-
forms tested, the fastest was the XavierNX, which had the most powerful CPU, while the
slowest was the Ultra96, which had the least powerful CPU.

Figure 7. Time required by the embedded systems to pre-process the MSI and RBG images (a) with-
out masking and (b) with masking.

5. CNN Regression Model Inference Time (Latency)
The results of the CNN model inference time for each embedded system, using the

fastest-performing quantization with minimal quantization loss, are presented in Table 8.
The ResNet models were derived from the same architecture but with varying numbers
of parameters due to input shapes. The model with the least parameters (ResNet-18: RGB)
was the fastest. In addition, platforms that used TFLITE models (RP4_64bit and IMX8P)
could perform thread execution, further decreasing latency. The slowest platform was the
IMX8P (174.8/281.7/129.3 ms), while the fastest was the XavierNX (4.3/5.9/3.0 ms) for Res-
Net-18:MSI, ResNet-34:MSI and ResNet18:RGB respectively.

Figure 6. Time required by the embedded systems to load an MSI sample.

4. Pre-Processing (Latency)

The pre-processing stage of the data pipeline involved several steps (refer to Figure 2)
and varied depending on the input data type, whether it was MSI or RGB image, and
whether it was with or without masking. Masking had a negligible impact on pre-
processing time, as shown in Figure 7, due to the resizing of the input data at the start
of the pipeline, which reduced the amount of data to be processed in subsequent stages.
Processing RGB data, consisting of three channels, was slightly faster than the MSI data,
which had 18 channels, although the difference was not proportional. Among the platforms
tested, the fastest was the XavierNX, which had the most powerful CPU, while the slowest
was the Ultra96, which had the least powerful CPU.

5. CNN Regression Model Inference Time (Latency)

The results of the CNN model inference time for each embedded system, using the
fastest-performing quantization with minimal quantization loss, are presented in Table 8.
The ResNet models were derived from the same architecture but with varying numbers of
parameters due to input shapes. The model with the least parameters (ResNet-18: RGB)
was the fastest. In addition, platforms that used TFLITE models (RP4_64bit and IMX8P)
could perform thread execution, further decreasing latency. The slowest platform was the
IMX8P (174.8/281.7/129.3 ms), while the fastest was the XavierNX (4.3/5.9/3.0 ms) for
ResNet-18:MSI, ResNet-34:MSI and ResNet18:RGB respectively.

Sensors 2023, 23, 4233 13 of 17

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17

Figure 6. Time required by the embedded systems to load an MSI sample.

4. Pre-Processing (Latency)
The pre-processing stage of the data pipeline involved several steps (refer to Figure

2) and varied depending on the input data type, whether it was MSI or RGB image, and
whether it was with or without masking. Masking had a negligible impact on pre-pro-
cessing time, as shown in Figure 7, due to the resizing of the input data at the start of the
pipeline, which reduced the amount of data to be processed in subsequent stages. Pro-
cessing RGB data, consisting of three channels, was slightly faster than the MSI data,
which had 18 channels, although the difference was not proportional. Among the plat-
forms tested, the fastest was the XavierNX, which had the most powerful CPU, while the
slowest was the Ultra96, which had the least powerful CPU.

Figure 7. Time required by the embedded systems to pre-process the MSI and RBG images (a) with-
out masking and (b) with masking.

5. CNN Regression Model Inference Time (Latency)
The results of the CNN model inference time for each embedded system, using the

fastest-performing quantization with minimal quantization loss, are presented in Table 8.
The ResNet models were derived from the same architecture but with varying numbers
of parameters due to input shapes. The model with the least parameters (ResNet-18: RGB)
was the fastest. In addition, platforms that used TFLITE models (RP4_64bit and IMX8P)
could perform thread execution, further decreasing latency. The slowest platform was the
IMX8P (174.8/281.7/129.3 ms), while the fastest was the XavierNX (4.3/5.9/3.0 ms) for Res-
Net-18:MSI, ResNet-34:MSI and ResNet18:RGB respectively.

Figure 7. Time required by the embedded systems to pre-process the MSI and RBG images (a) without
masking and (b) with masking.

