
Citation: Vysocký, A.; Poštulka, T.;

Chlebek, J.; Kot, T.; Maslowski, J.;

Grushko, S. Hand Gesture Interface

for Robot Path Definition in

Collaborative Applications:

Implementation and Comparative

Study. Sensors 2023, 23, 4219.

https://doi.org/10.3390/s23094219

Academic Editors: Krzysztof
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Abstract: The article explores the possibilities of using hand gestures as a control interface for
robotic systems in a collaborative workspace. The development of hand gesture control interfaces has
become increasingly important in everyday life as well as professional contexts such as manufacturing
processes. We present a system designed to facilitate collaboration between humans and robots in
manufacturing processes that require frequent revisions of the robot path and that allows direct
definition of the waypoints, which differentiates our system from the existing ones. We introduce a
novel and intuitive approach to human–robot cooperation through the use of simple gestures. As
part of a robotic workspace, a proposed interface was developed and implemented utilising three
RGB-D sensors for monitoring the operator’s hand movements within the workspace. The system
employs distributed data processing through multiple Jetson Nano units, with each unit processing
data from a single camera. MediaPipe solution is utilised to localise the hand landmarks in the
RGB image, enabling gesture recognition. We compare the conventional methods of defining robot
trajectories with their developed gesture-based system through an experiment with 20 volunteers.
The experiment involved verification of the system under realistic conditions in a real workspace
closely resembling the intended industrial application. Data collected during the experiment included
both objective and subjective parameters. The results indicate that the gesture-based interface enables
users to define a given path objectively faster than conventional methods. We critically analyse the
features and limitations of the developed system and suggest directions for future research. Overall,
the experimental results indicate the usefulness of the developed system as it can speed up the
definition of the robot’s path.

Keywords: human-robot collaboration; human-robot interaction; hand tracking; hand recognition;
gesture

1. Introduction

Collaborative robotics offers new possibilities for automating manufacturing pro-
cesses. Collaboration between humans and robots brings benefits because it combines
the advantages of both. Robots work fast, precisely, and consistently, while people are
more flexible, creative, and better at decision-making [1]. There are several low-volume,
high-value manufacturing processes that involve a large number of product variants and
complex tasks, with great potential for automation using collaborative robotics [2]. These
processes may require a frequent revision of the robot path. There is a potential for the
development of HMIs (human–machine interfaces), which can speed up the process of
adjustment of the robot path.

Standard robot programming requires skilled and trained operators. Teach pendants
and touch screens are usually used for programming simple tasks or for debugging more
complicated programmes. Operating the teach pendant and other interactive controls
may distract the operator’s attention from the workplace. Certain types of robots allow
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defining waypoints via hand guiding. This method uses a special probe on the end effector
or data from robot joints to guide the robot by hand to the required position [3]. Another
approach is to control the robot from an external application with automatic trajectory
generation. This requires additional hardware and software for monitoring the workspace
of the robot, motion control and exception handling. Currently, most industrial robot
systems use semi-automatic methods for robot programming [2].

In human interaction, verbal and non-verbal communication is intuitively used. Such
communication can also be partially used in human-robot communication. This can
significantly reduce the time required to train operators of robotic workspaces. In the
presented application, we use non-verbal communication, specifically hand gestures, which
is a popular way of interacting with or controlling machines, and it has been implemented
in many applications, as shown in a comprehensive overview that analyses human-machine
interfaces in the smart factory [4]. We focus on the basic operations used to edit robot
trajectories for applications that do not require high accuracy. In this article, we compare
standard (conventional) ways of defining robot trajectories with our developed gesture-
based system in conditions of a real workspace closely resembling the intended industrial
application. In the described experiment, the user is able to create, confirm, or delete
waypoints, edit their orientation, and move the robot through the defined path.

The current article is organised as follows: In Section 2, an analysis of the State-
of-the-Art related to the subject matter is conducted. Section 3 outlines the workspace
and principles used in the implementation. Section 4 outlines the experimental setup,
hypotheses, and results. In Section 5, the experiments and results are discussed and
critically analysed. Finally, Section 6 offers a conclusion of the study, as well as future
directions for research.

2. Related Work

This section contains an overview of approaches to improve communication in human-
robot collaboration by helping robots to understand human intentions as a means of
allowing simpler programming and interaction.

2.1. Communication Strategies for Intuitive Interaction

People use verbal and non-verbal communication to share information with each
other, and these methods can also be employed for human-robot communication. Verbal
communication involves the use of voice commands [5–7], which can be recognised and
acted upon by the robot. This can be achieved through pre-defined commands that execute
pre-programmed instructions. Non-verbal communication, on the other hand, involves
the use of gestures and facial expressions, with one approach being the tracking of eye
movements. By tracking the gaze point and movement [8], the system can determine what
object the human is looking at and respond accordingly. Human–robot communication
may cover a wider range of applications, with different gesture types triggering specific
instructions [4]. In addition to direct robot control, human–robot communication can also
encompass safety features. For example, the robot may detect the position of a human
and avoid any potential collision [9,10]. Voice commands allow for a wider range of
instructions to be programmed compared to gestures, but in noisy industrial environments,
voice commands may be distorted and not correctly recognised. Therefore, gestures can
be a preferable method of communication for conveying movement information in such
environments [2].

