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Abstract: The security and privacy risks posed by unmanned aerial vehicles (UAVs) have become a
significant cause of concern in today’s society. Due to technological advancement, these devices are
becoming progressively inexpensive, which makes them convenient for many different applications.
The massive number of UAVs is making it difficult to manage and monitor them in restricted areas.
In addition, other signals using the same frequency range make it more challenging to identify UAV
signals. In these circumstances, an intelligent system to detect and identify UAVs is a necessity. Most
of the previous studies on UAV identification relied on various feature-extraction techniques, which
are computationally expensive. Therefore, this article proposes an end-to-end deep-learning-based
model to detect and identify UAVs based on their radio frequency (RF) signature. Unlike existing
studies, multiscale feature-extraction techniques without manual intervention are utilized to extract
enriched features that assist the model in achieving good generalization capability of the signal and
making decisions with lower computational time. Additionally, residual blocks are utilized to learn
complex representations, as well as to overcome vanishing gradient problems during training. The
detection and identification tasks are performed in the presence of Bluetooth and WIFI signals, which
are two signals from the same frequency band. For the identification task, the model is evaluated for
specific devices, as well as for the signature of the particular manufacturers. The performance of the
model is evaluated across various different signal-to-noise ratios (SNR). Furthermore, the findings are
compared to the results of previous work. The proposed model yields an overall accuracy, precision,
sensitivity, and F1-score of 97.53%, 98.06%, 98.00%, and 98.00%, respectively, for RF signal detection
from 0 dB to 30 dB SNR in the CardRF dataset. The proposed model demonstrates an inference time of
0.37 ms (milliseconds) for RF signal detection, which is a substantial improvement over existing work.
Therefore, the proposed end-to-end deep-learning-based method outperforms the existing work
in terms of performance and time complexity. Based on the outcomes illustrated in the paper, the
proposed model can be used in surveillance systems for real-time UAV detection and identification.

Keywords: UAV detection; classification; deep learning; convolutional neural network; multiscale
architecture

1. Introduction

In recent times, unmanned aerial vehicles (UAVs), widely recognized as drones,
have become an area of substantial interest. Without a pilot on board, UAVs can be
operated from miles away with the help of a remote controller. Initially, their applications
were limited to military sectors [1]. Military UAVs are used in warfare, surveillance, air
strikes, investigations, etc. [2]. However, drones are now being utilized for a diverse range
of applications that extend beyond the military, making them a valuable tool in many
different industries. For example, governments use UAVs for forestry surveillance [2],
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disaster management [3], remote sensing [4], etc. Companies such as Amazon, UPS Inc.,
and many others are using them for their product delivery services [5], etc. In agriculture,
drones are being used for spraying fertilizers and insecticides and crop monitoring [4].
Firefighters, healthcare services, and hobbyists are utilizing drones for rescue missions,
ambulance services, and recreational photography [2]. UAVs are now widely employed
beyond military applications; rather, they are an inherent part of our society. Most UAVs
registered in the United States serve recreational purposes, over 70%, while the rest are
used for commercial applications [6].

The increased number of drone users raises concerns for privacy and security [7]. The
deployment of civilian drones in national airspace has raised concerns about unauthorized
and unskilled pilots intruding into restricted zones and disrupting flight systems. Limited
regulations during drone purchases can contribute to this issue. For example, a few years
ago, a civilian drone crashed into an army chopper [8]. The most concerning issue is about
exploiting UAVs for terrorist attacks and illegal surveillance [6]. To prevent the mentioned
occurrences, an anti-UAV system capable of detecting, identifying, and neutralizing unau-
thorized UAVs capturing information utilizing different sensors is desired [9]. Besides,
UAV and UAV flight controllers, Bluetooth, and WIFI also use the 2.4 gigahertz (GHz) band.
Detecting UAVs among these signals is a very challenging task as those types of signals
have become more common in any infrastructure in the present day. Identification and
classification involve identifying the model of the received radio frequency (RF) signal. The
neutralization involves raising alarms or bringing down the unauthorized UAV or tracking
the source of the UAV controller signal. Several works have explored methods of detecting
drones using various technologies, including radar, audio, video, thermal imaging, and RF.
Radar-based techniques rely on the principle of using electromagnetic backscattering to
detect and identify aerial objects by analyzing their radar cross-section (RCS) signature [10].
Due to their smaller size, detecting drones using RCS analysis can be more challenging
when compared to airships. In audio-based techniques, a microphone is used to collect
the audio fingerprint of the engine and propellers [6,10]. The video surveillance camera
is used to monitor areas with the help of computer vision from the visual feature objects
(e.g., UAVs). In the thermal-imaging-based system, the thermal signature of the UAV emit-
ted from the engine is used for detection. In RF-based systems, RF signals are intercepted
and analyzed for identification and detection. The advantage of the RF-based detection
technique is that it can work regardless of any weather condition, as well as day or night.
Therefore, RF-based surveillance system has become more promising than other existing
systems in recent times. However, one of the major challenges of RF-based sensing is the
presence of other 2.4 GHz signals like WIFI and Bluetooth.