Table 8. CNN model inference time for different embedded systems.

Platform Data Type Model Type Inference Time (ms)

1× 2× 3× 4×

RP4_64bit * INT8
ResNet-18 MSI 316.6 189.0 144.0 125.9
ResNet-34 MSI 530.3 312.3 231.9 200.0
ResNet-18 RGB 238.2 140.7 105.6 92.8

NCS2 FP16
ResNet-18 MSI 61.7 - - -
ResNet-34 MSI 79.2 - - -
ResNet-18 RGB 24.5 - - -

IMX8P * INT8
ResNet-18 MSI 534.7 293.7 212.8 174.8
ResNet-34 MSI 913.5 493.6 352.7 281.7
ResNet-18 RGB 404.9 221.9 160.2 129.3

Nano FP16
ResNet-18 MSI 18.3 - - -
ResNet-34 MSI 26.9 - - -
ResNet-18 RGB 12.1 - - -

XavierNX FP16
ResNet-18 MSI 4.3 - - -
ResNet-34 MSI 5.9 - - -
ResNet-18 RGB 3.0 - - -

Ultra96 INT8
ResNet-18 MSI 39.0 - - -
ResNet-34 MSI 52.7 - - -
ResNet-18 RGB 20.6 - - -

KV260 INT8
ResNet-18 MSI 19.7 - - -
ResNet-34 MSI 22.8 - - -
ResNet-18 RGB 6.9 - - -

* Platforms RP4_64bit and IMX8P can run multiple threads (up to maximum CPU count) with TFLITE
runtime engine.

6. Throughput (samples per second)

We also evaluated the performance of the full data pipeline, considering all stages,
including loading the meat sample image, pre-processing, and model inference. The total
throughput results, measured in samples per second, are presented in Figure 8. Our results
indicate that the loading of the meat sample image was the biggest bottleneck, negatively
impacting the overall performance. Notably, the impact of masking on performance was
smaller, as it affected the pre-processing stage, which was the second biggest bottleneck.
The slowest platform was the Ultra96, which had the slowest CPU, while the fastest
platform was the XavierNX, which had the fastest CPU. Overall, our findings suggest that
the performance of this application is highly dependent on CPU capabilities.

Sensors 2023, 23, 4233 14 of 17

Sensors 2023, 23, x FOR PEER REVIEW 13 of 17

Table 8. CNN model inference time for different embedded systems.

Platform Data Type Model Type Inference Time (ms)
 1× 2× 3× 4×

RP4_64bit * INT8
ResNet-18 MSI 316.6 189.0 144.0 125.9
ResNet-34 MSI 530.3 312.3 231.9 200.0
ResNet-18 RGB 238.2 140.7 105.6 92.8

NCS2 FP16
ResNet-18 MSI 61.7 - - -
ResNet-34 MSI 79.2 - - -
ResNet-18 RGB 24.5 - - -

IMX8P * INT8
ResNet-18 MSI 534.7 293.7 212.8 174.8
ResNet-34 MSI 913.5 493.6 352.7 281.7
ResNet-18 RGB 404.9 221.9 160.2 129.3

Nano FP16
ResNet-18 MSI 18.3 - - -
ResNet-34 MSI 26.9 - - -
ResNet-18 RGB 12.1 - - -

XavierNX FP16
ResNet-18 MSI 4.3 - - -
ResNet-34 MSI 5.9 - - -
ResNet-18 RGB 3.0 - - -

Ultra96 INT8
ResNet-18 MSI 39.0 - - -
ResNet-34 MSI 52.7 - - -
ResNet-18 RGB 20.6 - - -

KV260 INT8
ResNet-18 MSI 19.7 - - -
ResNet-34 MSI 22.8 - - -
ResNet-18 RGB 6.9 - - -

* Platforms RP4_64bit and IMX8P can run multiple threads (up to maximum CPU count) with
TFLITE runtime engine.