2.2. Hand Detection and Gesture Recognition Approaches

Hand detection and gesture recognition are important tasks in the field of computer
vision and have numerous applications in areas such as human-computer interaction, sign
language recognition, and robotics [11,12]. One group of approaches is based on traditional
computer vision techniques, such as template matching and feature extraction. These
methods rely on handcrafted features and typically require a lot of domain knowledge
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and manual tuning to achieve good performance. Another group of approaches is based
on deep learning techniques, such as convolutional neural networks and recurrent neural
networks. These methods have achieved state-of-the-art performance in hand detection
and gesture recognition tasks. An example of such a system is MediaPipe Hands [13],
which utilizes RGB data to locate the key points of the hand and track their movement.
Specialized sensors, such as Kinect [14,15] and Leap Motion [16,17], utilise these approaches
and offload the main processing to themselves, allowing for real-time hand detection. These
systems also often use depth image data [18] or multimodal data in order to provide more
accurate predictions. Training neural network models, however, requires large datasets,
which are hard and expensive to acquire [19].

Another group of approaches for hand detection and gesture recognition is based on
using gloves [10,20–22] and wristbands [23,24] equipped with sensors, tracking devices,
or motion-capturing markers such as magnetic or infrared markers. Gloves equipped
with sensors or tracking devices can capture data, such as hand position, orientation,
and movement, which can be used to identify and recognize gestures as shown in a
comprehensive overview that analyses commercial smart gloves [25]. These types of
systems are often used in virtual reality and gaming applications, where the user’s hand
movements need to be accurately tracked and translated into virtual actions. Motion-
capturing markers, such as magnetic [26] or infrared markers [27], are often used in
research applications where a high level of accuracy is required. The captured data can then
be analyzed to recognize specific gestures or hand poses [28]. Overall, gloves equipped
with sensors, tracking devices, or motion-capturing markers can provide highly accurate
data for hand detection and gesture recognition tasks. However, they can also be more
cumbersome to use compared to other approaches and may require specialized equipment
and setup.

2.3. Application of Gesture-Based Control

The detection of a hand and recognising of its gestures enables the creation of logic
to associate commands with the robot. Existing gesture control applications for robots
can be divided into two categories: the control of mobile robots and the control of in-
dustrial manipulators. Müezzinoğlu et al. [29] presented a system for real-time control
of UAVs using sensor-equipped gloves that detect gestures and hand rotation. They use
three different gestures (fist clenched, palm open, and palm clenched with thumb out) in
combination with hand tilt information to produce a total of 25 types of commands that
represent the direction and speed of movement. A similar application was explored by
DelPreto et al. [30], which utilized electromyography-based sensing system for gesture
recognition. Carneiro et al. [21] used gestures to teleoperate a walking robot, while Roda-
Sanchez et al. [23] navigated the robot to pre-programmed positions using position sensing
and wrist rotation. Liu et al. [11] presented a system for modifying a robot’s path using
gestures: the application allowed editing the position of points of an already defined path.
The system is based on the use of the Leap motion sensor. Four hand gestures are captured
(pointing gesture to select a point, swiping a finger on a fictitious line to create a straight
line, scissors gesture to cut a curve at a point, drag to catch and move the created point,
clenched fist to stop the last operation) [11].

Zhang et al. controlled a robot with a parallel structure using the Leap motion sensor
to sense the gesture and hand position. The hand motion (x, y, z) is evaluated, and this
motion is transmitted to the parallel structure. The hand motion is complemented by an
open-close palm gesture to control the effector closure [12]. Kamath et al. [14] demonstrated
real-time control of a mobile robot using upper limb gestures recognised by a Kinect sensor:
hands aligned with the body indicate a stop state, while the arms extended forward denote
a command to move forward, etc. Quintero et al. [15] presented how Kinect data can
be used to calculate the pointing beam coming from a human hand and used to point at
objects. The coordinates of the point are calculated as the intersection of the beam and
the object. It is worth noting that gesture control has a wide range of applications beyond
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just human-robot collaboration. For instance, it can provide a solution for privacy-related
issues in everyday use of voice assistants [31], be used in healthcare applications [32], and
facilitate other forms of human-machine interaction tasks.

The present study introduces a novel system for defining a comprehensive robot
path solely through hand gestures without the need for any additional input devices. The
proposed approach utilises RGB-D depth cameras to determine the position of the hand
while avoiding the use of any extra hardware for tracking hand movements, such as IMU
wristbands or gloves. Prior research in this field has shown the utilisation of gestures
for either modifying pre-defined paths or directly guiding the robot towards a specific
location. For instance, an operator may use gestures to select a point on the path and move
it relatively via a drag gesture. Conversely, our system allows for direct entry of points into
the path.

3. Materials and Methods

This section describes the implementation of the proposed system for defining robot
path by gesture commands: the basic concept of our system for controlling the robot
by gestures; the workspace on which the system was developed and tested; the system
architecture.

