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Abstract: In recent years, convolutional neural networks have been in the leading position for 
ground-based cloud image classification tasks. However, this approach introduces too much induc-
tive bias, fails to perform global modeling, and gradually tends to saturate the performance effect 
of convolutional neural network models as the amount of data increases. In this paper, we propose 
a novel method for ground-based cloud image recognition based on the multi-modal Swin Trans-
former (MMST), which discards the idea of using convolution to extract visual features and mainly 
consists of an attention mechanism module and linear layers. The Swin Transformer, the visual 
backbone network of MMST, enables the model to achieve better performance in downstream tasks 
through pre-trained weights obtained from the large-scale dataset ImageNet and can significantly 
shorten the transfer learning time. At the same time, the multi-modal information fusion network 
uses multiple linear layers and a residual structure to thoroughly learn multi-modal features, fur-
ther improving the model’s performance. MMST is evaluated on the multi-modal ground-based 
cloud public data set MGCD. Compared with the state-of-art methods, the classification accuracy 
rate reaches 91.30%, which verifies its validity in ground-based cloud image classification and 
proves that in ground-based cloud image recognition, models based on the Transformer architec-
ture can also achieve better results. 

Keywords: ground-based cloud image (GCI) classification; Swin Transformer; global features;  
feature fusion 
 

1. Introduction 
As a clean new energy source, the advantage of solar power compared to ordinary 

thermal power systems is that sun light shines on the Earth and can be exploited directly 
without mining and transportation. Secondly, solar energy has the characteristics of high 
energy capacity, no pollution, and wide distribution [1]. In the process of large-scale grid-
connected photovoltaic power generation, the impact of PV power fluctuations on the 
grid cannot be ignored. Among the many factors affecting photovoltaic power generation, 
the most important meteorological factor is solar irradiance, and the condition of cloud 
cover will directly affect solar irradiance. In cloud observation, there are three main ele-
ments: cloud amount, cloud base height, and cloud shape. Among these elements, the 
cloud shape can instantly reflect the local atmospheric conditions, so the study of the clas-
sification of cloud shape is an essential part of cloud observation research. 

In the early period, most weather stations relied on manual visual inspection by 
weather observers for cloud recognition, and the classification effect would vary depend-
ing on the observers’ experience. For this reason, researchers have used classical image 
features to establish traditional machine-learning classification models for ground-based 
cloud images. However, the cloud recognition effect is not desirable, especially since the 
recognition rate of clouds in complex backgrounds is difficult to guarantee. Liu et al. [2] 
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used threshold segmentation and morphological methods to detect the edges of clouds 
and extract structural features from them to build a supervised classifier to classify 
weather clouds. Heinle et al. [3] extracted cloud color and texture features and obtained a 
high classification accuracy based on the Leave-One-Out Cross Validation method. 
Oikonomou et al. [4] adopted Regional Local Binary Pattern (R-LBP) and Four Patch-Local 
Binary Pattern (FP-LBP) to describe the global and local features of the cloud image, and 
in the classification stage, they used Support Vector Machine (SVM) and Linear Discrimi-
nant Analysis (LDA) classifiers. From the result, the classification results achieved over 
90% accuracy with both datasets, much higher than the methods proposed in other pa-
pers. Xiao et al. [5] first extracted the original features of ground-based clouds from the 
perspectives of color, texture, and structure; they obtained more descriptive representa-
tion vectors using a dense sampling method and finally encoded the features and put 
them into the support vector machine for classification. 

In recent decades, with the generation of datasets, the improvement of computing 
capability, and the development of various machine learning algorithms, the utilization 
of deep learning to deal with specific problems has received growing attention. Zhang et 
al. [6] proposed a new convolutional neural network (CNN) model, namely, CloudNet. 
The author proposed that we could achieve better results by combining abundant infor-
mation from different locations in the ground-based cloud image. However, he did not 
elaborate on the specific impact of information from different locations on the model. Liu 
et al. [7] considered each cloud image as a node in the graph; they used GCN to aggregate 
information from the cloud images themselves and their connected images in a weighted 
manner to establish strong and weak connections between different classes of cloud im-
ages and mine the inherent structural information of clouds. Although Transformer [8] 
architecture has become a fundamental model in the natural language processing field, its 
application in computer vision still needs to be improved. In computer vision, attention 
mechanisms are used in conjunction with or to replace certain parts of convolutional net-
works. Therefore, inspired by the Transformer, Alexey et al. [9] proposed the Vision 
Transformer (Vit), which mainly divides the image into multiple blocks, called Patches, 
and then embeds them into the linear layer of the Transformer. Li et al. [10] applied the 
Swin Transformer to cloud image classification but still added a convolutional layer to the 
overall model to extract local information without using meteorological multi-modal in-
formation to assist in the classification. The formation of clouds is affected by many natu-
ral factors [11]. Therefore, utilizing this multi-modal information is significant for com-
prehensively characterizing clouds. Liu et al. [12] proposed a new ground-based cloud 
classification method, namely, the multi-level modality fusion model (HMF), which fuses 
deep multi-modal features and deep visual features at different levels, namely, low-level 
fusion and high-level fusion. High-level fusion combines the output of low-level fusion 
with visual features and multi-modal features. 