6. Throughput (samples per second)
We also evaluated the performance of the full data pipeline, considering all stages,

including loading the meat sample image, pre-processing, and model inference. The total
throughput results, measured in samples per second, are presented in Figure 8. Our re-
sults indicate that the loading of the meat sample image was the biggest bottleneck, neg-
atively impacting the overall performance. Notably, the impact of masking on perfor-
mance was smaller, as it affected the pre-processing stage, which was the second biggest
bottleneck. The slowest platform was the Ultra96, which had the slowest CPU, while the
fastest platform was the XavierNX, which had the fastest CPU. Overall, our findings sug-
gest that the performance of this application is highly dependent on CPU capabilities.

Figure 8. Throughput results of the evaluated embedded systems and CNN regression models. Figure 8. Throughput results of the evaluated embedded systems and CNN regression models.

7. Efficiency (throughput per watt)

Figure 9 presents each embedded system’s efficiency (samples/watts) results when
considering power consumption. Based on our results, the most efficient platform was the
Nano, closely followed by the RP4_64bit. On the other hand, the least efficient platforms
were the KV260 and Ultra96. Interestingly, XavierNX, which performed best in latency due
to its fast CPU and accelerator, ranked third in efficiency. It is worth noting that further
optimization can be achieved through hardware and software/firmware optimizations, as
development kits often include features that may not be necessary for a given application.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 17

7. Efficiency (throughput per watt)
Figure 9 presents each embedded system’s efficiency (samples/watts) results when

considering power consumption. Based on our results, the most efficient platform was the
Nano, closely followed by the RP4_64bit. On the other hand, the least efficient platforms
were the KV260 and Ultra96. Interestingly, XavierNX, which performed best in latency
due to its fast CPU and accelerator, ranked third in efficiency. It is worth noting that fur-
ther optimization can be achieved through hardware and software/firmware optimiza-
tions, as development kits often include features that may not be necessary for a given
application.

Figure 9. Efficiency (Throughput/Watt) of the evaluated embedded systems and CNN regression
models.

8. Value (throughput per dollar)
Finally, we measured the value metric of each platform, which considers the cost of

the embedded systems (development kit). The results are presented in Figure 10, where
the RP4_64bit was the most cost-efficient platform with the highest throughput per dollar.
In contrast, the IMX8P was the least cost-efficient platform on the evaluated metric. Inter-
estingly, XavierNX ranked first in the latency metrics and was observed fifth in value,
indicating that it may not be the best choice for cost-sensitive applications.

Figure 9. Efficiency (Throughput/Watt) of the evaluated embedded systems and CNN regression models.

8. Value (throughput per dollar)

Finally, we measured the value metric of each platform, which considers the cost of
the embedded systems (development kit). The results are presented in Figure 10, where
the RP4_64bit was the most cost-efficient platform with the highest throughput per dol-
lar. In contrast, the IMX8P was the least cost-efficient platform on the evaluated metric.
Interestingly, XavierNX ranked first in the latency metrics and was observed fifth in value,
indicating that it may not be the best choice for cost-sensitive applications.

Sensors 2023, 23, 4233 15 of 17Sensors 2023, 23, x FOR PEER REVIEW 15 of 17

Figure 10. Value (Throughput/$) of the evaluated embedded systems and CNN regression models.

5. Conclusions
An architecture for estimating the microbial population of food samples using mul-

tispectral imaging and deep machine learning models for regression operating on embed-
ded hardware was presented. Minced pork samples from different storage conditions
were trained using different image pre-processing techniques on AIR and MAP storage
conditions and deployed on a wide range of well-known hardware platforms. The evalu-
ation showed that the most accurate results were achieved in AIR and MAP storage con-
ditions when applying transfer learning on the ResNet-18 model with the masked MSI
images. In addition, processing RGB images instead of the MSI ones resulted in lower
latency and higher throughput of the tested embedded boards, with a slight reduction of
the microbial population estimation accuracy. Regarding hardware performance, the Xa-
vierNX platform outperformed all other evaluated embedded boards regarding latency
and throughput because of its advantageous CPU and accelerator. In terms of energy ef-
ficiency and value, Nano and RP4 outperformed the other tested hardware boards. More-
over, on average, the loading of the MSI data corresponded to 86% of the total execution
time in the end-to-end pipeline, 8% of the execution time was for the pre-processing and
6% for the inferencing of the CNN models.

