
Citation: Goetz, C.; Humm, B.

Decentralized Real-Time Anomaly

Detection in Cyber-Physical

Production Systems under Industry

Constraints. Sensors 2023, 23, 4207.

https://doi.org/10.3390/s23094207

Academic Editors: Jun Wu, Zhaojun

Steven Li, Yi Qin and Carman K.M.

Lee

Received: 13 February 2023

Revised: 17 April 2023

Accepted: 21 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decentralized Real-Time Anomaly Detection in Cyber-Physical
Production Systems under Industry Constraints
Christian Goetz * and Bernhard Humm

Hochschule Darmstadt— Department of Computer Science, University of Applied Sciences,
64295 Darmstadt, Germany
* Correspondence: christian.goetz@yaskawa.eu

Abstract: Anomaly detection is essential for realizing modern and secure cyber-physical production
systems. By detecting anomalies, there is the possibility to recognize, react early, and in the best case,
fix the anomaly to prevent the rise or the carryover of a failure throughout the entire manufacture.
While current centralized methods demonstrate good detection abilities, they do not consider the
limitations of industrial setups. To address all these constraints, in this study, we introduce an
unsupervised, decentralized, and real-time process anomaly detection concept for cyber-physical
production systems. We employ several 1D convolutional autoencoders in a sliding window approach
to achieve adequate prediction performance and fulfill real-time requirements. To increase the
flexibility and meet communication interface and processing constraints in typical cyber-physical
production systems, we decentralize the execution of the anomaly detection into each separate
cyber-physical system. The installation is fully automated, and no expert knowledge is needed to
tackle data-driven limitations. The concept is evaluated in a real industrial cyber-physical production
system. The test result confirms that the presented concept can be successfully applied to detect
anomalies in all separate processes of each cyber-physical system. Therefore, the concept is promising
for decentralized anomaly detection in cyber-physical production systems.

Keywords: anomaly detection; cyber-physical production systems; cyber-physical systems; deep
learning; unsupervised learning

1. Introduction

Due to the rising complexity of modern processes in manufacturing, the application of
cyber-physical systems (CPS) is increasing. A CPS can be described as a combination of an
embedded system with sensors and actuators. The system interacts with these to monitor
and control physical processes (Figure 1) [1]. Typically, the embedded system requires a
communication interface to exchange data with other systems or a cloud. Many of these
CPSs are networked to realize complex physical processes in the real world [2]. CPSs
combine powerful information technology to monitor and control engineered systems [3].

Modern production systems, which include CPSs, are defined as cyber-physical pro-
duction systems (CPPS) [4]. These systems are based on two main functionalities, advanced
connectivity to ensure real-time data acquisition from the physical world and feedback from
cyberspace. CPPSs break with the structure of the typical automation hierarchy to enable
intelligent data management, real-time analytics, and enhanced computational capabilities.
The control and field levels still exist to ensure the highest performance for critical loops,
while the higher levels are more dynamic and decentralized [5].

Sensors 2023, 23, 4207. https://doi.org/10.3390/s23094207 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6972-6764
https://orcid.org/0000-0001-7805-1981
https://doi.org/10.3390/s23094207
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094207?type=check_update&version=1

Sensors 2023, 23, 4207 2 of 19

Figure 1. Abstract concept of a CPS [1].

Such a CPPS can be seen in Figure 2. The rotary table dispenser system consists of
different CPSs working together to realize several physical processes, e.g., transportation or
pick-and-place operations. The overall process involves picking small items from a rotating
table and putting them into several containers which are moving around the machine on
conveyor belts. After the container is filled and reaches the end position, it gets picked up
by the production robot and emptied back onto the rotating table. Thereafter, the container
is put in a central location from which the sliding robot places it into the container tray.
When the container tray is full, both sliders move to the left side of the system, and the
sliding robot sets the container back on the conveyor belt. The described system acts as
a simulation of a similar real industrial process and is used as a demonstration unit in
Yaskawa. In total, there are nine CPSs, each combining a mechanical and an embedded
system. Seven CPSs are based on servomotors and servo controllers. Two CPSs consists
of an industrial robot with a robot controller. A central control unit collects data from the
different CPSs and regulates the main production process. Additional computational units
provide the opportunity to integrate higher functions, e.g., resource planning, production
analysis, and process control handling.

Figure 2. Rotary table dispenser system.

Sensors 2023, 23, 4207 3 of 19

In such a connected structure, even a single failure in one CPS can influence the
entire production, resulting in a faulty product, a breakdown of the complete process, or a
carryover of the failure through the whole system. Therefore, it is necessary to ensure an
error-free operation to realize a secure and modern CPPS [6].

Anomalies can be taken as essential failure indicators, such as a rising vibration at a
bearing of the rotating table or an unexpected torque increase on the motor of the conveyor
belt. Anomaly detection (AD) in CPPSs refers to the identification of behavior that is not
shown under the regular operations of the system. Consequently, by detecting anomalies,
there is the possibility to recognize, react early, and in the best case, fix the anomaly to
prevent the rise or the carryover of the failure throughout the entire manufacture [7].

Techniques for anomaly detection in CPPS can be distinguished into model-based [8]
and data-driven approaches [9]. Model-based methods work based on precise and engi-
neered models of the complete system. Creating such models over the complex structure of
CPPS is time-consuming while simultaneously requiring deep expert knowledge. Data-
driven approaches establish models only on collected data. Through the high amount of
monitored and available data in CPPSs, these approaches are more appropriate for such
systems, while additionally, no proper expert knowledge is needed [10]. Recent develop-
ments in machine learning and deep learning for anomaly detection have improved the
detection performance on complex data sets [11].

By following the scheme to deliver all data from the control and field-level device to
one CPS at a higher level to process, analyze, and detect anomalies, current centralized
data-driven AD approaches in industrial CPPSs demonstrate better detection abilities than
decentralized ones. While this is a significant advantage, it first requires a fully connected
and high-performance unit for monitoring all integrated CPSs. Subsequently, adding such
a unit increases costs and installation time. Additionally, a centralized concept creates a
communication delay between the different stations to exchange the enormous amount of
data produced in a CPPS. This can result in a delayed response after detecting an anomaly.
Furthermore, it slows down the execution, evaluation, and detection of the anomalies in the
individual CPS [12]. The structure of a CPPS is highly dynamic. Often single components,
such as motors and sensors, are exchanged, replaced, or modified due to predictive or
preventive maintenance. In a centralized approach, this results in a complete recreation of
the AD due to the changed characteristics.

In contrast, a decentralized concept addresses these drawbacks by establishing the AD
directly in each CPS. While this allows monitoring of the whole system by combining each
separate AD, the need for a high-performance unit can be reduced, and the execution and
response time can be increased. Furthermore, changes in a single CPS result in only the
retraining of the associated AD. By establishing adequate prediction performances in each
single CPS, comparable performance to a centralized AD can be reached.

The contribution of this paper is a novel unsupervised, decentralized, and real-time
process anomaly detection concept for CPPS under industry constraints. We focus on
industrial production processes and common constraints in CPPSs, including real-time
requirements, asynchronous signals, prediction quality, configurable design, data-driven
limitations, processing limitations, and communication interface constraints.