3.1. Concept

The proposed system’s core component is a monitoring system for a collaborative
workspace, which employs multiple RGB-D sensors to ensure comprehensive coverage
of the workspace during its operation. The algorithms responsible for processing depth
and RGB images from the sensors can identify hands within the space, determine their
positions relative to the robot, and recognise their gestures. The hands are represented
by the positions of their key points. As the hand can be occluded by the robot body in
a single camera view, we opted for a modular system that allows us to add any number
of cameras to ensure accurate mapping of hand key points, even under conditions of
partial or complete occlusion by the robot. By adding more cameras, we can cover an
arbitrarily large workspace. Moreover, each camera provides the added benefit of refining
the recognised position of key points. By utilising the recognised gestures and known
hand key point positions, waypoints in space are defined, which, in turn, create the robot’s
path in a visualisation environment that includes a digital twin of the workplace. This
environment also permits direct control of the robot, with commands executed based on
gestures performed with both hands.

3.2. Workspace

The presented gesture-based path planning system was implemented at our experi-
mental workstation with the Universal Robots UR3e collaborative robot (Figure 1).

This robot has 6 degrees of freedom, an operating range of 500 mm, and a payload
of 3 kg. The workstation is made up of a modular system of ITEM aluminium profiles.
The work surface comprises an aluminium plate (10 mm thick) with M5 mounting holes.
These holes were used to fix the test points in pre-defined positions (more on that in
Section 4.1). The robot’s workspace is monitored by three RGB-D Intel RealSense D435
sensors using infrared stereo vision for depth image acquisition. Calibration of camera
positions relative to the robot (extrinsics) is performed by detecting the custom grid board
with visual markers placed on the workstation [33].

3.3. System Architecture

The system was distributed to multiple computational units Jetson Nano due to the
high requirements for processing data from each camera. According to the requirements
for communication between several devices, it was decided to use the modular architecture
offered by the robot operating system (ROS) and to divide the software implementation
into several separate components.
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Figure 1. Collaborative workspace with UR3e: (a) overview, (b) Locations of three RGB-D sensors.
The blue vectors depict view directions (z-axes).

The architecture of the system is shown in the diagram in Figure 2. The system is an im-
proved version of the technical solution for mapping obstacles in the robot workspace [10].
The initial data collection from the camera is provided by the Obstacle Mapper block,
which packages RGB and depth images together with the intrinsic and extrinsic camera
parameters into a ROS message. The message is then published by this block. The modified
data are further processed by the Hand Recogniser block, which outputs information that
describes the hands captured by the camera. Due to the computational complexity of the
hand key points recognition task using MediaPipe Hands [13], the recognition is performed
on Jetson Nano minicomputers using their integrated GPUs. Each unit processes data from
a single camera. The processed data are then sent to the main Jetson Nano aggregation
unit, which performs filtering and merging of the processed data. The output of this unit
is the merged information of at most one right-hand and one left-hand. The high-level
operation of the system, including GUI, path definition, and its visualisation, is provided
by an application running on the operator’s PC. It receives the hands’ data from the main
Jetson unit through UDP communication.
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Obstacle Mapper. It is a ROS node written in C++ using the Intel RealSense SDK. The
function is shown in Figure 3. This node reads the raw images (RGB and Depth) provided
by the camera. Using the built-in RealSense Align function, the depth image is aligned to
the colour image. The node also collects and forwards camera data (intrinsics) and camera
position calibration data relative to the robot (extrinsics), including depth scale constant.
A detailed description of the calibration of the camera extrinsic in order to express the
camera data relative to the robot coordinate system is described in [34]. The ROS message
CameraData.msg is constructed from these data and is sent to the Hand recogniser block.
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Hand Recogniser. This Python node (shown in the diagram in Figure 5) processes the
latest message received from CameraData.msg (the queue is set to 1 message) received from
ObstacleMapper. The MediaPipe version 0.8.9, which we compiled for CUDA 10.2 [35], is
used for hand detection and key points localisation. The use of CUDA allowed us to achieve
up to 20 FPS when processing the RGB stream from the camera at 320×240 resolution. The
MediaPipe parameters used are shown in Table 1.

Table 1. MediaPipe Hands parameters.

Parameter Value

model_complexity 1
max_num_hands 2

min_detection_confidence 0.5
min_tracking_confidence 0.5

static_image_mode false

In the colour image, the handedness (left or right), hand key points (landmarks), and
confidence score are recognised for each hand instance using MediaPipe. The position
of the key points is specified as absolute XY pixel coordinates in the 2D image. In the
default MediaPipe implementation, the hand key points might be located outside the image
boundaries. In order to recognise gestures, all the landmarks must be within the image.
Therefore, the points located outside the image boundaries are cropped to the maximum
image dimensions. Then, the relative positions of the landmarks to the base point of the
palm are calculated; see Figure 4.
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Figure 4. MediaPipe hand landmarks with their indices—hand base point is denoted with “0” [36].