Machine learning (ML) and deep learning (DL) techniques have revolutionized many
areas such as image segmentation [11,12] and disease detection [13]. With the development
of DL algorithms, deep-learning-assisted drone-detection techniques have become popular
in the literature. A deep neural network (DNN) was integrated to classify multirotor UAVs
with audio signals in [14]. The authors have evaluated different architectures such as
recurrent neural network (RNN), convolutional neural network (CNN), and convolutional
recurrent neural network (CRNN) and compared the performances of these models against
late fusion methods, which performed better than existing solo network architectures. A
weight-optimized long short-term memory (LSTM) model was proposed to classify drones
using radar cross-section (RCS) signatures at millimeter-wave (mm wave) in [15]. Due to
the optimization, the computational overhead was reduced by denying the flow of the
gradient through the hidden states of the LSTM layers. Furthermore, adaptive learning
rate optimization was also introduced. Previously, signatures of RCS were converted into
images that required more computation. The LSTM-ALRO model introduced in this work
yielded better results than existing image-based deep learning models. However, the
impediments of the audio and radar-based techniques are that they are highly sensitive
to noise and their performance suffers with the increase in range. Moreover, radar-based
techniques are not effective with smaller drones [10]. The RF-based technique using deep
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learning for classifying multiple drones was presented in [16]. The authors proposed a
supervised deep learning algorithm to perform the detection and classification tasks. They
have used short-term Fourier transform (STFT) for preprocessing RF signals. STFT was
first used in this work to perform preprocessing of the data, which was fundamental to
the increased performance of their algorithm. In [10], the authors presented RF-UAVNet, a
convolutional network for the drone surveillance system, to identify and classify drones
based on RF signals. The proposed architecture consists of grouped convolutional layers
reducing network size and computational cost. DroneRF [17], a publicly available dataset
for RF-based drone detection systems, was used in this work. The DroneRF dataset was
also used in [18], where authors introduced compressed sensing technology, replacing the
traditional sampling theorem, and a multi-channel random demodulator to sample the sig-
nal. To detect the UAV, multistep deep learning was used. The DNN was used to detect the
UAV and a CNN was used to further identify the UAV. However, while using the DroneRF
dataset, considering other signals present at the 2.4 GHz band was not possible [19]. So,
Bluetooth and WIFI signals were not considered in [10,16,18]. In [6], the authors performed
an analysis of RF-based UAV detection and identification, considering the intrusion of other
wireless signals such as Bluetooth and WIFI. They performed continuous wavelet transform
(CWT) and wavelet scattering transform (WST) for extracting features. They considered
transient and steady states while classifying and identifying the signal. Furthermore, they
performed multiple image-based feature extraction techniques to compare the performance
with coefficient-based techniques (CWT, WST). They performed several ML models such as
support vector machine (SVM), k-nearest neighbors (KNN), and ensemble in combination
with principal component analysis (PCA) for classification and identification tasks across
various noise levels. They performed transfer learning using SqueezeNet [20], which is a
publicly available pretrained model for the classification and identification of UAVs. In this
work, the authors only considered drone control signals for detection. However, focusing
solely on control signals has a notable limitation when it comes to detecting drones, as these
UAVs can be operated from a remote location, potentially rendering them undetectable.
Therefore, to get a more reliable outcome, signals transmitted from drones must be con-
sidered [19]. Moreover, the authors observed severe performance degradation with lower
signal-to-noise ratios (SNR). In [19], the authors proposed a framework for classifying and
identifying and for activity recognition. The authors considered commonplace 2.4 GHz
signals such as WIFI and Bluetooth, UAV controller signals, and UAV signals. A stacked
noise denoising autoencoder (SDAE) was used for denoising to reduce noise and channel
effects. After identifying the unmanned aerial system (UAS), UAV controller signal, or
UAV, the classification was further performed to know the exact model of the device after
extracting the unique features using wavelet packet transform (WPT) and Hilbert–Huang
transform (HHT). Only the steady-state signals were considered as the transient signal can
be easily affected by channel effects [6]. In [6,19], the Cardinal RF (CardRF) dataset was also
used for UAV detection tasks. However, most of the aforementioned literature [6,18,19]
heavily relied on separate feature extraction methods and noise reduction methods, which
significantly increase the workload and complexity [21].