Therefore, this paper proposes a ground-based cloud image classification model 
based on the multi-modal Swin Transformer (MMST). Without using the convolution 
module, the visual backbone network can perform well, integrating multi-modal infor-
mation to enhance the model’s representation ability further. The approach outperforms 
the currently available methods in the publicly available multi-modal base cloud image 
dataset MGCD [12], demonstrating its feasibility. 

The main contributions of this paper are as follows: 
1. This paper proposes a novel method based on the Swin Transformer. The model fully 

relies on the attention mechanism and the linear layer to learn the features of cloud 
images and multi-modal information. This method solves the shortcomings of the 
traditional CNN model, namely, that it cannot conduct global modeling, and the per-
formance ceiling of the model is restricted by too much inductive bias. 

2. We address the deficiency of learning only the modeling of images in the cloud clas-
sification task. Residual blocks are added to the linear layer to learn more complex 
feature representations of meteorological multi-modal information. 
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3. An experimental evaluation is carried out on the multi-modal base cloud image da-
taset MGCD, showing that the method proposed in this paper has better classification 
results. 

2. Methods 
2.1. Overview of the Classification Process 

This paper proposes the MMST model for the ground-based cloud image classifica-
tion task. First, the original ground-based cloud image (the image size is 1024 × 1024) is 
taken by the all-sky camera, and four kinds of original meteorological information (tem-
perature, humidity, pressure, and wind speed) are collected by the sensor. The original 
ground-based cloud image and original meteorological information are then pre-pro-
cessed, and the processed ground-based cloud image and meteorological information are 
input, respectively, into the visual backbone network Swin Transformer and Multi-modal 
Information Network to, respectively, obtain the Vision Feature and Multi-Modal Feature. 
Finally, they are sent to the Feature Fusion Network, the Concat operation is conducted, 
and the classification result is output by the Linear layer. The overall classification process 
is shown in Figure 1. 

 
Figure 1. The classification process of ground-based cloud images. 

2.2. Introduction of the Proposed Method 
Figure 2 shows the overall structure of MMST. The visual backbone network Swin 

Transformer learns the feature relationship between image patch sequences by calculating 
the attention that the Patch can achieve for the purpose of global modeling. Shifting the 
windows can achieve the effect of fusing local information by interacting with the win-
dows, similar to the convolution in CNN. With patch merging, the feature map size is 
downsized to achieve cascading multi-scale features and extract higher-level information, 
such as pooling in CNN. Moreover, the Multi-modal Information Network and Feature 
Fusion Network consist of blocks composed of linear layers to learn better feature repre-
sentation using the residual structure, and the presence of the residual unit also ensures 
the stability of the gradients in model training. 
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Figure 2. The structure of the proposed classification network (MMST). 

2.3. Visual Backbone Network 
2.3.1. Swin Transformer V2 

In the MMST model, Swin Transformer V2 [13] is used as the vision backbone net-
work. Swin Transformer V2 is an improved version of the Swin Transformer [14] (i.e., the 
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V1 version), which is also a model based on the Vit architecture. Due to the similarity of 
the main structure, in this article, the V1 and V2 versions of the Swin Transformer are not 
distinguished by name. The improvements proposed by the V2 version relative to the V1 
version are roughly divided into two parts as follows: 
(1) Improvements to self-attention 