Hand gestures are recognised from the relative positions of landmarks using the
KeyPointClassifier model provided in [13]. 2D landmarks are projected from the colour
image to the depth image using the standard Intel RealSense SDK feature. The obtained
3D coordinates of the landmarks in the camera coordinate system are expressed in the
robot coordinate system using extrinsic parameters. The data collected in this node (see
Figure 5) are put together into a HandData.msg ROS message that represents informa-
tion about a single hand. Individual hand messages are combined into a ROS message,
MultiHandData.msg, which is sent to the Hand data processor node.
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Hand data processor. This Python node performs aggregation of data received from
individual Jetson Nano units. The function is depicted in Figure 6. The individual Mul-
tiHandData.msg messages received from Jetson Nano units are synchronised using the
AproximateTimeSynchronizer with a maximum delay of up to 0.1 s (the queue for Aproxi-
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mateTimeSynchronizer as well as for each Subscriber is set to 1 message so that only the
latest messages are processed). Two arrays (right and left hands) are created from the
received data. The outliners are removed from each array. Whether a hand is an outliner or
not is judged by the centroid (calculated from all key points of the corresponding hand)
positions of the hands using z-score. The threshold value of the z-score for hand removal
is 2 [37]. All the remaining hands on the same side are combined into one so that the
individual landmarks are calculated as the median of the corresponding landmarks of all
hands in the array. The confidence score is calculated as the average of the confidence score
of the hands in the array. The resulting hand gesture for each side is filtered as follows:

• If the number of unique detected gestures is the same as the number of detected hands,
the gesture of the hand with the highest score is considered the resulting gesture.

• Otherwise, the gesture that is found most frequently is considered the resulting gesture.
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The final left-hand and right-hand data are sent using UDP to the operator’s PC with
the visualisation application.

Path planner, visualiser. Our DirectX11-based visualisation application written in
C++ is running on the operator’s PC. We visualise the work cell, the actual position of the
robot and hands, the path waypoints created, and the application controls. The application
is controlled using pre-defined combinations of hand gestures. The principal scheme of the
application is shown in the flow chart in Figure 7.

The Hand gesture logic block is responsible for evaluating the logic of command
invocation through gestures. The application has two modes: editing and validation,
which can be switched by pointing to the virtual button located in the workspace. The
relationship between gestures and commands is illustrated in Figure 8. Gestures are utilised
to generate waypoints that define the robot’s path. If a command is given to drive the
robot to a specific location, a motion command is generated and sent to the robot controller
through an external communication interface (Universal Robots secondary client) using
TCP. The robot executes the command thereafter. The secondary client also reads the robot’s
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current joint variables, and these data are utilised to display the robot’s current location in
the application.
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4. User Study

To assess the efficacy of the human–machine interface (HMI) developed for shared
workspaces, a user study was carried out (refer to Figure 9). The study involved a testing
system with 20 participants. The purpose of this study was to verify the effectiveness of
the developed HMI in shared workspace conditions.
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Figure 9. Performed user study: Workspace of the UR3e Robotic Arm with distributed passage
points, a screen for visualising the robot’s digital twin and an experiment participant.

During the experiment, we collected data that included both objective data measure-
ments of each test cycle and subjective data collected through questionnaires. By analysing
these data, we were able to compare the different interfaces and assess whether our research
hypotheses were valid.

4.1. Experiment Description

To assess the usability of a developed interface for defining a robot’s path, an experi-
ment was conducted with 20 university members who volunteered as test participants. The
average age of the participants in the experiment was 27 years. The oldest participant was
42 years old, and the youngest was 21 years old. Two participants identified themselves as
female and the rest as male. The group was tasked with defining and validating the robot’s
path using three different programming interfaces while their performance was evaluated.
The experiment measured the quantitative parameters of the time required to program
the path and the accuracy of the waypoint definition, which were statistically analysed to
determine the status of the research hypotheses. In addition, each volunteer completed a
task-specific questionnaire to provide feedback on the usability of each interface and their
perceived naturalness during the task execution. The experiment was conducted without
causing any harm to the volunteers. Six participants out of the 20 tested subjects had no
prior experience in the field of robotics.

The experimental task was based on defining the waypoints of the robot’s path. These
points were represented in the workspace by 3D printed targets (see Figure 10). These
points are only used to ensure the consistency of the measurements for each trajectory
during each trial by providing the user with a visual reference of where the points are
located in space.
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Figure 10. Experiment description: representation of the goal waypoint.

In each round, the participant’s task was to define a single path from a set of pre-
defined paths (5 paths in total) using each of the three interfaces. The order of the paths was
defined randomly. Each path consisted of 3 waypoints: the points could be repeated within
different paths but were necessarily different within every single path. The following
interfaces were tested:

• V1—Teach pendant: the volunteer defines the path using a standard UR robot teach
pendant with a PolyScope GUI.

• V2—Hand guidance: the volunteer presses the release button on the teach pendant
allowing him to freely drag the robot to a desired position. The positions are saved
using PolyScope GUI.

• V3—Gesture-based control: the volunteer uses the proposed gesture-based robot
control system to define the waypoints.

A total of 15 tests were conducted with each volunteer (5 paths defined using each
of 3 interfaces). The order of the tested interfaces (V1, V2, V3) was selected at random for
each volunteer to mitigate the order effect (practise effect [38]) on the measured parameters.
Each input point had to be saved in the system’s memory, and then the entire trajectory was
traversed to validate the correctness of the input points. During the task, the total measure-
ment time was recorded, including the position of the saved points. The time measurement
was finished after the trajectory was completed and validated by the participant.