To mitigate the aforementioned challenges, we propose an end-to-end deep CNN-
based model to detect and identify UAS signals in the presence of WIFI and Bluetooth
signals with various SNRs. We aim to exploit multiscale convolutional architecture to
classify and detect UAV or UAV controller signals. We have used the CardRF [22] dataset
for training, as well as for evaluating the predictive performances of the proposed model,
as other datasets available for UAV surveillance have some shortcomings, as described
in [19]. The stacked convolutional layers in the network-extract-enriched information from
the noisy data. Therefore, the proposed model does not require any further denoising
or feature-extraction steps. Moreover, the feature-extraction capability of the network is
enhanced by the introduction of the multiscale architecture. Features of different scales
are obtained by paralleling different convolutional kernels. Residual connections are also
inserted in the proposed model to avoid gradient explosion, which results in superior
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training outcomes. Furthermore, the residual structures and maxpooling improve the
performance of the model in backpropagation [23].

In summary, the main contributions of this work are presented as follows:

• An end-to-end DL-based system has been proposed to detect and identify UAS,
Bluetooth, and WIFI signals across various different noise levels.

• The model does not require any manual feature extraction steps, which reduces the
computational overhead. The model exploits the RF signature of different devices for
the detection and identification tasks.

• Stacked convolutional layers along with multiscale architecture have been utilized
in the model, which assists in the extraction of crucial features from the noisy data
without any assistance from the feature-extraction techniques.

• The performance of the model has been evaluated using different performance matri-
ces (e.g., accuracy, precision, sensitivity, and F1-score) on the CardRF dataset.

• After conducting comparative experiments, we have established that our proposed
network outperforms the existing works in terms of performance and time complexity.

The rest of this paper is structured as follows: Section 2 describes the methodology of
UAV detection and identification; Section 3 is based on the experimental results, as well as
implementational details; and the conclusion was finally drawn in Section 4.

2. Methodology

This section describes the identification and detection of UAS signals along with
Bluetooth and WIFI signals utilizing the proposed architecture using the CardRF dataset.
Figure 1 depicts the complete architecture of the proposed system for the UAS signal. The
samples sourced from the RF database are preprocessed, and additive white Gaussian noise
(AWGN) is incorporated into the samples to generate noisy samples of different SNRs.
Each requisite step of UAS signal detection and identification is illustrated in a detailed
manner in the following sections.
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Figure 1. The architecture of the proposed system for UAS signal detection and identification.

2.1. RF Dataset Description

For the mentioned system, CardRF, a large-scale dataset, is utilized for different RF-
based signals (e.g., UAS, WIFI, and Bluetooth) detection and device identification. The
dataset contains signals from five UAVs (one Beebeerun (Bbrun), four DJI), five UAV flight
controllers (one 3DR and four DJI), five Bluetooth devices (iPad, iPhone, and smartwatch),
two WIFI routers (one Cisco and one TP-link). The captured signals were passed through
a 2.4 GHz bandpass filter to ensure that they have the same frequency band [19]. Each
signal contains five million sampling points at 30 dB SNR. The details of signal acquisition
experiments of the signals are given in [19]. In this article, the steady state of the signals
with 1024 sampling points per slice is considered. The dataset used in this literature is
shown in Table 1 in a detailed manner.
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Table 1. CardRF dataset distribution.

Device Type Make Model Name Number of Signals

UAV and/or UAV controller

Beebeerun FPV RC drone mini quadcopter 245

DJI

Inspire 700

Matrice 600 700

Mavic Pro 1 700

Phantom 4 700

3DR Iris FS-TH9x 350

WIFI
Cisco Linksys E3200 350

TP-link TL-WR940N 350

Bluetooth

Apple

iPhone 6S 350

iPhone 7 350

iPad 3 350

FitBit Charge3 smartwatch 350

Motorolla E5 Cruise 350

2.2. RF Signal Preprocessing

The RF signal pre-processing mentioned in Figure 1 is described here in detail. In the
CardRF dataset, each signal contains five million sampling points, which comprise of noise
transient state and steady state. In this article, we have considered 10 segments from each
signal, where each signal contains 1024 sampling points for the classification tasks, as the
minimal length of the signal will introduce enhanced time complexity in the detection and
identification system [19]. As some of the classes do contain the transient state, which can
be shown in Figure 2, only the steady-state signals were considered. Moreover, the transient
state sometimes does not contain reliable features. For this reason, each segment is taken
from the steady state and normalized by scaling values in the range of (0, 1) as follows:

xinormalized =
xi − ximin

ximax − ximin

(1)

where xi denotes the amplitude of the segmented signal, and xmin, xmax, and xnormalized
denote the minimum, maximum, and normalized amplitude of the signal, respectively.