The evaluation results indicate the potential of portable devices for food quality as-
sessment using spectroscopic sensors and AI on edge. Such portable devices will allow
easy and rapid testing of food quality from the corresponding public authorities in the
short term and, with the further development of spectroscopic sensor technologies, also
from individual consumers in the longer term.

Author Contributions: Conceptualization, all authors; methodology, D.K., L.-C.F., G.-J.N. and I.M.;
software, D.K., L.-C.F., J.M.C., N.S. and I.M.; validation, D.K., L.-C.F., G.-J.N. and I.M.; formal anal-
ysis, D.K., L.-C.F., G.-J.N. and I.M.; investigation, all authors; resources, all authors; data curation,
L.-C.F. and G.-J.N.; writing—original draft preparation, all authors; writing—review and editing,
all authors; visualization, D.K. and L.-C.F.; project administration, G.-J.N.; funding acquisition, G.-
J.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the DiTECT project (Grant Agreement Number
861915) funded by the EC Horizon 2020 Programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 10. Value (Throughput/$) of the evaluated embedded systems and CNN regression models.

5. Conclusions

An architecture for estimating the microbial population of food samples using multi-
spectral imaging and deep machine learning models for regression operating on embedded
hardware was presented. Minced pork samples from different storage conditions were
trained using different image pre-processing techniques on AIR and MAP storage condi-
tions and deployed on a wide range of well-known hardware platforms. The evaluation
showed that the most accurate results were achieved in AIR and MAP storage conditions
when applying transfer learning on the ResNet-18 model with the masked MSI images. In
addition, processing RGB images instead of the MSI ones resulted in lower latency and
higher throughput of the tested embedded boards, with a slight reduction of the microbial
population estimation accuracy. Regarding hardware performance, the XavierNX platform
outperformed all other evaluated embedded boards regarding latency and throughput
because of its advantageous CPU and accelerator. In terms of energy efficiency and value,
Nano and RP4 outperformed the other tested hardware boards. Moreover, on average, the
loading of the MSI data corresponded to 86% of the total execution time in the end-to-end
pipeline, 8% of the execution time was for the pre-processing and 6% for the inferencing of
the CNN models.

The evaluation results indicate the potential of portable devices for food quality
assessment using spectroscopic sensors and AI on edge. Such portable devices will allow
easy and rapid testing of food quality from the corresponding public authorities in the
short term and, with the further development of spectroscopic sensor technologies, also
from individual consumers in the longer term.

Author Contributions: Conceptualization, all authors; methodology, D.K., L.-C.F., G.-J.N. and I.M.;
software, D.K., L.-C.F., J.M.C., N.S. and I.M.; validation, D.K., L.-C.F., G.-J.N. and I.M.; formal analysis,
D.K., L.-C.F., G.-J.N. and I.M.; investigation, all authors; resources, all authors; data curation, L.-C.F.
and G.-J.N.; writing—original draft preparation, all authors; writing—review and editing, all authors;
visualization, D.K. and L.-C.F.; project administration, G.-J.N.; funding acquisition, G.-J.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the DiTECT project (Grant Agreement Number
861915) funded by the EC Horizon 2020 Programme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2023, 23, 4233 16 of 17

Data Availability Statement: The data presented in this study are available upon request. The data
are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep learning and machine vision for food processing: A survey. Curr. Res. Food

Sci. 2021, 4, 233–249. [CrossRef] [PubMed]
2. Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. Global Food Demand Scenarios for the 21st

Century. PLoS ONE 2015, 10, e0139201. [CrossRef] [PubMed]
3. Fengou, L.-C.; Mporas, I.; Spyrelli, E.; Lianou, A.; Nychas, G.-J. Estimation of the Microbiological Quality of Meat Using Rapid

and Non-Invasive Spectroscopic Sensors. IEEE Access 2020, 8, 106614–106628. [CrossRef]
4. Nychas, G.-J.E.; Panagou, E.Z.; Mohareb, F. Novel approaches for food safety management and communication. Curr. Opin. Food

Sci. 2016, 12, 13–20. [CrossRef]
5. Bhunia, A.K. One day to one hour: How quickly can foodborne pathogens be detected? Future Microbiol. 2014, 9, 935–946.