All experiments were conducted with the required safety precautions, and all test
subjects were made aware of potential risks and instructed on safety-critical behaviours.

The participants had the option to participate or not, and they had the freedom to
withdraw from the experiment at any point they desired. Prior to the start of the experiment,
all participants were obligated to read and sign a consent form as well as the experimental
procedures. Once they agreed to participate, any uncertainties regarding the task and the
principles of each interface were clarified by the experimenter.

In addition, each volunteer was given the opportunity to test each interface on three
different trajectories that were not utilised in the actual experiment prior to commencing
the study.

Each round started with a 3-2-1 countdown so that the volunteer knew when to start
timing the experiment. Before the start of each round, the volunteer stood in front of the
robot in the starting position. This position has been chosen so that the user in the default
position is as close as possible to the conditions in actual operation. During each trial, the
following outcomes were possible:

• If the volunteer has entered all the given waypoints correctly and has subsequently
validated the entire trajectory, the task is considered successfully completed.
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• If the robot emergency stop was activated for any reason (during the measurement),
the measurement is terminated, and the volunteer repeats the entire measurement of
that one particular trajectory. Saved values are replaced by newly measured ones.

• In case the volunteer incorrectly enters any of the waypoints, the values from this
measurement are excluded, and the measurement is considered unsuccessful.

In addition to objective parameters, multiple subjective aspects of interacting with the
tested interfaces were mapped. The analysis of subjective findings was based on responses
to 21 questions for each interface (and additional 3 questions specifically focused on our
gesture-based HMI). The questions consisted of three sections.

The first section consisted of six questions (QTLX1-QTLX6, Table 2) used by an in-
dependent agency of the National Aeronautics and Space Administration (NASA) to
subjectively evaluate newly developed systems. The NASA Task Load Index (NASA-
TLX) [39] has been used worldwide to help researchers evaluate workload in various
human-machine systems. It is a widely used tool to subjectively evaluate a wide range of
areas, from systems to work teams themselves. The results of the test reflect the level of
worker workload on a scale of 0 to 100 (where 0 is the lowest load and 100 is the maximum
load). The results of the test reflect the level of worker workload on a scale of 0 to 100
(where 0 is the lowest load and 100 Is the maximum load). In our case, a shortened version
of this test called the “Raw TLX” was used [40].

Table 2. Questions used for NASA Task Load Index for all the tested interfaces (Adapted from [39]).

Task Load Index (NASA-TLX) Questions

QTLX1. How much mental and perceptual activity was required? Was the task easy or demanding,
simple or complex?

QTLX2. How much physical activity was required? Was the task easy or demanding, slack or
strenuous?

QTLX3. How much time pressure did you feel due to the pace at which the tasks or task elements
occurred? Was the pace slow or rapid?

QTLX4. How successful were you in performing the task? How satisfied were you with your
performance?

QTLX5. How hard did you have to work (mentally and physically) to accomplish your level of
performance?

QTLX6. How irritated, stressed, and annoyed versus content, relaxed, and complacent did you
feel during the task?

The second part consists of 10 questions (QSUS1-QSUS10, Table 3) from the widely
used tool System Usability Scale (SUS) [41], which is designed for the subjective evaluation
of industrial systems. SUS analysis helps to achieve industry standards and has been used
in more than 1300 publications. Subjective questions are rated on a score scale from 1 to 5.
From these scores, an overall rating of 0–100 is obtained according to the procedure. SUS
provides a single number that represents a composite measure of the overall usability of
the system studied.

Table 3. Questions used for System Usability Scale for all the tested interfaces (Adapted from [41]).

System Usability Scale (SUS) Questions

QSUS1. I think that I would like to use this system frequently.
QSUS2. I found the system unnecessarily complex.
QSUS3. I thought the system was easy to use.
QSUS4. I think I would need support of technical person to be able to use this system.
QSUS5. I found the various functions in this system were well integrated.
QSUS6. I thought there was too much inconsistency in this system.
QSUS7. I would imagine that most people would learn to use this system very quickly.
QSUS8. I found the system very cumbersome to use.
QSUS9. I felt very confident using the system.
QSUS10. I needed to learn a lot of things before I could get going with this system.
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The last part of the questions consisted of 5 questions related to all interfaces and an
additional 3 questions specifically focused on our gesture-based HMI. We evaluate the last
section of the questions based on a 1–5 Likert scale (scaling from 1—“totally disagree” to
5—“totally agree”). The questionnaire items were inspired by the works of Bolano et al. [42]
and A. Hietanen [43]. However, due to differences in the tested interfaces, the questions
have changed significantly.

The first five questions (Q1–Q5, see Table 4) were aimed at comparing aspects of
collaboration during task execution by all tested interface variants (V1, V2, V3) and testing
the general clarity of the instructions provided. These questions are task and awareness
related.

Table 4. General questions for all the tested interfaces.

General Questions

Q1. I can do the task better.
Q2. I felt safe operating the robot.
Q3. I felt anxious when working near the robot.
Q4. Controlling the system took my attention away from the workstation.
Q5. The system response was comfortable.