For the original Vit model, the two-dimensional (2D) image is first segmented, and 
the image of X ∈ R  is divided into several non-overlapping patches, namely, X ∈R , where 𝐻 𝑊 is the size of the original image, 𝐶 is the number of channels in 
the image, and 𝑃 𝑃 is the size of each patch. Since the spatial position of each patch has 
some influence on the later classification, position encoding is added to the vector of the 
patch projections to preserve their spatial information. The core components of the Vit 
encoder are a multi-head self-attention (MSA) module and a feed-forward multilayer per-
ceptron (MLP) [8]. Figure 3 illustrates the structure of the MSA module, which is com-
posed of multiple self-attention. The structure of self-attention is shown in Figure 3. The 
input vector is transformed by three trainable matrices to obtain three different homolo-
gous matrices: query matrix, Q; key matrix, K; and value matrix, V. The weight of each 
element (i.e., the importance of each element to the context) is obtained by computing the 
dot product of the query matrix and the key matrix and then applying 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 to scale 
the weight values to the interval of (0, 1). The transformed weight is multiplied by the 
value matrix to obtain the element value carrying the global importance information, 
which is different from local modeling in CNN [15]. The calculation of self-attention is as 
follows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ⋅ 𝑉, (1) 

where 𝑑  is the square root of the key matrix dimension, the purpose is to make the 
weight distribution smoother and more reasonable, and also to make the gradient more 
stable. MSA divides the input into 𝑛 parts, i.e., 𝑛-head self-attention, performs the atten-
tion calculation of Equation (2) on the 𝑛 parts of the input, and obtains 𝑛 attention out-
put results. Finally, the 𝑛 output is concatenated and restored into the original dimension 
through the linear layer. The MSA calculation process is shown as follows: 

head = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊 , 𝐾𝑊 , 𝑉𝑊 , (2) 𝑀𝑆𝐴 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 head , … , head 𝑊 , (3) 

where 𝑖 is the number of input vectors divided, head  is the attention output of the 𝑖th 
head, and the 𝑊 , 𝑊 , 𝑊 , and 𝑊  are all learnable parameter matrices. 

  
(a) (b) 

Figure 3. (a) The self-attention and (b) the multi-head self-attention. 

Scaled cosine attention [13] is used in Swin Transformer V2 instead of Scaled Dot-
Product attention, as shown in Figure 4. A comparison of self-attention V1 and V2 is 
shown in Figure 4, where Figure 4 shows the improved structure of self-attention in V2, 
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and Figure 4 shows the original structure. Scaled cosine attention is proposed to solve a 
problem that arises in the res-post-norm configuration, namely, that the learned attention 
maps of some blocks and heads are frequently dominated by a few pixel pairs. Scaled 
cosine attention can compare the similarity of each element in two vectors, and its calcu-
lation is as follows: 𝑆𝑐𝑎𝑙𝑒𝑑 𝑐𝑜𝑠𝑖𝑛𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑞 , 𝑘 = 𝑐𝑜𝑠 𝑞 , 𝑘 /𝜏 𝐵 , (4) 

where 𝑖 and 𝑗 are different pixel coordinate indices, 𝑞 and 𝑘 are query and key vec-
tors, respectively, 𝐵  is the relative position bias of pixels at 𝑖 and 𝑗 coordinates, and 𝜏 
is a globally shared learnable scalar. The cosine function is naturally normalized and thus 
can have milder attention values. 

  
(a) (b) 

Figure 4. (a) The self-attention V2 and (b) the self-attention V1. 

(2) Improvements to shifted windows multi-head self-attention 
The Swin Transformer is proposed to build hierarchical feature maps by merging 

image patches [16], as shown in Figure 5. Compared with the method of keeping the fea-
ture map size invariant in Vit, hierarchical feature maps not only use multi-scale features 
for modeling, but they can also greatly reduce the complexity of self-attention operations 
[14]. The model based on Transformer architecture itself cannot implicitly learn the posi-
tion information of the sequence, and in the process of dividing the picture into multiple 
patches, the border between the patches has a specific meaning; therefore, the Swin Trans-
former adds relative position encoding (RPE) to each patch [17], which can compensate 
for the relative position information between the two elements that is lost when compu-
ting self-attention with absolute position encoding. Therefore, the self-attention calcula-
tion formula using relative position encoding is as follows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 − 𝑅𝑃𝐸 𝑄, 𝐾, 𝑉 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐵 ⋅ 𝑉, (5) 

where 𝐵 ∈ 𝑅  , the value in B comes from a smaller-sized bias matrix 𝐵 ∈R , 𝑀  is the number of patches in a window, and 𝑄, 𝐾, 𝑉 are the query ma-
trix, key matrix, and value matrix, respectively. 