[CrossRef] [PubMed]
6. Doulgeraki, A.I.; Nychas, G.-J.E. Monitoring the succession of the biota grown on a selective medium for pseudomonads during

storage of minced beef with molecular-based methods. Food Microbiol. 2013, 34, 62–69. [CrossRef] [PubMed]
7. Munir, M.T.; Yu, W.; Young, B.R.; Wilson, D.I. The current status of process analytical technologies in the dairy industry. Trends

Food Sci. Technol. 2015, 43, 205–218. [CrossRef]
8. van den Berg, F.; Lyndgaard, C.B.; Sørensen, K.M.; Engelsen, S.B. Process Analytical Technology in the food industry. Trends Food

Sci. Technol. 2013, 31, 27–35. [CrossRef]
9. Govari, M.; Tryfinopoulou, P.; Parlapani, F.F.; Boziaris, I.S.; Panagou, E.Z.; Nychas, G.-J.E. Quest of Intelligent Research Tools for

Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis. Foods 2021,
10, 264. [CrossRef]

10. El Orche, A.; Mamad, A.; Elhamdaoui, O.; Cheikh, A.; El Karbane, M.; Bouatia, M. Comparison of Machine Learning Classification
Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy. J. Spectrosc. 2021, 2021, 5845422.
[CrossRef]

11. Ozturk, S.; Bowler, A.; Rady, A.; Watson, N.J. Near-infrared spectroscopy and machine learning for classification of food powders
during a continuous process. J. Food Eng. 2023, 341, 111339. [CrossRef]

12. Zhao, H.; Zhan, Y.; Xu, Z.; Nduwamungu, J.J.; Zhou, Y.; Powers, R.; Xu, C. The application of machine-learning and Raman
spectroscopy for the rapid detection of edible oils type and adulteration. Food Chem. 2022, 373, 131471. [CrossRef] [PubMed]

13. Nychas, G.-J.; Sims, E.; Tsakanikas, P.; Mohareb, F. Data Science in the Food Industry. Annu. Rev. Biomed. Data Sci. 2021, 4,
341–367. [CrossRef] [PubMed]

14. Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of optical sensors and their potential for high-
throughput screening of foods. Curr. Opin. Food Sci. 2020, 31, 136–150. [CrossRef]

15. McVey, C.; Elliott, C.T.; Cannavan, A.; Kelly, S.D.; Petchkongkaew, A.; Haughey, S.A. Portable spectroscopy for high throughput
food authenticity screening: Advancements in technology and integration into digital traceability systems. Trends Food Sci. Technol.
2021, 118, 777–790. [CrossRef]

16. Chen, X.; Cheng, G.; Liu, S.; Meng, S.; Jiao, Y.; Zhang, W.; Liang, J.; Zhang, W.; Wang, B.; Xu, X.; et al. Probing 1D convolutional
neural network adapted to near-infrared spectroscopy for efficient classification of mixed fish. Spectrochim. Acta Part A Mol.
Biomol. Spectrosc. 2022, 279, 121350. [CrossRef]

17. Pu, H.; Yu, J.; Sun, D.-W.; Wei, Q.; Shen, X.; Wang, Z. Distinguishing fresh and frozen-thawed beef using hyperspectral imaging
technology combined with convolutional neural networks. Microchem. J. 2023, 189, 108559. [CrossRef]

18. Moon, E.J.; Kim, Y.; Xu, Y.; Na, Y.; Giaccia, A.J.; Lee, J.H. Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable
Spectrometer. Sensors 2020, 20, 4299. [CrossRef]

19. Karunathilaka, S.R.; Yakes, B.J.; He, K.; Brückner, L.; Mossoba, M.M. First use of handheld Raman spectroscopic devices and
on-board chemometric analysis for the detection of milk powder adulteration. Food Control. 2018, 92, 137–146. [CrossRef]