We employ several 1D convolutional autoencoders (1D-ConvAE) in a sliding window
approach to achieve adequate prediction performance and fulfill real-time requirements.
Current methods do not consider the limitations and constraints of industrial setups and
mainly follow a centralized approach. By executing the installation process on an external,
removable device, we increase the flexibility of our concept while considering processing
limitations. To meet communication interface and processing constraints in typical CPPSs,
we decentralize the execution of the AD into each separate CPS. The installation is fully
automated to tackle data-driven limitations. Thereby, no expert knowledge about explicit
anomalies is needed. Adjustments to the data collection routine were made to optimize the
external sampling procedure and improve the installation process.

Sensors 2023, 23, 4207 4 of 19

This paper is structured as follows. Section 2 summarizes related work about anomaly
detection for industrial CPS and CPPS. The problem statement is specified in Section 3.
Section 4 presents a concept for fast and decentralized unsupervised anomaly detection
in CPPS. Information about a prototypical implementation is provided in Section 5. In
Section 6, the evaluation of the approach is presented based on an industrial setup. Finally,
a conclusion and an outlook for future work are given in Section 7.

2. Related Work

Surveys on anomaly detection techniques can be found in [13–15]. More industrial-
related AD methods are described in [16,17]. Overall, these techniques can be differentiated
into model-based and data-driven approaches. Model-based techniques detect anomalies
by manually creating precise models about the underlying system. This requires a deep
prior knowledge of the individual CPPS. While data-driven approaches are also based
on models, those models are generated automatically from data and not manually by
domain experts. Furthermore, data-driven approaches can be split into supervised and
unsupervised techniques. Anomalous data in CPPS is associated with the undefined
behavior of the system. Creating such anomalous data can be hazardous for the CPPS itself,
while defining all possible anomalies in advance is nearly impossible. Based on the points
mentioned above, we focus on unsupervised data-based methods.

Common approaches in unsupervised data-based AD are one-class classification meth-
ods, such as deep one-class networks [18] and one-class support vector machine [19,20].
While multi-class classification techniques typically require labeled datasets, these ap-
proaches focus on the normal samples by learning a discriminative hyperplane surround-
ing them. Other frequently used techniques are unsupervised clustering methods such
as Gaussian Mixture Models [21], k-nearest neighbor methods [22], or random isolation
forests [23]. These models can identify anomalies by building a detailed representation of
the normal data. While the resulting models are generally lightweight and computationally
fast, they lack performance when processing high-dimensional data.

Deep learning methods for AD have recently improved the state of the art in detection
performance on complex and large datasets [24]. The standard techniques in this field are
generative adversarial networks (GAN). GANs consist of a generator combined with a
discriminator as the base structure. By teaching the discriminator to distinguish between
real and fake samples while the generator tries to generate new data based on the input,
GANs can detect anomalies even in large multivariate data streams. Concepts of GANs
differ mainly in the models used as the base structure, such as long-short-term-memory
(LSTM) recurrent neural networks (RNN) [25], two-dimensional convolutional autoen-
coder [26], and one-dimensional convolutional autoencoder [27]. While the described
approaches achieve good outcomes, they result in highly complex and large models that
cannot be applied to a CPS with limited computational resources, which is a common
industry constraint.

Reconstruction-based methods in AD combine techniques that rely on the assumption
that a model trained only on normal data cannot reconstruct abnormal or unseen data.
Typical techniques of these fields are PCA methods [28] or sparse representations [29].
A widely used approach for reconstruction-based anomaly detection in CPS is using
autoencoders [30,31] or variants thereof [32,33]. By learning the latent features of the
input data, autoencoders can reconstruct their input as output. While these models can
be applied to analyze the spatial characteristics of the input data, they miss considering
the temporal dependencies, which are necessary indicators for anomalies in the time series
data of industrial CPS.

While convolutional neural networks (CNN) were initially developed for solving
image classification tasks, they can also be successfully applied for AD in time series data of
a CPS through the ability to extract temporal dependencies [34]. Several industrial applica-
tions of CNNs in CPS, such as fault detection in motors [35], AD in wheelset bearings [22],
and rolling bearings [36], can be found. Additionally, ref. [37] pointed out that CNNs have

Sensors 2023, 23, 4207 5 of 19

lower parameters than other network structures while performing comparably or better,
resulting in reduced complexity, needed storage capacity, and computing power [38].

Convolutional autoencoders (ConvAE) combine the ability to detect temporal anoma-
lies with the help of convolutions and spatial anomalies by the autoencoder structure while
being also resource-efficient. This results in ideal models for AD in multivariate time series
data [39–41]. Using a 2D variational ConvAE, the authors in [42] detect anomalies from
unseen abnormal patterns in industrial robots. In [43], a ConvAE based on channel-wise
reconstruction in combination with a local outlier factor is used to detect anomalies in
automobile sensors.

Several approaches for decentralized AD can be found [44–46]. In [12], different de-
centralized AD techniques are analyzed and compared in complexity and performance. A
decentralized approach for real-time AD in transportation networks is introduced in [47].
The authors of [48] presented spatial anomaly detection in sensor networks using neighbor-
hood information. While these are promising approaches for decentralized AD, no work
considers all the different industrial constraints simultaneously, which is important for
integration into a CPPS.

Different automated frameworks for anomaly detection can be found. In [49], a
framework for automatic time series anomaly detection is introduced. The study focuses
on large-scale time series data in a centralized AD approach, which cannot be applied to a
CPPS with limited resources. The authors of [50] introduce an unsupervised framework for
anomaly detection in CPS. Furthermore, ref. [51] presents a high-performance unsupervised
anomaly detection for CPS networks. Both approaches are developed for CPS, but mainly
focus on adversarial attacks and not on the process of the CPS and, respectively, of the CPPS.

In our previous work [52], we introduced an unsupervised anomaly detection concept
for CPSs under industry constraints while focusing on repetitive tasks with a fixed duration
for a single CPS. In this contribution, we improved the concept for CPPS with multiple
CPSs, while still considering all industrial constraints. We adapted the technology to a
sliding window approach to simultaneously handle processes with variable durations and
meet real-time instead of near-time requirements.

In summary, there are several approaches for centralized and decentralized data-
driven unsupervised anomaly detection. Only a few are evaluated in real CPSs, and even
fewer are applied to real production data of a CPPS. Overall, no work considers all the
different industrial limitations of a CPPS while following a decentralized and fast approach
to realize anomaly detection in industrial production data.

In this work, we propose a concept that addresses all the requirements that must be
considered to realize a usable decentralized, real-time anomaly detection in CPPS under
industrial constraints. Our contribution in this paper is summarized as follows. We employ
several 1D-ConvAEs for unsupervised anomaly detection in a CPPS to monitor the different
processes. We introduce a novel concept to decentralize the different models in each single
CPS of the CPPS by splitting the installation and execution of the anomaly detection to
meet industrial requirements. While the concept is fully automated, no expert knowledge
about explicit known anomalies is needed to meet the defined requirements.