 
Figure 5. Hierarchical feature maps in Swin Transformer. 
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The Swin Transformer uses the concept of Windows Multi-head Self-Attention 
(WMSA) to partition the image into multiple non-intersecting windows, and Multi-head 
Self-Attention is only computed in each individual Window. However, in Vit, Multi-head 
Self-Attention is directly performed on the global Window. The purpose is to reduce the 
amount of calculation, but this occurs at the expense of information transmission between 
different Windows. Therefore, in this paper, we propose using Shifted Windows Multi-
head Self-Attention (SW-MSA) to address the shortcomings of WMSA. Through this 
method, information can be transmitted in adjacent windows. The block based on Win-
dows Multi-head Self-Attention (W-MSA) and the block based on Shifted Windows Multi-
head Self-Attention (SW-MSA) constitute the core components of the Swin Transformer. 
W-MSA refers to the mutual calculation of self-attention between patches in a Window 
with a specified size. Compared with MSA in Vit, W-MSA can effectively save computing 
resources and improve model computing efficiency. Equations (6) and (7) represent the 
computational complexity of MSA and W-MSA, respectively: 𝛺 𝑀𝑆𝐴 = 4ℎ𝑤𝐶 2 ℎ𝑤 𝐶, (6) 𝛺 𝑊 − 𝑀𝑆𝐴 = 4ℎ𝑤𝐶 2𝑀 ℎ𝑤𝐶, (7) 

where ℎ, 𝑤, and 𝐶 represent the height, width, and channel of an image, respectively, 𝑀 
denotes that each window contains 𝑀 𝑀  patches. The former is quadratic to patch 
number ℎ 𝑤, and the latter is linear when 𝑀 is fixed. The difference between the two 
computational complexities increases as the input image size increases. SW-MSA imple-
ments communication between windows through the Shift window, Masked MSA, and 
Reverse shift, as detailed in Figure 6. 

 
Figure 6. Illustration of the self-attention in shifted window partitioning. 

To improve the stability of the model and the performance loss caused by the SW-
MSA process, Swin Transformer V2 uses log-spaced continuous position bias to solve the 
above problem. The introduction of a log-spaced continuous position bias approach guar-
antees that the relative position bias can be smoothly transferred across window resolu-
tions. The continuous position bias method uses a small meta-network (e.g., an MLP net-
work) in relative coordinates to optimize the bias parameters, which is different than di-
rectly optimizing the parameters in a traditional network: 𝐵 Δ𝑥, Δ𝑦 = 𝒢 Δ𝑥, Δ𝑦 , (8) 

where 𝒢 is a small network that can be designed artificially. Then, to alleviate the com-
putational problem of needing to calculate relative position coordinates when converting 
between windows and the problem of inconsistent relative position coordinate ranges for 
windows of different sizes, Δ𝑥 = 𝑠𝑖𝑔𝑛 𝑥 ⋅ 𝑙𝑜𝑔 1 |Δ𝑥| , Δ𝑦 = 𝑠𝑖𝑔𝑛 𝑦 ⋅ 𝑙𝑜𝑔 1 |Δ𝑦| , 

(9) 

where ∆𝑥, ∆𝑦 and Δ𝑥, Δ𝑦 are the linear-scaled and log-spaced coordinates, respec-
tively. 
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2.3.2. Feature Map Visualization 
To illustrate the feature extraction ability of the proposed method more intuitively, 

we used the Gradient-weighted Class Activation Mapping++ (Grad-CAM++) [18] method 
for feature visualization. The method shows the crucial regions of the image predicted by 
generating a rough attention map from the chosen layer of the model. For our work, we 
used the last norm layer of the last block of the Swin Transformer as the chosen layer. The 
redder the color of the attention map, the higher the importance of the corresponding re-
gion of the image. The visualization results are shown in Figure 7. The proposed method 
can focus on the critical parts of the cloud image, and for images with fewer clouds, the 
model expands the area of focus (e.g., the third image from left to right). The model will 
focus on the overall features of images with dense clouds and no apparent features. 

 
Figure 7. Grad-CAM++ visualization results in the MGCD dataset. 