20. Kolosov, D.; Mporas, I. Face Masks Usage Monitoring for Public Health Security using Computer Vision on Hardware. In
Proceedings of the 2021 International Carnahan Conference on Security Technology (ICCST), Hatfield, UK, 11–15 October 2021;
pp. 1–6. [CrossRef]

21. Kolosov, D.; Kelefouras, V.; Kourtessis, P.; Mporas, I. Anatomy of Deep Learning Image Classification and Object Detection on
Commercial Edge Devices: A Case Study on Face Mask Detection. IEEE Access 2022, 10, 109167–109186. [CrossRef]

22. Carstensen, J.M.; Folm-Hansen, J. An Apparatus and a Method of Recording an Image of an Object. Google Patents WO1999042900,
26 August 1999.

23. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

https://doi.org/10.1016/j.crfs.2021.03.009
https://www.ncbi.nlm.nih.gov/pubmed/33937871
https://doi.org/10.1371/journal.pone.0139201
https://www.ncbi.nlm.nih.gov/pubmed/26536124
https://doi.org/10.1109/ACCESS.2020.3000690
https://doi.org/10.1016/j.cofs.2016.06.005
https://doi.org/10.2217/fmb.14.61
https://www.ncbi.nlm.nih.gov/pubmed/25302952
https://doi.org/10.1016/j.fm.2012.11.017
https://www.ncbi.nlm.nih.gov/pubmed/23498179
https://doi.org/10.1016/j.tifs.2015.02.010
https://doi.org/10.1016/j.tifs.2012.04.007
https://doi.org/10.3390/foods10020264
https://doi.org/10.1155/2021/5845422
https://doi.org/10.1016/j.jfoodeng.2022.111339
https://doi.org/10.1016/j.foodchem.2021.131471
https://www.ncbi.nlm.nih.gov/pubmed/34749090
https://doi.org/10.1146/annurev-biodatasci-020221-123602
https://www.ncbi.nlm.nih.gov/pubmed/34465171
https://doi.org/10.1016/j.cofs.2020.04.008
https://doi.org/10.1016/j.tifs.2021.11.003
https://doi.org/10.1016/j.saa.2022.121350
https://doi.org/10.1016/j.microc.2023.108559
https://doi.org/10.3390/s20154299
https://doi.org/10.1016/j.foodcont.2018.04.046
https://doi.org/10.1109/ICCST49569.2021.9717402
https://doi.org/10.1109/ACCESS.2022.3214214
https://doi.org/10.1109/CVPR.2018.00474

Sensors 2023, 23, 4233 17 of 17

24. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

25. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International
conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

28. Raspberry Pi 4 Model B Specifications. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
(accessed on 13 March 2023).

29. Intel Neural Compute Stick 2 Product Specifications. Available online: https://ark.intel.com/content/www/us/en/ark/
products/140109/intel-neural-compute-stick-2.html (accessed on 13 March 2023).

30. Evaluation Kit for the i.MX 8M Plus Applications Processor. Available online: https://www.nxp.com/design/development-
boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4
-EVK (accessed on 13 March 2023).

31. Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/blog/jetson-nano-ai-computing/ (accessed on 13
March 2023).

32. Jetson Xavier NX Series. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-
xavier-nx/ (accessed on 13 March 2023).

33. Ultra96. Available online: https://www.96boards.org/product/ultra96/ (accessed on 13 March 2023).
34. Kria KV260 Vision AI Starter Kit. Available online: https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.html

(accessed on 13 March 2023).
35. Fengou, L.-C.; Lianou, A.; Tsakanikas, P.; Gkana, E.N.; Panagou, E.Z.; Nychas, G.-J.E. Evaluation of Fourier transform infrared

spectroscopy and multispectral imaging as means of estimating the microbiological spoilage of farmed sea bream. Food Microbiol.
2019, 79, 27–34. [CrossRef] [PubMed]

36. Tsakanikas, P.; Fengou, L.-C.; Manthou, E.; Lianou, A.; Panagou, E.Z.; Nychas, G.-J.E. A unified spectra analysis workflow for the
assessment of microbial contamination of ready-to-eat green salads: Comparative study and application of non-invasive sensors.
Comput. Electron. Agric. 2018, 155, 212–219. [CrossRef]