The last three questions (QGB1–QGB3, see Table 5) were task- and awareness-related
and aimed to only map work with our HMI (Gesture-based interface). The goal was to find
out how the volunteers responded to our HMI and whether the tools used to visualise the
digital twin of the system were appropriately chosen.

Table 5. Questions related to Gesture-based interface.

Gesture-Based Interface-Related Questions

QGB1. The HMI was improving my awareness of the robot’s future trajectory.
QGB2. The feedback in the form of displaying a digital twin was easy to understand.
QGB3. The gesture chosen was intuitive for the operation.

The volunteer could additionally leave a free comment about any topic related to each
interface option.

4.2. Hypotheses

The initial hypotheses are based on the suggestion that our proposed robot control in-
terface should make robot trajectory programming more efficient. The dependent measures
(objective dependent variables) were defined as task completion time and task accuracy of
trajectory point input. The within-subjects independent variable was defined as interface:

• V1: Teach pendant.
• V2: Hand guidance.
• V3: Gesture-based interface.

Overall, it is expected that the test subjects will perform with lower task completion
times, similar or lower accuracy of waypoint input, and will have higher subjective ratings
when working with V3 Gesture-based interface. The experimental hypotheses were defined
as follows:

Hypothesis 1 (H1). The efficiency of the test subjects will be higher with an interface using
gestures (V3) than with an interface using a teach pendant (V1) or manual guidance (V2). Higher
efficiency is categorised as lower task completion time.

Hypothesis 2 (H2). The accuracy of creating waypoints by test subjects will be similar or lower
for the interface using gestures (V3) as for the interfaces using teach pendant (V1) and manual
guidance (V2). The accuracy is categorised as a small deviation of the trajectory waypoint positions.
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Hypothesis 3 (H3). Volunteers will subjectively percept the proposed interface using gestures (V3)
as easier to use and more applicable to the task at hand compared to interfaces using a teach pendant
(V1) or manual guidance (V2).

Hypotheses H1 and H3 are based on our assumption that defining the robot’s path
using gestures is more intuitive, more comfortable, and simplifies the task. Hypothesis
H2 assumes that hand detection may have an inaccuracy, and this will be reflected in the
definition of the waypoints.

4.3. Results—Objective Evalutation

Hypothesis H1 states that the efficiency of the test subjects will be higher with interface
V3 than with interfaces V1 and V2. The total time taken to complete the tasks for each
interface was measured and compared between them. It can be seen from Figure 11 that
the average task completion time is significantly higher in V1 condition than V2 and V3
conditions. Completing the task using hand guidance took twice as long as using gestures,
a task performed using a teach pendant took four times longer. The completion time means
were compared using the ANOVA test, and statistically significant differences were found,
F (2.38) = 328.08; p < 0.00001.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 

Hypothesis 1 (H1). The efficiency of the test subjects will be higher with an interface using ges-

tures (V3) than with an interface using a teach pendant (V1) or manual guidance (V2). Higher 

efficiency is categorised as lower task completion time. 

Hypothesis 2 (H2). H2: The accuracy of creating waypoints by test subjects will be similar or 

lower for the interface using gestures (V3) as for the interfaces using teach pendant (V1) and man-

ual guidance (V2). The accuracy is categorised as a small deviation of the trajectory waypoint po-

sitions. 

Hypothesis 3 (H3). Volunteers will subjectively percept the proposed interface using gestures 

(V3) as easier to use and more applicable to the task at hand compared to interfaces using a teach 

pendant (V1) or manual guidance (V2). 

Hypotheses H1 and H3 are based on our assumption that defining the robot’s path 

using gestures is more intuitive, more comfortable, and simplifies the task. Hypothesis H2 

assumes that hand detection may have an inaccuracy, and this will be reflected in the 

definition of the waypoints. 

4.3. Results—Objective Evalutation 

Hypothesis H1 states that the efficiency of the test subjects will be higher with inter-

face V3 than with interfaces V1 and V2. The total time taken to complete the tasks for each 

interface was measured and compared between them. It can be seen from Figure 11 that 

the average task completion time is significantly higher in V1 condition than V2 and V3 

conditions. Completing the task using hand guidance took twice as long as using gestures, 

a task performed using a teach pendant took four times longer. The completion time 

means were compared using the ANOVA test, and statistically significant differences were 

found, F (2.38) = 328.08; p < 0.00001. 

 

Figure 11. Average task completion time with standard errors for all 20 participants: lower is better. 

The following post-hoc t-tests revealed statistically significant differences in mean 

task completion times between V1 (M = 98.05, SE = 3.68) and V2 (M = 51.40, SE = 2.75) 

interfaces, t (19) = 19.53, p < 0.00001. There was also a significant difference in mean task 

completion times between V1 and V3 (M = 23.69, SE = 0.49) interfaces, t (19) = 20.60, p < 

0.00001. Thus, hypothesis H1 was supported. 

Hypothesis H2 states that the accuracy of entered waypoints for test subjects will be 

lower with V3 than with V1 and V2. The average deviations of waypoint accuracy were 

measured. It can be seen from Figure 12 that the average deviation was significantly 

higher for V3 interface (M = 0.0408, SE = 0.0019) compared to V1 (M = 0.0109, SE = 0.0005) 

and V2 (M = 0.0110, SE = 0.0007). 