3. Problem Statement

This article aims at a decentralized concept for real-time unsupervised anomaly detec-
tion for production processes under industrial constraints. The problem statement can be
described by the different industrial requirements that must be considered to implement
such a concept. Several conditions are adapted and extended from [52].

1. Anomaly detection: An anomaly detection for a CPPS, such as an industrial pro-
duction system, shall be performed. The CPPS consists of multiple CPSs producing
multivariate time series data over variable process lengths, for example, the sliding
robot from the CPPS in Figure 2, combining a robot with several axes and a robotic
controller to move containers on a conveyor belt.

Sensors 2023, 23, 4207 6 of 19

2. Real-time: To cover all different kinds of anomalies and react even in time-critical
scenarios, such as detecting collisions in the production system, the result and reaction
of the anomaly detection should be available as quickly as possible. Therefore, the
execution of the anomaly should be performed during production, and the results
must be immediately provided after new data from sensors and actors are available,
e.g., a few milliseconds after the data is received.

3. Prediction quality: For an AD application in an industrial environment, adequate
prediction performance is required. This depends on the different use cases for which
the anomaly detection is applied, e.g., an F1 score of 0.95 or better for each CPS in
the CPPS.

4. Configurable: To apply AD on different CPPSs in different applications, the anomaly
detection should be adaptable to various CPSs and use cases. The possibility of using
the technique for varied time series data with different variable types and diverse time
lengths should be given, for instance, robots or transportation systems with features
such as torque, position, and speed.

5. Data-driven: As mentioned before, manually creating models is time-consuming and
requires deep expert knowledge. Simultaneously recording anomalous data from
CPPS can be dangerous for the system itself. Therefore, the AD should only be trained
with regular production data and without expert knowledge.

6. Feasible: The AD should be compatible with current technological standards in
industrial environments to realize a generalist integration for various scenarios. This
includes constraints and limitations of commonly used CPPSs in production settings:

(a) Process limitations, due to the design of CPSs in industry, that are unable to
execute process-intensive tasks in parallel to control and monitor the physical
process, e.g., limited available RAM and processing power.

(b) Communication interface constraints of commonly available CPSs in industry,
e.g., OPC UA Communication, to transfer the high amount of production data
at a sample rate of 2 ms during the sampling process to a database.

4. A Concept for a Fast, Decentralized, and Unsupervised Anomaly Detection in CPPSs
4.1. Overview

This section describes a fast and decentralized process anomaly detection concept
based on several 1D-ConvAEs, which fulfills the requirements specified in the problem
statement. Figure 3 shows the sequence of the different steps that are carried out. The
concept consists of one AD Installation Cycle, which triggers the creation of several anomaly
detection pipelines (AD pipelines) through the parallel execution of AD Generation Cycles,
as shown in Figure 4. A detailed description of the AD Generation Cycle can be found
in Section 4.3 and in Figure 5. The number of different AD Pipelines depends on the
number of included CPSs in the CPPS. In the AD Production Cycles, located in every
CPS in Figure 4, each pipeline is directly implemented and executed as part of the CPS.
Explanations about the AD Production Cycle can be found in Section 4.4 and in Figure 6.
The processing unit backend, an external device that can be removed after the installation
process is finished, performs all heavy processing tasks of the AD Installation Cycle to meet
the previously explained industrial constraints of the CPPS. The concept is developed to be
executed automatically, enabling AD implementation without deep expert knowledge. In
addition, a direct explanation of the individual components of the diagrams can be found
in Appendix A.

Sensors 2023, 23, 4207 7 of 19

Figure 3. Sequence of steps performed in the concept.

Figure 4. Overview of AD Installation Cycle.

Figure 5. Overview of AD Generation Cycle.

Sensors 2023, 23, 4207 8 of 19

Figure 6. Overview of AD Production Cycle.

4.2. AD Installation

The AD Installation Cycle consists of four parts: data collection, data analysis, AD
generation, and deployment (see Figure 4).

Data collection: The operator triggers the data collection at the processing unit back-
end to record regular process data. Process data samples, single packages of time series
data from the individual CPS, are collected at a high sample rate and sent to the control
device. Over a defined period of time, the individual data of the various CPSs are recorded
and then combined. The resulting package, named regular process data, is then sent to the
processing unit backend. This procedure is required to meet the communication interface
limitations in the installation process and enable the use of the high sample rates at the AD
Production Cycles directly in the CPSs. The data packages are saved inside the processing
unit backend until a specified number of records is reached. Regular process data consist of
different features like position, torque, and speed sampled in the form of time series data
from the various CPSs. This data can be defined as multiple data streams containing the
features of the physical process recorded by the different sensors and actors.

Data Analysis: Depending on the diverse CPSs, different features with different
ranges are provided. In the analysis step, unnecessary features are automatically removed,
and configuration files are accordingly generated. Each configuration file contains the
necessary information for the following AD generation cycle, e.g., feature ranges, types,
and default hyperparameters. The operator can manually tune this information, or the
default values can be used.

AD Generation: In the installation step for each included CPS, an AD Generation
Cycle (Figure 5) is triggered. The different AD Generation Cycles can be executed in parallel
to speed up the installation process. A detailed description of the AD generation cycle can
be found in Section 4.3.

Deployment: After the generation of the AD pipelines, each pipeline is exported and
deployed to the separate CPS. This terminates the AD Installation Cycle.

4.3. AD Generation Cycle

The AD Generation Cycle consists of preprocessing, model initialization, training,
evaluation, optimization, and export, as shown as a BPMN diagram in Figure 5. First,
the provided regular process data, the combined collected data samples of all CPS, are
preprocessed with the information received from the configuration files. This transforms the
data, which consist of different ranges and units, into an equal numerical range. The type of
the desired preprocessor is defined in the configuration file. This enhances a configurable
setup, which can handle various variables with different units and ranges. Next, the
model is initialized, trained, evaluated, and optimized. Additional hyperparameters set
in the configuration file are, e.g., the number of layers, filters per layer, used loss function,
and type of optimizer. After initialization, the model is trained on the preprocessed

Sensors 2023, 23, 4207 9 of 19

data. The method specified in the configuration file is used to evaluate the model. In the
optimization step, the hyperparameters are changed, influenced by the defined ranges
and tuning parameters. The search algorithm declared in the configuration file searches
over a generated search space for the best possible parameters. These steps are executed
iteratively until the specified reconstruction performance (e.g., the desired MAE Value) is
reached. After the tuning is finished, the AD pipeline, a combination of preprocessor and
model, is exported to the deployment step. This terminates the AD generation cycle.

4.4. AD Production Cycle

After the AD Generation Cycle is finished and the AD pipeline is deployed in the
CPS, the AD Production Cycle, shown as a BPMN diagram in Figure 6, starts. Process data
samples, single packages of time series data from the CPS, are collected at a high sample
rate and stored in an in-memory data storage. When the required amount of data packages
to execute the AD process step is reached, the data are preprocessed and evaluated by
the AD pipeline. After the execution, the previously collected data in the in-memory data
storage will be released to limit the needed memory capacity. The AD process step will
be executed again immediately after enough data is available. In case of an anomaly, the
detection can be delivered to the control unit, or the operator can be directly notified.
Additionally, the AD process can be terminated, and therefore the AD Production Cycle.