2.4. Multi-Modal Information Network and Feature Fusion Network 
In the Multi-modal Information Network and the Feature Fusion Network, we utilize 

the Multi Information Block (MI Block) as the main component. The MI Block consists of 
Linear, Batch Norm, and GELU, and the Dropout layer is used between MI Blocks to pre-
vent overfitting; the default setting of the Dropout ratio is 0.5. Regarding the choice of 
activation function, we use the Gaussian Error Linear Unit (GELU) [19]. In the modeling 
process of neural networks, the fundamental property of the model is non-linearity. At the 
same time, it is necessary to include the stochastic regular for the model generalization 
ability. The non-linear activation and the stochastic regular determine the model’s input. 
In the activation, the GELU introduces the idea of the stochastic regular, a probabilistic 
description of the input of the neuron, which is calculated as follows: 𝐺𝐸𝐿𝑈 𝑥 = 0.5𝑥 1 𝑡𝑎𝑛ℎ 2/𝜋 𝑥 0.044715𝑥 , (10) 

In addition to the regularization operations employed above, MMST uses residual 
units between certain MI Blocks. This idea is borrowed from the Deep crossing model 
[20], where the use of residual units in the designed network structure is likely to per-
form regularization, ensuring the stability of the model implicitly. 

2.5. Implementation Details 
We downscaled the ground-based cloud image from 1024 × 1024 to 256 × 256 and 

imported it into MMST at this size. Then, to perform data augmentation on the image, we 
used random horizontal and vertical flips with a probability of 50%. Subsequently, each 
image was normalized according to the mean and variance of ImageNet. On the other 
hand, to ensure data matching, we normalized the values of multi-modal information 
with normal distribution. 

The experimental platform comprised a server containing an Intel(R) Core(TM) i9-
9900 K 3.60 GHz CPU, an NVIDIA GTX 2080 Ti, and a memory of 32 GB. The operating 
system was Windows 10 Professional Edition. The software environment was Python3.10 
in Pytorch 1.11. 

In terms of models, the main network was initialized by the pre-trained Swin Trans-
former V2 on the ImageNet dataset, and we fine-tuned it on MGCD. For the parameters 
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of the linear layer in the Multi-modal Information Network and Feature Fusion Network, 
we used Kaiming Initialization [21], which can solve the problem that Xavier Initialization 
[22] is only applicable to linear activation functions and guarantees the stability of the 
gradient to a certain extent. Adding Batch Norm after each linear layer and using Dropout 
between MI Blocks can effectively prevent the model from overfitting. During the training 
phase, we used the NAdam optimizer to update the parameters of the network. NAdam 
adds the accumulation of Nesterov momentum on the basis of Adam. NAdam has more 
substantial constraints on the learning rate and has a more direct impact on the updating 
of the gradient. The initial learning rate was set to 5 × 10−6. Limited by the experimental 
equipment, the total number of training iterations was set to 30 and the batch size was set 
to 16. The computation complexity of MMST was 15.246 GFLOPs and the number of 
MMST’s parameters was about 74.104 M. The total training time was about 2.5 h. The loss 
function was Cross Entropy Loss, which is calculated as follows: 𝐿𝑜𝑠𝑠 = − ∑   𝑤 log ,∑    , 𝑦 , , (11) 

where 𝑥 is the input, 𝑦 is the target, 𝑤 is the weight, and 𝐶 is the number of classes. 
Accuracy is calculated as follows: 

Accuracy = correct

total
, (12) 

where 𝑛correct is the number of correctly classified samples, and 𝑛total is the number of all 
samples in the test dataset. 

3. Data Collection 
The Multi-modal Ground-based Cloud Image Dataset (MGCD) combines meteoro-

logical cloud images and corresponding multi-modal information. MGCD contains 8000 
ground-based cloud samples, and each sample includes a cloud image with a resolution 
of 1024 × 1024 and a set of multi-modal information. The cloud image is collected by a 
fisheye lens sky camera, which can provide observations of a wide range of sky conditions 
at 180° horizontal and vertical angles. Multi-modal information includes temperature 
(°C), humidity (%RH), pressure (hPa), and wind speed (m/s). According to the genus-
based classification recommendations of the World Meteorological Organization (WMO), 
the collected ground-based cloud images are divided into seven categories: (1) Cumulus, 
denoted as Cu; (2) Altocumulus and Cirrocumulus, denoted as Al-Ci; (3) Cirrus and Cir-
rostratus, denoted as Ci-Ci; (4) Clear sky, denoted as Cs; (5) Stratocumulus and Stratus 
and Altostratus, denoted as St-St-Al; (6) cumulonimbus and nimbostratus, denoted as Cu-
Ni; and (7) mixed cloud, denoted as Mc. Note that mixed clouds are meteorological clouds 
in which the sky is usually covered by no less than two types of clouds, and clear skies are 
cloud images with no more than 10% cloud volume. Figure 8 shows an example of each 
type of cloud and the corresponding multi-modal information in the MGCD. 