37. Ropodi, A.I.; Panagou, E.Z.; Nychas, G.-J.E. Data mining derived from food analyses using non-invasive/non-destructive
analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends
Food Sci. Technol. 2016, 50, 11–25. [CrossRef]

38. He, H.-J.; Sun, D.-W. Microbial evaluation of raw and processed food products by Visible/Infrared, Raman and Fluorescence
spectroscopy. Trends Food Sci. Technol. 2015, 46, 199–210. [CrossRef]

39. Zhao, H.-T.; Feng, Y.-Z.; Chen, W.; Jia, G.-F. Application of invasive weed optimization and least square support vector machine
for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Meat Sci.
2019, 151, 75–81. [CrossRef]

40. Cheng, J.-H.; Sun, D.-W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral
imaging and multivariate analysis. LWT-Food Sci. Technol. 2015, 62, 1060–1068. [CrossRef]

41. Feng, C.-H.; Makino, Y.; Oshita, S.; Martín, J.F.G. Hyperspectral imaging and multispectral imaging as the novel techniques for
detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control 2018, 84, 165–176.
[CrossRef]

42. Yang, D.; Lu, A.; Ren, D.; Wang, J. Detection of total viable count in spiced beef using hyperspectral imaging combined with
wavelet transform and multiway partial least squares algorithm. J. Food Saf. 2018, 38, e12390. [CrossRef]

43. Baek, I.; Lee, H.; Cho, B.; Mo, C.; Chan, D.E.; Kim, M.S. Shortwave infrared hyperspectral imaging system coupled with
multivariable method for TVB-N measurement in pork. Food Control 2021, 124, 107854. [CrossRef]

44. Guo, T.; Huang, M.; Zhu, Q.; Guo, Y.; Qin, J. Hyperspectral image-based multi-feature integration for TVB-N measurement in
pork. J. Food Eng. 2018, 218, 61–68. [CrossRef]

45. Zhuang, Q.; Peng, Y.; Yang, D.; Nie, S.; Guo, Q.; Wang, Y.; Zhao, R. UV-fluorescence imaging for real-time non-destructive
monitoring of pork freshness. Food Chem. 2022, 396, 133673. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2016.90
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://ark.intel.com/content/www/us/en/ark/products/140109/intel-neural-compute-stick-2.html
https://ark.intel.com/content/www/us/en/ark/products/140109/intel-neural-compute-stick-2.html
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK
https://developer.nvidia.com/blog/jetson-nano-ai-computing/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.96boards.org/product/ultra96/
https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit.html
https://doi.org/10.1016/j.fm.2018.10.020
https://www.ncbi.nlm.nih.gov/pubmed/30621872
https://doi.org/10.1016/j.compag.2018.10.025
https://doi.org/10.1016/j.tifs.2016.01.011
https://doi.org/10.1016/j.tifs.2015.10.004
https://doi.org/10.1016/j.meatsci.2019.01.010
https://doi.org/10.1016/j.lwt.2015.01.021
https://doi.org/10.1016/j.foodcont.2017.07.013
https://doi.org/10.1111/jfs.12390
https://doi.org/10.1016/j.foodcont.2020.107854
https://doi.org/10.1016/j.jfoodeng.2017.09.003
https://doi.org/10.1016/j.foodchem.2022.133673
https://www.ncbi.nlm.nih.gov/pubmed/35849984

	Introduction
	System Architecture
	Acquisition of Food Imaging Data and Estimation of Microbial Population
	Offline Training Phase
	Online Operation Phase

	Experimental Setup
	Evaluation Datasets
	Models
	K-Means Masking
	CNN Regression Models

	Embedded Systems

	Experimental Results
	Microbial Population Estimation
	Accuracy Metrics
	CNN-Based Microbial Population Estimation
	CNN Performance with Data Quantization

	Embedded Systems Performance
	Hardware Performance Metrics
	Hardware Evaluation Results

	Conclusions
	References