4.5. Sliding Window Convolutional Autoencoder

To achieve adequate prediction performance and meet real-time requirements, we
choose a sliding-window-based 1D-ConvAE as the model type (see Figure 7). Autoencoders
are reconstruction-based neural networks that reconstruct their input as output. By only
learning the reconstruction of the regular pattern, every datum consisting of unseen, abnor-
mal patterns cannot be correctly reconstructed, which will result in a higher reconstruction
error. To gain adequate prediction performance and meet the processing limitations, 1D
convolutional layers are used. Adding these layers to the autoencoder allows the model
to learn spatially invariant features and capture spatially local correlations from the data.
This means it can recognize patterns of high-dimensional data without requiring feature
engineering. At the same time, the required parameters and the computational complexity
of a 1D convolutional layer are significantly lower than the comparable 2D convolutional
layers. The 1D-ConvAE can be trained without expert knowledge or explicitly known
anomalies, only with regular process data. This fulfills the requirement 5, data driven. A
detailed comparison with other methods can be found in Appendix B.

Figure 7. Convolutional autoencoder.

Sensors 2023, 23, 4207 10 of 19

4.6. Anomaly Detection

Regular process data can be defined as a data stream containing several time series
of sampled features F = (f1, f2, ..., fn), where n defines the number of different features
such as position, speed, and torque from the various sensors of the mechanical system. The
data stream is split into several windows depending on the chosen window size m and
step size s. Each window consists of several time series equal to n different features in
the data stream over a time period corresponding to the window size m. These generated
sliding windows act as the input to the model. The output of the model is each separated
reconstructed sliding window. With the help of an aggregation function (e.g., arithmetic
mean), the reconstructed sliding windows can be merged into a reconstructed data stream.
To calculate the reconstruction error matrix E, the reconstructed error eit of each feature fi at
every time step t can be calculated as the Absolute-Error (AE) e fit

=| fi,t − f̂i,t | (1 ≤ i ≤ n)
between the input and output. This results in a matrix E representing each feature at each
time step as a value of the differentiation between the input and reconstructed data stream.
Threshold values must be defined to evaluate which value a reconstruction error indicates if
an anomaly is detected. We employ the following method for automatically computing and
tuning the threshold values. After training the model, the described method re-evaluates
all training data. This results in an error matrix over the whole training data stream. The
maximum reconstruction error of each feature is taken from this matrix to construct a
threshold vector θ. This vector can be adapted when the model is integrated directly into
the CPS by automatically tuning the values in the live testing stage. In the AD production
cycle, after enough high sample data are collected in the in-memory storage, each column
of the reconstruction matrix E is evaluated with the threshold vector θ. The number of
collected data samples can be flexibly chosen but must be at least twice as large as the
window size to allow the reconstruction concept to be applied. Suppose a value of e fit

,
where i is the considered feature of the total features and n exceeds the associated threshold
value of this feature θ fi

(1 ≤ i ≤ n). In that case, the data point in the input data stream
is declared anomalous. Therefore, anomalies in the input data stream can be detected by
applying the threshold vector θ to each timestep t of the reconstruction matrix E.

5. Prototype Implementation

The concept has been implemented prototypically. As programming language,
Python 3.9 is used. A MongoDB https://www.mongodb.com/ (accessed on 12 February
2023) is established on the processing unit backend to save and export the regular process
data. As a preprocessor, a MinMaxScaler was generated. The model is implemented using
the Keras library https://keras.io/ (accessed on 12 February 2023), running on top of
Tensorflow https://www.tensorflow.org/ (accessed on 12 February 2023) [53]. For hyper-
parameter tuning, the python library Ray Tune https://ray.io/ (accessed on 12 February
2023) [54] is used. Finally, a tracking server based on the library Mlflow https://mlflow.org/
(accessed on 12 February 2023) [55] was established to track the training results. The com-
munication between the motion controller and the processing unit backend was realized
through an OPC UA server–client model based on publish–subscribe routines. Several
function blocks for buffering the high sample process data from the CPS at the motion
controller were developed to establish this concept. This enables an intelligent commu-
nication pattern, where only minor changes on the motion controller must be performed
to allow the described data exchange. The configuration files are written in YAML and
can be accessed and changed by the operator. For each CPS, a separate configuration file
is created. These files are also tracked to enable a traceable process at a later stage. The
preprocessor and model integrations are developed as interfaces to satisfy the configurable
requirement. Therefore, various considered models and preprocessors can be implemented
as long as they follow the abstract class structure, making it easy to exchange, adapt, or
evolve the described technique. To visualize the detection results and allow the user to
interact with the system, a dashboard for bi-directional communication between the CPPS
and the operator was implemented.

https://www.mongodb.com/
https://keras.io/
https://www.tensorflow.org/
https://ray.io/
https://mlflow.org/

Sensors 2023, 23, 4207 11 of 19

6. Evaluation
6.1. Experimental Setup

The rotary table dispenser system shown in Figure 2 was used to evaluate the decen-
tralized concept. The CPPS consists of different CPSs and a control unit working together to
realize several processes, e.g., transport and pick-and-place operations. The overall process
involves picking small items from a rotating table and putting them into several containers
which are moving on conveyor belts around the machine. During the process, the different
time series data of each CPS is collected in the motion controller. Several buffers are written
in the motion controller to adapt the high sample rate of 2 ms of each CPS to the minimal
data exchange cycle time of 50ms at the OPC UA server. After one buffer is filled, the data
package is sent to the OPC UA Server running on the processing unit backend, a pc type
NUC8i5BEK. The collected data are saved in the established database after each import
cycle. In total, 33 different time series over a period of 6 min were recorded. Based on
the high sample rate, each time series consists of around 176,000 samples, resulting in
approximately 5,808,000 data points as training data.

6.2. Data Recording

Realistic fault data were generated by forcing different anomalies into the normal
process to evaluate the performance of the used models. The resulting deviations from
the normal process were manually classified as anomalous areas in the resulting data
stream to rate the performance. Five error cases were defined, and at least one error case
was generated for each CPS. Additionally, long-term tests, including several complete
processes without anomalies, were carried out to control the resulting models in the normal
industrial setup.

1. Friction: To simulate friction, which can result from abrasion of used mechanical
components, delayed maintenance, or broken parts, external forces were applied to
the mechanical systems of the different CPSs, e.g., against the rotation direction of the
conveyor belt or the movement of the linear sliders. This results in increased torque
values at the applied CPS.

2. Vibration: Undefined vibration, which can be caused by broken bearings or loose
attachments, was applied to the mechanical system of the CPS. The simulation was
done by manually applying shocks to the rotating table.

3. Defect components: Another industry-related anomaly can be caused by defect
components in the production process, such as a broken container. To examine this
type of anomaly, different containers were manipulated in such a way that they could
not be picked by the robots anymore, resulting in an undefined status of the whole
production line.

4. Incorrect process: In addition, external manipulations can influence industrial pro-
duction lines. These injections in the normal process can result in some undefined
behavior of the system, which can cause damage to the products or the system itself.
To simulate this kind of anomaly, the placement of the containers on the belt was
changed in the running process. Therefore, the real positions differ from the fixed
pre-defined positions in the machine scope.