Sensors 2023, 23, 4222 10 of 17 
 

 

 
Figure 8. Some samples from the MGCD dataset. 

4. Results 
In this section, we compared the classification performance of variants of MMST, 

hand-crafted, and learning-based methods, and other classical classification methods on 
MGCD, verifying the effectiveness of the proposed MMST classification. 

4.1. Comparison with Variants of MMST 
The advantage of the proposed MMST model is that it can combine ground-based 

cloud images and corresponding meteorological information to improve the classification 
accuracy further. To demonstrate their effectiveness on the MGCD dataset, we listed several 
variants of MMST. The structures of variant 1 through variant 4 are shown in Figure 9.  

Variant 1. Variant 1 is a version of MMST, called MMST-small, with a smaller number 
of parameters (MMST is also called MMST-base). Compared with the 𝐶  of the Swin 
Transformer Block in MMST-base, which is 128, MMST-small sets 𝐶  to 96, the output 
layer uses fewer neurons (1024), and the feature fusion method uses Add. To further re-
duce the number of MMST parameters, we reduced the number of MI Blocks from 9 to 7. 

Variant 2. The structure of variant 2 is basically the same as that of MMST-base. The 
difference is that the Concat operation of Feature Fusion is changed to the Add operation 
to verify that for MMST, Add or Concat is more effective for feature fusion. 

Variant 3. Variant 3 is based on Variant 2, using Add to fuse ground-based cloud 
images and multi-modal meteorological features. The difference is that the MI Block re-
sidual connection is removed, and the rest of the structure remains unchanged to verify 
the impact of the residual connection on deep fusion. 

Variant 4. Variant 4 is based on MMST-base and uses Concat to fuse ground-based 
cloud images and multi-modal meteorological features. The difference is that the MI Block 
residual connection is removed, and the rest of the structure remains unchanged to verify 
the impact of the residual connection on deep fusion. 
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(a) (b) 

  
(c) (d) 

Figure 9. The four different variants of MMST. (a) Variant 1. (b) Variant 2. (c) Variant 3. (d) Variant 
4. 

Figure 10 gives the classification accuracy of MMST and its different variants on the 
MGCD dataset with both inputs of the ground-based cloud image and multi-modal infor-
mation. The MMST model achieved the highest accuracy at 91.30%. 

 
Figure 10. Comparison of accuracy of variants of MMST classification results. 

To further analyze the performance of the proposed MMST model, its confusion ma-
trix is shown in Figure 11, and the Recalls and F1-scores of the proposed MMST for dif-
ferent classes of clouds are listed in Table 1. 
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Figure 11. Confusion matrix for MMST classification results. 

Table 1. Evaluation metrics for MMST classification results. 

Class Precision (%) Recall (%) F1-Score (%) 
Cu 99.13 99.62 99.03 

Al-Ci 73.95 89.23 80.27 
Ci-Ci 95.78 95.49 95.91 

Cs 100 100 100 
St-St-Al 86.17 90.55 88.17 
Cu-Ni 95.49 84.13 89.04 

Mc 79.32 75.28 77.51 

4.2. Comparison with Hand-Crafted Methods 
In this section, we used local binary patterns (LBP) [23] and completed LBP (CLBP) 

[24], bag-of-visual-words (BoVW) [25], and pyramid BoVW (PBoVW) [26] to conduct ex-
periments on the MGCD dataset to explore the performance of the hand-crafted methods. 
In the experiments of this subsection, the values of (𝑃, 𝑅) of LBP were set to (8, 1), (16, 2), 
and (24, 3), respectively. Table 2 illustrates the classification results of these methods on 
the MGCD dataset. The proposed MMST achieved the greatest performance with vision 
inputs or vision+MI inputs among these classification models. 

Table 2. Traditional machine learning classification results. 