98.05

51.40

23.69

0

20

40

60

80

100

120

V1: Teachpendant V2: Hand-guidance V3: Gesture-based

Ta
sk

 c
o

m
p

le
ti

o
n

 t
im

e 
[s

]

Figure 11. Average task completion time with standard errors for all 20 participants: lower is better.

The following post-hoc t-tests revealed statistically significant differences in mean task
completion times between V1 (M = 98.05, SE = 3.68) and V2 (M = 51.40, SE = 2.75) interfaces,
t (19) = 19.53, p < 0.00001. There was also a significant difference in mean task completion
times between V1 and V3 (M = 23.69, SE = 0.49) interfaces, t (19) = 20.60, p < 0.00001. Thus,
hypothesis H1 was supported.

Hypothesis H2 states that the accuracy of entered waypoints for test subjects will be
lower with V3 than with V1 and V2. The average deviations of waypoint accuracy were
measured. It can be seen from Figure 12 that the average deviation was significantly higher
for V3 interface (M = 0.0408, SE = 0.0019) compared to V1 (M = 0.0109, SE = 0.0005) and V2
(M = 0.0110, SE = 0.0007).

The average deviations were compared using ANOVA test. Statistically significant
differences were found, F (2,38) = 0.00594; p < 0.00001. The following post-hoc t-tests
revealed a statistically significant difference in mean average deviations between V1 and
V3 interfaces, t (19) = −16.16, p < 0.00001. Additionally, the difference in mean average
deviations between V2 and V3 was statistically significant, t (19) = −15.44, p < 0.00001.
Thus, hypothesis H2 was supported.
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Figure 12. Average deviations of waypoints accuracy with standard errors for all 20 participants:
lower is better.

If we express the deviations in the individual axes of the robot coordinate system (see
Figure 13), we can observe that the total deviation in the V3 interface consists mainly of the
deviation in the Z direction.
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Figure 13. Figure 13. Average deviations of waypoints accuracy with standard errors in the individual
axis of the robot coordinate system for all 20 participants: lower is better.

4.4. Results—Subjective Evaluation

Hypothesis H3 assumes that volunteers’ subjective perception of the proposed gesture-
based interface (V3) is easier to use and better suited to the task than the V2 and V1
interfaces. The results of subjective perception consist of three parts.

The first part reports the overall results from the official NASA Task Load Index for
each of the interfaces used. It can be seen from Figure 14 that the average task load of the
participants in the V3 condition is lower than in the V2 and V1 conditions.

The second part is the overall results from SUS (see Figure 15) for each of the interfaces
shows that the average subjective usability of the system in the V3 state is higher than in the
V1 state. The data obtained did not indicate sufficient difference for V2 and V3. Therefore,
the hypothesis was supported only partially.

The third part of the questions consisted of 5 questions for estimating the subjective
comfort and safety of the participant and 3 questions specifically focused on the Hand
gesture interface. The first five questions indicate a better subjective feeling of workers
when working with our HMI than when working with teach pendant. However, this claim
is not sufficiently supported statistically (see Figure 16).
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Figure 14. Average scores with standard errors for the questions QTLX1–QTLX6 used for evaluation
of the NASA Task Load Index: lower is better.
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The remaining three questions (QB1–QB3) were not statistically evaluated since their
values were obtained only for V3. However, in general, the values indicate the appropri-
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ateness of the chosen gestures as well as support the idea of increasing awareness of the
future trajectory of the robot (see Figure 17).
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5. Discussion

In order to assess the developed system, we critically analyse its features and limi-
tations. The presented system uses an innovative type of control interface for industrial
robots based on hand gesture detection. During operation of the system, the user does not
need to hold or wear any tracking device.

The evaluation of the objective parameters indicated statistically significant evidence
that confirms hypotheses H1 and H2. Participants in the experiment were able to define a
given path objectively faster using our proposed gesture-based interface. There were four
trials during which the participants confused waypoints; since these were significant errors
that would have significantly affected the measurements, these trials were considered
invalid, and volunteers repeated these trials. The experiment confirmed the predicted
higher inaccuracy in defining path waypoints by gestures. The deviation of the inaccuracy
of the point input is mainly due to the component in the Z-axis direction in the robot’s
coordinate system. We believe that this deviation, with respect to the position of RGB-
D sensors, is mainly due to errors in the calculation of RGB depth image projections,
specifically noise and low accuracy of depth images. The solution could be the use of a
more accurate depth sensor based on the principle of lidar or Time-of-Flight sensors [44].

The following subjective conclusions can be drawn from the questionnaires completed
by all participants in the experiment. Interface V3 achieved the best rating among the other
tested interfaces in the NASA Task Load Index and in the System Usability Scale, thus
partially supporting hypothesis H3. For most of our three custom questions, focussing
only on the presented system, no statistical significance of the results of the answers was
found. In general, the participants rated the selected gestures for control as appropriate.
The visual feedback system chosen in the form of a digital twin of the robot was also
positively evaluated. Overall, the graphical interface provided participants with a good
understanding of the future path of the robot. Although the results of the subjective
evaluation are not definitive, they suggest the potential of using gestures to increase
efficiency in defining robot trajectories and, therefore, further application research in this
area is worthwhile. The summary of the obtained results is presented in Table 6.