5. Collision: Due to external influences or process errors, even in modern indus-
trial systems, collisions may occur. The system typically detects heavy collisions,
whereas smaller collisions resulting in damaged products or fragile components are
mostly not recognized by the internal system. This can be, for example, a collision
with an obstacle in the moving path of the linear sliders or a displaced product on
the conveyor.

6.3. Model Configuration

The sampled data from the regular process was used to train the model. A MinMax
Scaler was chosen to preprocess the data by scaling the time series between zero and
one. An Adam optimizer was used, and the loss function was set to MAE. The default

Sensors 2023, 23, 4207 12 of 19

hyperparameter tuning results in 80 different decoder and encoder structures for each CPS.
The best model was automatically picked by evaluating the number of parameters and the
resulting loss value. Detailed information about the different considered parameters can
be found in Table 1. The focus was on realizing small and efficient model architectures to
meet the computational limitations (Section 3, point 6). Therefore, shallow structures with
a limited amount of parameters were preferred. By comparing all achieved loss values and
the resulting model structures, the smallest structure that achieved a low loss value and,
thus, a good reconstruction capability was automatically selected. Due to the unsupervised
setup, no anomalous data are available in the training process. Therefore, an immediate
evaluation of the detection performance is not possible; consequently, only the reconstruc-
tion capability can be taken as an additional selection criterion in this process. Additional
discussion on the selection process can be found in future work. As activation function, the
rectified linear unit was chosen. Dropout layers were applied as regularization between
the convolutional layers, and max pooling layers were used to reduce the dimensionality.
Different step sizes in the training process were tested. The best results were reached with
a step size of one.

Table 1. Summary table of all parameters taken in the process of automatically selecting the models.

Model Parameter Range Definition

Number of Layers [4, 8] Total number of layers used in the model.

Number of Filters in the first Layer [32, 128]

The number of filters used in the first layer of the model. To
realize the dimensionality reduction, the inner layers have
fewer filters. (In the automated concept, half of the previous
layer).

Window size [32, 128] Number of time steps of the sliding window.

Step size [1, 64] The length of the sequence shifted between the individual
windows.

Patience [1, 10] Number of epochs with no improvement after which training
will be stopped.

Total number of parameters [12,642, 208,614] Total number of parameters of the resulting model.

Mean absolute error [0.002, 0.3] Achieved mean absolute error between input and output at the
end of training.

6.4. Experimental Results

This section validates the described concept applied in the experimental setup against
the requirements defined in the problem statement.

1. Anomaly detection: Figure 8 shows some of the forced anomalies in the experimental
setup, illustrating the detection performance of the generated models. In the pictures,
the detected anomalies are marked with red points, while the pre-defined anomalous
areas are indicated by the red background color of the figure. Combined with the
results in Table 2, this confirms that the different models can be successfully applied
to detect anomalies in the CPSs.

2. Real-time: The evaluated sliding window sizes from the hyperparameter tuning were
between 32–64, resulting in comparably small windows. To ensure a fast detection
in the real process, each generated sliding window was treated as a data stream and
evaluated immediately. With a sample rate of 2 ms, the overall time to collect one
window as input data for the model is between 64 and 128 ms. The average execution
time per reconstruction and verification for anomalies was around 34 ms, with a
maximum of 49 ms and a minimum of 22 ms. Therefore, anomaly detection can be
carried out with a maximum delay of 177 ms at our setup, which allows an immediate
reaction of the system on detected anomalies.

Sensors 2023, 23, 4207 13 of 19

3. Prediction quality: The F1 Score is used to evaluate the model performance. The
detailed performance for each CPS is shown in Table 2. To calculate the F1 Score, the
manually forced anomalies were classified as anomalous areas. If an anomaly in a
window was detected, the used window was assigned as anomalous and evaluated
against the area. By reaching high F1 Scores above 0.95, adequate prediction perfor-
mances for every single CPS are realized. This confirms that the automatically created
models for each CPS can reliably detect anomalies in the given CPPS.

4. Configurable: The described concept and resulting anomaly detection can be config-
urated for various applications. Only minor changes must be made to the motion
controller to enable the sampling process. The automatically generated configuration
files can be manually changed, or the default values can be used.

5. Data-driven: The models are trained only with the regular process data. Therefore,
no anomalous data or feature engineering is needed. No values are added or changed.
All removed features are automatically declared. Only the data from the sensors
and actors of the CPSs are used. The model is created in an automated way by the
configuration file without the need for expert knowledge.

6. Feasible: The method utilized standard communication technologies of common
industrial setups. By outsourcing the process-intensive tasks to the processing unit
backend, the concept enables the application of anomaly detection for the CPPS,
even with the processing limitation and constraints of each CPS. In our experimental
setup, the simulated process reaches a maximum consumption of 350MB while not
exceeding a maximum of 12% CPU load.

Based on the experimental results, the introduced novel concept fulfills all the defined
industrial requirements of the problem statement in Section 3.

Figure 8. Anomalous Samples.

Table 2. Performance Evaluation.

Unit TP TN FP FN Precision Recall F1-Score

CB 232 3938 7 10 0.0.9707 0.958 0.964
RT 193 3199 9 8 0.955 0.960 0.957
SR 22 3002 2 0 0.916 1 0.956
PR 22 3002 1 1 0.956 0.956 0.956

P&P S 484 2965 21 20 0.958 0.960 0.959
P&P U 484 2967 29 15 0.943 0.969 0.956
P&P L 484 2964 27 22 0.947 0.956 0.951

CTS 75 3199 3 3 0.961 0.961 0.961
SRS 231 3374 8 10 0.966 0.958 0.962

CB = Conveyor Belt; RT = Rotating Table; SR = Sliding Robot; PR = Production Robot; P&P S = Pick & Place Robot
S Axis; P&P U = Pick & Place Robot U Axis; P&P L = Pick & Place Robot L Axis; CTS = Container Tray Slider;
SRS = Sliding Robot Slider.

7. Conclusions and Future Work

This paper presents a fast and decentralized anomaly detection concept for CPPS
under industry constraints. The concept is configurable and feasible to apply anomaly
detection in different use cases under the limitations of commonly used CPPSs in industrial
environments. Due to the decentralization, no additional computational units must be

Sensors 2023, 23, 4207 14 of 19

integrated. The generated models allow a fast and performant integration. The anomaly
detection is executed, and evaluations are carried out immediately during production.
The model is generated and tuned in a fully automated fashion. No expert knowledge
about anomalous data is needed. Overall, the experiments show that each model achieves
stable and accurate results. This presents a promising approach for decentralized and fast
anomaly detection in CPPSs under industry constraints.