Class 
Vision Input Vision + MI Input 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

BoVW 66.15 62.80 66.95 63.94 67.20 66.19 67.91 66.60 
PBoVW 66.13 63.53 65.51 64.54 67.15 67.00 65.85 65.23 LBP ,  45.38 44.33 45.94 44.99 45.25 46.22 45.07 45.65 LBP ,  49.00 49.27 51.34 49.85 47.25 49.53 51.58 50.13 LBP ,  50.20 49.55 52.96 50.08 50.53 46.94 49.31 47.11 CLBP ,  65.10 64.45 65.39 64.32 65.40 65.12 65.57 65.07 CLBP ,  68.20 67.88 67.47 67.78 68.48 69.19 68.18 68.68 CLBP ,  69.18 70.71 66.20 68.73 69.68 69.92 71.67 70.50 
MMST 88.22 86.87 87.48 86.79 91.30 89.86 90.17 89.17 

4.3. Comparison with Other Deep Learning Methods 
Since MMST is a neural network model trained with an end-to-end architecture, we 

compare MMST with other deep-learning methods (e.g., VGG16 [27], ResNet50 [28], DMF 
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[29], DCAFs [30], CloudNet [6], JFCNN [31], DTFN [32], MMFN [12], HMF [33], Vit-base 
[9]) in both input cases. The choice of deep learning architecture will also affect the results 
[34], so the models for comparative experiments in this section include CNN and Trans-
former architectures. The results are shown in Figure 12. 

 
Figure 12. Comparison with other classification methods in two input cases. 

5. Discussion 
5.1. Analyses of the Experiments with Variants of MMST 

Comparing the performance of the proposed MMST and variant 2, as shown in Fig-
ure 10, it shows that using the Swin Transformer as the visual backbone network and 
using the residual structure to fuse multi-modal features have positive effects. The differ-
ence between MMST and variant 2 is whether the feature fusion layer uses Add or Concat. 
The experimental results showed that using the Concat method can retain information to 
the greatest extent, but this is at the cost of increasing the number of calculations, while 
using the Add method is a special form of Concat. That is, the dimension of the image 
description itself does not increase, but the increasing amount of information under each 
dimension reduces the computational effort; however, the disadvantage is that the feature 
information will be lost. For the MGCD dataset, it is more advantageous to use Concat to 
fuse the modal information. Secondly, variant 1 has fewer parameters, which means a 
faster calculation speed. Compared with MMST and other variants, variant 1 has the low-
est classification accuracy.  

Finally, comparing variants 2, 3, and 4 and the proposed MMST, we discovered that 
one of the differences is in the use of the residual structure. As seen from the results, we 
found that the model using the residual structure was more effective than the model with-
out the residual structure. Specifically, variant 2 classification accuracy was 0.38% higher 
than that of variant 3, and MMST was 0.35% higher than that of variant 4. In terms of the 
information fusion method, variant 2 and variant 3 used the Add method, and variant 4 
and MMST used the Concat method. The results showed that for the same architecture, 
the model performance was improved by simply replacing Add with Concat, with MMST 
achieving an accuracy 0.30% higher than that of variant 2, and variant 4 achieving an ac-
curacy 0.33% higher than that of variant 3. 

Combining Figure 11 and Table 1, we can see that the accuracy of Cumulus (Cu), 
Cirrus and Cirrostratus (Ci-Ci), and Clear sky (Cs) reached 99.19%, 95.10%, and 99.7%, 
respectively. It is clear from combining the datasets that these three categories of cloud 
images had clear contours and distinct features relative to other categories. Recall and F1-
score both reach above 95%. In contrast, Stratocumulus and Stratus and Altostratus (St-St-
Al) and Cumulonimbus and Nimbostratus (Cu-Ni) had no obvious cloud features, and 
the overall color of the cloud image was grayish, which made it more challenging to dis-
tinguish the clouds from the sky. The worst classification effect of cloud type was of mixed 
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cloud (Mc), with Precision, Recall, and F1-score results of only 79.32%, 75.28%, and 
77.51%, respectively. The existence of at least two types of clouds within the image in-
creased the difficulty of model learning. Observing the cloud map, we could see that the 
distribution and shape of mixed cloud (Mc) and Altocumulus and Cirrostratus (Al-Ci) 
clouds are more similar, so the model can easily misclassify them as Altocumulus and 
Cirrostratus (Al-Ci). 