According to the results of the experiment, the creation of waypoints using hand
gestures is objectively less accurate than the existing methods for programming robot
trajectories. It should also be pointed out that during the experiment participants did not
set the orientation of the path waypoints, although the system allowed it. The current
results show that the system cannot be used for robot operations that require high precision.
Some compromise between speed and accuracy of trajectory input could be achieved by
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combining our system with existing programming methods. Overall, the experimental
results indicate the usefulness of the developed system, as it can speed up the initial
definition of the coarse robot path. Data obtained during experiment are available in file S1
of Supplementary Materials.

Table 6. Overview of the experiment results. SUS and questions Q1, Q2, Q5—higher is better; Mean
time, mean deviation, NASA TLX, questions Q3, Q4—lower is better (¬).

Parameter/Question Related Hypothesis Teach Pendant
Results

Hand Guiding
Results

Gesture-Based
Interface Results

Statistical
Significance

Mean time¬ [s] H1—supported 98.05 51.40 23.69 yes
Mean deviation¬ [m] H2—supported 0.01 0.01 0.04 yes
SUS (0–100) H3—supported 55.63 76.63 81.00 yes
NASA TLX¬ (0–100) H3—supported 62.03 54.21 38.17 yes
Q1 (1–5) H3—supported 3.45 3.90 4.15 yes
Q2 (1–5) H3—not supported 4.50 4.55 4.10 no
Q3¬ (1–5) H3—not supported 1.45 1.45 1.50 no
Q4¬ (1–5) H3—supported 3.40 2.05 2.25 yes
Q5 (1–5) H3—not supported 3.75 4.25 4.10 no

6. Conclusions

In this paper, we present a robot–human interface that simplifies and streamlines
the process of defining a robot path. Using gestures for communication is a natural and
intuitive process for humans. The developed system introduces a novel method of control,
where the operator can initiate a command for the robot using gestures and directly specify
the location for a particular task. The proposed interface was implemented as a part of a
robot workspace monitored by three RGB-D sensors which detect the hands of the human
worker in the robot workspace. The system relies on distributed data processing using
multiple Jetson Nano units, each of which processes data from a single camera. MediaPipe
solution is used to localise the landmarks of the hands on the RGB image from which
gestures are recognised. The landmarks are then projected onto a depth image to obtain
landmarks in 3D space relative to the camera coordinate system. By applying extrinsic
parameters and transforming the coordinates, the position relative to the robot’s coordinate
system is obtained. The position of the landmarks and hand gestures are used to create,
edit, and delete waypoints, and to control the robot traversing along the trajectory. The
human worker is provided with visual feedback on the shape of the trajectory through a
graphical interface displayed on a monitor located behind the robot.

An experimental study was conducted to compare our developed system of robot
programming using gestures with classical approaches using teach pendant and manual
robot guidance. The experimental analysis involved the collection of objective quantitative
data and subjective qualitative data. It was found that the system of defining the robot
trajectory using gestures allows to speed up the process of defining the robot path when
programming the robot. The experiment indicated that the current implementation of the
system exhibits lower accuracy of waypoints definition compared with the conventional
approaches. However, this outcome is defined by the hardware, camera calibration, and
potentially the operating conditions, which can be improved by further tuning of the system.
We assume that the inaccuracy of the waypoint input is mainly due to the component in
the Z-axis direction in the robot’s coordinate system. In this research, we did not focus
on high accuracy, as the developed system represents a means for defining robot path
“coarsely” for tasks not requiring millimetre accuracy while also providing the user with
an intuitive and simple-to-use interface. The gesture-based interface achieved the best
rating among the other tested interfaces in the NASA Task Load Index and in the System
Usability Scale. In general, the participants rated the selected gestures for control as the
most convenient. The visual feedback system chosen in the form of a digital twin of the
robot was also positively evaluated. Overall, the graphical interface provided participants
with a good understanding of the future trajectory of the robot. Although the results of
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the subjective evaluation are not definitive, they suggest the potential of using gestures to
increase efficiency in defining robot paths.

Future research will focus on improving the developed gesture-based interface. One
of the main directions for future research is to work on improving the localisation of the
hands to improve the accuracy of the generation of waypoints. Potential improvements
could be achieved by implementing more RGB-D sensors or using different sensor types
(such as lidar-based sensors). Another direction of development is to focus on extending
the functionalities of the existing application. The list of commands could be extended to
include functions that are standard in classical robotic tasks. In the future, the visualisation
system can also be delegated to an augmented or mixed-reality device. This would further
improve the user’s perception of the robot’s planned trajectory. One solution to reduce
the inaccuracy of positioning could be to use the gesture only to approximate the area of
interest and then attach the target to a salient feature, such as a corner, edge, bolt head, etc.
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//www.mdpi.com/article/10.3390/s23094219/s1, File S1: analyzed data from the user study.
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