However, despite the apparent success of the concept, there are several directions
for future research. In this work, the concept was only tested in a single CPPS with a
limited amount of CPSs. Therefore, more studies with different models, more CPSs, and
under different scenarios will be performed in future work. Secondly, the models are
only evaluated against the defined simulated computational resources and data storage
limitations of the used CPSs. This is mainly caused by the integration limitations of the
available CPSs. To integrate the models, adaptions to the hardware and software of the
CPSs must be carried out in the future. Additionally, several anomalies which can emerge
in a CPPS cannot be detected, e.g., process anomalies such as changing the overall process
to fewer containers as in the learning process. This forces the CPPS not into an undefined
state, although the actual process differs from the learned process. Therefore, another
research direction in the future is to adapt the concept even to detect this kind of anomaly.
Furthermore, the selection of the model is only based on two parameters, the achieved
loss value and the resulting model structure. Despite the good results obtained in the tests
with the defined anomalies, this method cannot guarantee the selection of the best model.
Further approaches and concepts for a better evaluation of the models and a guaranteed
choice of the best model must be found.

Finally, up to now, the output of the anomaly detection is the identification of the
anomaly, defined by the time and feature, in the data stream. Adding more information
may be helpful to increase the accuracy of the AD for the operator. Ways to gather and
provide this additional context information will be evaluated and investigated.

Author Contributions: Conceptualization, C.G.; methodology, C.G.; software, C.G.; validation, C.G.;
formal analysis, C.G.; investigation, C.G.; resources, C.G.; data curation, C.G.; writing—original draft
preparation, C.G.; writing—review and editing, C.G. and B.H.; visualization, C.G.; supervision, C.G.
and B.H.; project administration, C.G.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Limited accessibility to the dataset can be given in single cases.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Tables A1–A3 lists each individual item of Figure 4–6 with a short description.

Table A1. Definition Table BPMN Diagram AD Installation Cycle Figure 4.

Item Definition

Processing Unit Backend
The processing unit backend, an external device that can be removed after the instal-
lation process is finished, performs all heavy processing tasks in the AD Installation
cycle to meet the previously explained industrial constraints of the CPPS.

Control Device Unit which typically controls the industrial process.

Communication Interface The interface of the embedded system to exchange data with the control device or
the processing unit backend.

Sensors 2023, 23, 4207 15 of 19

Table A1. Cont.

Item Definition

Embedded System Part of the CPS which interacts with sensors and actors to monitor and control the
mechanical system.

Mechanical System Summarizes all mechanical components of the system.

Process data samples
Single packages of time series data from the individual CPS. Process data samples
consist of features like position, torque, and speed sampled as time series data from
the CPS.

Record Regular Process Data Combined process data samples of all CPS collected from the normal process sampled
over a defined time.

Collect Process Data Samples Process data samples at a high sample rate are collected from the different CPS,
combined, and sent to the control device as a data package.

Analysis In the analysis, unnecessary features are automatically removed from the data, and
important information like feature range and data types are collected.

Generate Configurations Based on the analysis, configuration files are generated. The operator can manually
tune this information, or the default values can be used.

AD Generation Cycle Main cycle to create the preprocessor and train the model.

Deployment AD Pipelines Each generated AD pipeline is exported and deployed to a separate CPS.

AD Production Cycle Live integration and execution of the AD pipeline in the individual CPS.

Table A2. Definition Table BPMN Diagram AD Production Cycle Figure 6.

Item Definition

In-memory data storage A fast and effective data store that caches live data until it is passed to the AD
pipeline for processing.

Record Live Process Data Live process data is sampled at a high sample rate to an in-memory data storage to
collect the needed data to execute the AD pipeline.

Execute AD Process Step The collected live data is preprocessed and evaluated by the AD pipeline.

Deliver Results to Control Unit The AD output can be delivered from the CPS to the control unit.

Notify Operator Depending on the CPS, the Operator can be immediately notified by the separate
CPS.

Shut Down AD In this step, the whole AD production cycle can be switched off to free resources and
stop the anomaly detection.

Table A3. Definition Table BPMN Diagram AD Generation Cycle Figure 5.

Item Definition

Regular Process Data Data collected from the normal process of the CPS over a defined time.

Preprocessed Data Transformed and scaled regular process data by the chosen Preprocessor.

AD Pipeline A combination of initialised Preprocessor and trained model.

Configuration
Contains necessary parameters for the separate steps of the generation cycle, e.g.,
the number of layers, filters per layer, loss function, and type of optimizer. Default
parameters are automatically provided but can also be manually changed and tuned.

Preprocessing
In the preprocessing step, the regular process data is transformed by the chosen
preprocessor. This scales the data provided, which normally consists of different
ranges and units, to an equal numerical range.

Sensors 2023, 23, 4207 16 of 19

Table A3. Cont.

Item Definition

Initialize Model Here, the model is built based on the configuration. Therefore, the number of layers,
filter, and type of each layer and the optimizer and loss function are set.

Train Model In this step, the initialized model is trained with the preprocessed regular pro-
cess data.

Evaluate Model Depending on the evaluation method defined in the configuration step, the model is
tested, the results are tracked, and the complete experiment is saved.

Optimize Model
In the optimization step, the hyperparameters are changed, influenced by the defined
ranges and tuning parameters. The search algorithm declared in the configuration
file searches over a generated search space for the best possible parameters.

Export AD Pipeline Normally, after the tuning is finished, the AD pipeline is exported to the deploy-
ment step.

Appendix B

To reach adequate prediction performance and fulfil the requirements defined in
Section 3, several models were investigated. All models were tested and evaluated against
a reduced test data set, consisting of the time series data of one CPS and a limited number
of anomalies. No optimisations were made to the models. The test results can be seen in
Table A4 . Decisive characteristics for the choice of the model are the number of required
parameters, the recognition rate and the time required for the training and the evaluation
of the test data. The table clearly shows that shallow methods, despite their fast evaluation,
have significant weaknesses in the recognition rate for dynamic and complex time series, as
specified in [11]. The LSTMAE has a higher number of parameters compared to the other
models. Due to the focused universal application and the limited process and memory
resources, this is a major disadvantage. The CAE shows a slightly improved recognition
in our test dataset compared to the AE architecture without convolutional layers. Based
on the findings of [37–41,43], which identified the good performance of the ConvAE on
industrial time series data, we have chosen the 1D-ConvAE as the model.

Table A4. Model Evaluation.

Model Performance Size Avg. Time [ms]

TP FP TN FN Recall Precision F1 Compelxity Training Evaluation

OCSVM 400 25,005 19,633 138 0.7434 0.0157 0.0308 Low 37,041.6 36,811.1
iForest 467 13,709 30,865 71 0.8680 0.0329 0.0634 Low 1874.9 574.1
LSTMAE 8 1 693 1 0.8888 0.8888 0.8888 High 372,029.5 23,491.3
AE 8 2 692 1 0.8888 0.8 0.8421 Medium 13,151.2 18,720
1D-ConvAE 8 0 694 2 0.8 1 0.8888 Medium 113,227.6 20,045.2

OCSVM = One-Class Support Vector Machine [56]; iForest = Isolation Forest [57]; LSTMAE = Long Short-term
Memory Autoencoder [58]; AE = Autoencoder [59]; 1D-ConvAE = One dimensional convolutional Autoencoders.