5.2. Analyses of the Experiments with Hand-Crafted Methods 
By comparing the classification effects of Vision Input and Vision + MI Input, as 

shown in Table 2, the BoVW and PBoVW models based on the bag-of-words model were 
limited by the size of the lexicon as well as the dimensionality; even though the features 
of the ground-based cloud map were extracted, they could not describe the complete in-
formation of the cloud image well. After adding multi-modal information, it had richer 
features, so the accuracy increased to 67.20%. PBoVW was similar to BoVW, except that it 
incorporated a pyramidal hierarchical feature extraction technique, which was even less 
effective than BoVW. LBP had the highest accuracy of only 50.53% (with the combination 
of parameters (𝑃, 𝑅) of (24, 3)) because of its features, such as rotation invariance and gray-
scale invariance, but it was mainly used to describe local texture features. According to 
the experimental results, CLBP had a considerable improvement compared to LBP, and 
the classification accuracy reached 69.68% under the setting of 𝑃 = 24, 𝑅 = 3 with the im-
age and multi-modal information jointly input into CBLP, which was 2.53% higher than 
PBoVW (Vision + MI Input) and 19.15% higher than LBP ,  (Vision + MI Input); how-
ever, the accuracy of this classification method never exceeded 70%. It is evident that the 
classification method based on manual feature extraction has certain constraints, which 
are not only limited by the difficulty of designing features but also depend on the effec-
tiveness of the extracted features. Compared with the MMST model proposed in this pa-
per, even the best performing CLBP ,  was 19.04% and 21.62% lower than MMST in Vi-
sion Input and Vision + MI Input cases, respectively, which shows that the performance 
ceiling of the machine learning-based classification algorithm is far from the ceiling of the 
deep learning model. 

5.3. Analyses of the Experiments with Other Deep Learning Methods 
From Figure 12, we can outline the points as follows. Firstly, multi-modal features 

are complementary to visual features, and their combination can improve the perfor-
mance of single visual features as input. Secondly, the CNN-based methods, such as 
CloudNet, JFCNN, DTFN, and so on, are much better than the hand-crafted methods, and 
the classification accuracies are all higher than 75%. This is attributed to the highly non-
linear transformation nature of CNNs, which enables them to extract effective features 
from highly complex cloud data. Thirdly, although better than the classical CNN model 
ResNet50 (0.83% higher), the Vit-base model is less effective than the one designed for 
MGCD. Owing to the lack of local modeling capability, the results are not as good as the 
well-designed CNN models for MGCD, such as DTFN, MMFN, and HMF. Fourthly, the 
proposed MMST improves the accuracy from 90% to 91.30%. Moreover, it works well in 
both Vision Input and Vision + MI Input, and the classification accuracy in the case of 
Vision Input is 88.22%, which verifies the effectiveness of the MMST model.  

In addition to the classification-model-based supervised learning discussed in this 
section, in the development process of deep learning, relevant researchers also proposed 
multi-task learning and weak supervised learning. Multi-task learning is usually used to 
deal with different tasks through multiple different models and different loss functions 
for input data. However, for ground-based cloud image classification tasks, rich feature 
information can already be obtained from cloud images and multimodal data, so obtain-
ing auxiliary information from multi-task learning is very limited. On the other hand, 
weak supervised learning only labels part of the data, and the rest of the data depends on 
the model for reasoning. However, the annotation of ground-based cloud maps requires 
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a lot of professional knowledge and the complexity of cloud movement increases the dif-
ficulty of weak supervised learning. 

6. Conclusions 
In this paper, we introduced a novel multi-modal ground-based cloud map recogni-

tion method called MMST. The proposed MMST uses only the attention mechanism and 
linear layers to extract cloud maps and multi-modal features. Since the Transformer ar-
chitecture lacks CNN-like prior knowledge, the improved Swin Transformer was used as 
the visual backbone network, where W-MSA and SW-MSA replace the local modeling in 
the CNN and use improved Scaled cosine attention, residual post normalization, and log-
spaced continuous position bias to further promote the model representation. In addition, 
we incorporated the residual structure into the visual and multi-modal information fusion 
to ensure the stability of the training process and the adequacy of information fusion. We 
performed validation on the MGCD and the results show that the proposed MMST is 
comparable to state-of-the-art methods. 

In future work, the following four processes can be considered to improve the pro-
posed model: 
1. Collect a ground-based cloud image dataset with a considerably larger amount of 

data. 
2. Obtain more multi-modal information combined with image information to improve 

classification accuracy. 
3. Improve the image coding methods and local modeling capabilities to enable the 

model of the Transformer architecture to gradually surpass or even replace CNN in 
the visual field. At the same time, the ability of the model to distinguish mixed cloud 
layers should be improved. 

4. Scaling images before entering the network results in a loss of information. In theory, 
the Swin Transformer can process input data of any length (that is, images of any 
size). Future work can be directed toward processing high-resolution ground-based 
cloud images. 
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