Appendix C

Figure A1 shows additional showcases of anomalous samples. In Figure A1a the colli-
sion case is shown. As described in Section 6.2, the system detects typically heavy collisions.
The production of light collisions is a difficult task that requires precise interference in the
process. Therefore, a pole was prepared with a predetermined breaking point and applied
against the rotation direction of the rotary table during regular operation. Figure A1b
shows the case defect component. A container was manipulated to force pressure on the
moving conveyor belt at a certain point. To create the error case seen in Figure A1c, minor

Sensors 2023, 23, 4207 17 of 19

shocks were manually applied to the plate of the rotation table. A specialist carried out all
the different tests, considering safety aspects for the person and the system.

Figure A1. Additional Anomalous Samples.

References
1. Marwedel, P. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things; Springer:

Cham, Switzerland, 2021; pp. 1–15.
2. Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014; pp. 14–16. [CrossRef]
3. Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-Physical Systems: The Next Computing Revolution. In Proceedings of the

Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736. [CrossRef]
4. Müller, T.; Jazdi, N.; Schmidt, J.; Weyrich, M. Cyber-physical production systems: Enhancement with a self-organized reconfigu-

ration management. Procedia CIRP 2021, 9, 549–554. [CrossRef]
5. Monostori, L. Cyber-physical Production Systems: Roots, Expectations and R & D Challenges. Procedia CIRP 2014, 17, 9–13.

[CrossRef]
6. Ali, N.; Hussain, M.; Hong, J.-E. SafeSoCPS: A Composite Safety Analysis Approach for System of Cyber-Physical Systems.

Sensors 2022, 22, 4474. [CrossRef]
7. Eiteneuer, B.; Hranisavljevic, N.; Niggemann, O. Dimensionality Reduction and Anomaly Detection for CPPS Data using

Autoencoder. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC,
Australia, 13–15 February 2019; pp. 1286–1292. [CrossRef]

8. Adepu, S.; Mathur,A. Distributed Attack Detection in a Water Treatment Plant: Method and Case Study. IEEE Trans. Dependable
Secur. Comput. 2021, 18, 86–99. [CrossRef]

9. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 58. [CrossRef]
10. Stojanovic, L.; Dinic, M.; Stojanovic, N.; Stojadinovic, A. Big-data-driven anomaly detection in industry (4.0): An approach

and a case study. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8
December 2016; pp. 1647–1652. [CrossRef]

11. Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Muller, K.-R. A Unifying
Review of Deep and Shallow Anomaly Detection. Proc. IEEE 2021, 109, 756–795. [CrossRef]

12. Gerz, F.; Bastürk, T.R.; Kirchhoff, J.; Denker, J.; Al-Shrouf, L.; Jelali, M. Comparative Study and a New Industrial Platform for
Decentralized Anomaly Detection Using Machine Learning Algorithms. In Proceedings of the 2022 International Joint Conference
on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [CrossRef]

13. Bulusu, S.; Kailkhura, B.; Li, B.; Varshney, P.K.; Song, D. Anomalous Example Detection in Deep Learning: A Survey. IEEE Access
2020, 8, 132330–132347. [CrossRef]

14. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of Using Machine Learning Techniques
for Intrusion Detection. IEEE Commun. Surv. Tutor. 2019, 21, 686–728. [CrossRef]

15. Thudumu, S.; Branch, P.; Jin, J.; Singh, J. A comprehensive survey of anomaly detection techniques for high dimensional big data.
Big Data 2020, 7, 1–30. [CrossRef]

http://doi.org/10.1109/AQTR.2014.6857843
http://dx.doi.org/10.1145/1837274.1837461
http://dx.doi.org/10.1016/j.procir.2021.03.075
http://dx.doi.org/10.1016/j.procir.2014.03.115
http://dx.doi.org/10.3390/s22124474
http://dx.doi.org/10.1109/ICIT.2019.8755116
http://dx.doi.org/10.1109/TDSC.2018.2875008
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/BigData.2016.7840777
http://dx.doi.org/10.1109/JPROC.2021.3052449
http://dx.doi.org/10.1109/IJCNN55064.2022.9892939
http://dx.doi.org/10.1109/ACCESS.2020.3010274
http://dx.doi.org/10.1109/COMST.2018.2847722
http://dx.doi.org/10.1186/s40537-020-00320-x

Sensors 2023, 23, 4207 18 of 19

16. Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481–6494.
[CrossRef]

17. Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data.
PLoS ONE 2016, 11, e0152173. [CrossRef] [PubMed]

18. Oza, P.; Patel, V.M. One-Class Convolutional Neural Network. IEEE Signal Process. Lett. 2019, 26, 277–281. [CrossRef]
19. Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear

one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [CrossRef]
20. Smets, K.; Verdonk, B.; Jordaan, E.M. Discovering novelty in spatio/temporal data using one-class support vector machines. In

Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 2956–2963.
[CrossRef]

21. Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for
unsupervised anomaly detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April–3 May 2018.

22. Xiaoyi, G.; Akoglu, L.; Rinaldo, A. Statistical analysis of nearest neighbor methods for anomaly detection. arXiv 2019,
arXiv:1907.03813.

23. Elnour, M.; Meskin, N.; Khan, K.; Jain, R. A dual-isolation-forests-based attack detection framework for industrial control systems.
IEEE Access 2020, 8, 36639–36651. [CrossRef]

24. Pang, G.; Shen, C.; Cao, L.; Van Den Hengel, A. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2022, 54,
1–38. [CrossRef]

25. Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative
Adversarial Networks. In Artificial Neural Networks and Machine Learning—ICANN 2019: Text and Time Series ICANN 2019 Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11730, pp. 703–716. [CrossRef]

26. Choi, Y.; Lim, H.; Choi, H.; Kim, I.-J. GAN-Based Anomaly Detection and Localization of Multivariate Time Series Data for Power
Plant. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Republic
of Korea, 19–22 February 2020; pp. 71–74. [CrossRef]

27. Jiang, W.; Hong, Y.; Zhou, B.; He, X.; Cheng, C. A GAN-Based Anomaly Detection Approach for Imbalanced Industrial Time
Series. IEEE Access 2019, 7, 143608–143619. [CrossRef]

28. Heiko, H. Kernel PCA for novelty detection. Pattern Recognit. 2007, 40, 863–874.
29. Zhao, Y.; Deng, B.; Shen, C.; Liu, Y.; Lu, H.; Hua, X.S. Spatio-temporal autoencoder for video anomaly detection. In Proceedings

of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017.
30. Gong, D.; Liu, L.; Le V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.V.D. Memorizing normality to detect anomaly:

Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.

31. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-baiot-network-based detection of iot
botnet attacks using deep autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

32. Park, S.; Adosoglou, G.; Pardalos, P.M. Interpreting rate-distortion of variational autoencoder and using model uncertainty for
anomaly detection. Ann. Math. Artif. Intell. 2022, 90, 735–752. [CrossRef]

33. Jinwon, A.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18.
34. Munir, M.; Siddiqui, S.A.; Dengel, A.; Ahmed, S. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in

Time Series. IEEE Access 2019, 7, 1991–2005. [CrossRef]
35. Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Gao, H. A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC

Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image. IEEE Access
2020, 8, 73677–73697. [CrossRef]

36. Gong, W.; Wang, Y.; Zhang, M.; Mihankhah, E.; Chen, H.; Wang, D. A Fast Anomaly Diagnosis Approach Based on Modified
CNN and Multisensor Data Fusion. IEEE Trans. Ind. Electron. 2022, 69, 13636–13646. [CrossRef]

37. Qu, C.; Zhou, Z.; Liu, Z.; Jia, S. Predictive anomaly detection for marine diesel engine based on echo state network and
autoencoder. Energy Rep. 2022, 8 (Suppl. 4), 998–1003. [CrossRef]

38. Malviya, V.; Mukherjee, I.; Tallur, S. Edge-Compatible Convolutional Autoencoder Implemented on FPGA for Anomaly Detection
in Vibration Condition-Based Monitoring. IEEE Sens. Lett. 2022, 6, 1–4. [CrossRef]

39. Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep Clustering with Convolutional Autoencoders. In Neural Information Processing: 24th
International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Proceedings, Part II 24; Springer: Cham, Switzerland,
2017; p. 10635. [CrossRef]

40. Lee, G.; Jung, M.; Song, M.; Choo, J. Unsupervised anomaly detection of the gas turbine operation via convolutional auto-encoder.
In Proceedings of the 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, USA,
8–10 June 2020; pp. 1–6. [CrossRef]

41. Yu, J.; Zhou, X. One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis.
IEEE Trans. Ind. Inform. 2020, 16, 6347–6358. [CrossRef]

42. Chen, T.; Liu, X.; Xia, B.; Wang, W.; Lai, Y. Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window
Convolutional Variational Autoencoder. IEEE Access 2020, 8, 47072–47081. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2019.2958185
http://dx.doi.org/10.1371/journal.pone.0152173
http://www.ncbi.nlm.nih.gov/pubmed/27093601
http://dx.doi.org/10.1109/LSP.2018.2889273
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://dx.doi.org/10.1109/IJCNN.2009.5178801
http://dx.doi.org/10.1109/ACCESS.2020.2975066
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/doi.org/10.1007/978-3-030-30490-4-56
http://dx.doi.org/10.1109/BigComp48618.2020.00-97
http://dx.doi.org/10.1109/ACCESS.2019.2944689
http://dx.doi.org/10.1109/MPRV.2018.03367731
http://dx.doi.org/10.1007/s10472-021-09728-4
http://dx.doi.org/10.1109/ACCESS.2018.2886457
http://dx.doi.org/10.1109/ACCESS.2020.2988323
http://dx.doi.org/10.1109/TIE.2021.3135520
http://dx.doi.org/10.1016/j.egyr.2022.01.225
http://dx.doi.org/10.1109/LSENS.2022.3159972
http://dx.doi.org/10.1007/978-3-319-70096-0-39
http://dx.doi.org/10.1109/ICPHM49022.2020.9187054
http://dx.doi.org/10.1109/TII.2020.2966326
http://dx.doi.org/10.1109/ACCESS.2020.2977892

Sensors 2023, 23, 4207 19 of 19

43. Kwak, M.; Kim, S.B. Unsupervised Abnormal Sensor Signal Detection With Channelwise Reconstruction Errors. IEEE Access 2021,
9, 39995–40007. [CrossRef]

44. Lai, Y.; Liu, Z.; Song, Z.; Wang, Y.; Gao, Y. Anomaly detection in Industrial Autonomous Decentralized System based on time
series. Simul. Model. Pract. Theory 2016, 65, 57–71. [CrossRef]

45. Sanjith, S.L.; Prakash Raj, E.G.D. Decentralized Time-Window Based Real-Time Anomaly Detection Mechanism (DTRAD) in Iot.
Int. J. Recent Technol. Eng. 2019, 8, 1619–1625. [CrossRef]

46. Gupta, K.; Sahoo, S.; Mohanty, R.; Panigrahi B.K.; Blaabjerg, F. Decentralized Anomaly Identification in Cyber-Physical DC
Microgrids. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October
2022; pp. 1–6. [CrossRef]

47. Wilbur, M.; Dubey, A.; Leão B.; Bhattacharjee, S. A Decentralized Approach for Real Time Anomaly Detection in Transportation
Networks. In Proceedings of the 2019 IEEE International Conference on Smart Computing (SMARTCOMP), Washington, DC,
USA, 12–15 June 2019; pp. 274–282. [CrossRef]

48. Bosman, H.; Iacca, G.; Tejada, A.; Wörtche H.J.; Liotta, A. Spatial anomaly detection in sensor networks using neighborhood
information. Inf. Fusion 2017, 33, 41–56. [CrossRef]

49. Nikolay, L.; Amizadeh, S.; Flint, I. Generic and scalable framework for automated time-series anomaly detection. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August
2015.

50. Mayra, M.; Wu, C. An unsupervised framework for anomaly detection in a water treatment system. In Proceedings of the 2019 18th
IEEE International Conference on Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019.

51. Schneider, P.; Böttinger, K. High-Performance Unsupervised Anomaly Detection for Cyber-Physical System Networks. In Proceedings
of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, Toronto, ON, Canada, 15–19 October 2018.

52. Goetz, C.; Humm, G.B. Unsupervised Process Anomaly Detection under Industry Constraints in Cyber-Physical Systems using
Convolutional Autoencoder. In Computational Intelligence for Engineering and Management Applications, Select Proceedings of CIEMA
2022; Springer: Singapore, 2023, to be published.

53. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 13 February 2023).

54. Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.; Liang, E.; Elibol M.; Yang, Z.; Paul, W.; Jordan M.; et al. Ray: A
distributed framework for emerging AI applications. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018; pp. 561–577.

55. Zaharia, M.A.; Chen, A.; Davidson, A.; Ghodsi, A.; Hong, S.A.; Konwinski, A.; Murching, S.; Nykodym, T.; Ogilvie, P.; Parkhe,
M.; et al. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 2018, 41, 39–45.

56. Schölkopf, B.; Williamson, R.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support Vector Method for Novelty Detection. NIPS 1999, 12,
582–588.

57. Liu, F.; Ting, K.; Zhou, Z. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data 2012, 6, 3. [CrossRef]
58. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
59. Baldi, P. Autoencoders, unsupervised learning and deep architectures. In Proceedings of the 2011 International Conference on

Unsupervised and Transfer Learning Workshop, Bellevue, DC, USA, 2 July 2011; Volume 27, pp. 37–50.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3064563
http://dx.doi.org/10.1016/j.simpat.2016.01.013
http://dx.doi.org/10.35940/ijrte.B2350.078219
http://dx.doi.org/10.1109/ECCE50734.2022.9947581
http://dx.doi.org/10.1109/SMARTCOMP.2019.00063
http://dx.doi.org/10.1016/j.inffus.2016.04.007
tensorflow.org
http://dx.doi.org/10.1145/2133360.2133363
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Related Work
	Problem Statement
	A Concept for a Fast, Decentralized, and Unsupervised Anomaly Detection in CPPSs
	Overview
	AD Installation
	AD Generation Cycle
	AD Production Cycle
	Sliding Window Convolutional Autoencoder
	Anomaly Detection

	Prototype Implementation
	Evaluation
	Experimental Setup
	Data Recording
	Model Configuration
	Experimental Results

	Conclusions and Future Work
	
	
	
	References