2.3. Noise Incorporation

To investigate the model performance across various noise levels, we have incorpo-
rated AWGN to signals to produce noisy signals of 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, and
25 dB SNR. To generate noisy signals of desired SNR, SNRTarget, desired noise power, and
PNoise can be calculated using signal power PSignal and desired SNR, SNRTarget as follows:

PSignal dB
= 10 log(

∑m
i=0 xinormalized

m
) (2)

PNoise dB = PSignal dB
SNRTarget dB (3)

where m denotes signal length, and PSignal dB
is the average signal power in the dB unit in

Equation (3). PNoise dB and SNRTarget dB
are noise power and desired SNR in dB, respectively.

The noise power can be calculated as follows:

PNoise = 10
PNoise dB

10 (4)
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where PNoise is the noise power in watts. To produce the noise signal, zero is chosen as
the mean noise, PNoise as standard deviation, and the noisy signal is generated using the
following equation:

XiNoisy = XiNormalized + η(µNoise, ρNoise) (5)

where XiNoisy is the generated noisy signal. η represents the noise signal. µNoise and ρNoise
are noise mean and standard deviation, respectively.
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Figure 3 shows the signal at different noise levels. Figure 3a–c show the signal at
30 dB, 25 dB, and 20 dB, respectively. The difference in RF signal is minimal in these SNRs.
However, the quality of the signal degrades with the decrease in SNR, which can be seen in
Figure 3e,f.

2.4. Model Description

Figure 4a describes the complete architecture of the model. The whole model can
be divided into three major sections. The first stage is called the initial feature extraction
block. At the very top, after the input layer, the one-dimensional data was reshaped to
feed into the convolutional layer and followed by a rectified linear unit (ReLU) activation
function, which is linear for all positive values and zero for all negative values. ReLU is
computationally inexpensive, which results in less training and inference time. Moreover,
it converges faster than other activation functions, such as Tanh. The ReLU function can be
written as follows:

ReLU(x) = max(x, 0) (6)
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Next, the maxpooling layer is used to extract the most prominent features and to
reduce the feature map before incorporating multiscale architecture.

The second section is the multiscale feature extraction block. This section consists of
both sequential and parallel layers to extract features of the different spatial domains. In
our network, we have exploited an architecture with two branches for feature extraction.
The architecture of these two branches is identical except for the size of their kernels.
Different kernel sizes have been used for experimental purposes. Each branch contains
four convolutional blocks (conv block) with different convolutional filters. The first two
parallel blocks consist of one convolutional layer followed by a ReLU function and another
convolutional layer that is described as conv block 1 in Figure 4b. The layers consist of
64 convolutional filters.

yi = xi + f (xi) (7)

xi+1 = ReLU(yi) (8)

where xi is the output of the maxpooling layer and f (xi) is the output of the conv block 1.
The output of the conv block and maxpooling layers is added, as shown in Equation (8),
and passed through the ReLU layer, which is the input of the second conv block with 128
filters, which is an instance of conv block 2. The second conv block has the architecture
shown in Figure 4c. The difference between this block from the previous one is the output
of the second conv layer is passed through a dense layer with ReLU activation of 64 units
to keep the number of outputs similar to the previous one. The residual block next can be
expressed as follows:

xi+2 = ReLU( f (xi) + f (xi+1)) (9)
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where f (xi) and f (xi+1) are the output of conv blocks. The third and fourth Conv blocks
have the same hyperparameters with 256 filters. The outputs of these blocks are passed
through a residual block and then the averagepooling layer and dropout layer to re-
duce overfitting.
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The third and final section of the model, which is called the terminal block, contains
flatten and softmax layers. The outputs of both branches are concatenated and flattened.
For the detection task, three classes are used, and for the identification task, ten classes
are utilized for specific device identification task and eight for the device manufacturer
identification task. However, similar architecture is used for identification and detection
tasks except for the softmax layer. Softmax maps the outputs between zero and one, as
well as provides a probabilistic distribution of the likelihood of all the classes. The softmax
function can be defined as follows:

So f tmax(zi) =
ezi

∑k
j=1 ezj

(10)

where zi is the flattened outputs of the previous stage and k is the number of classes. The
selection of the number of neurons and layers utilized in this article was based on extensive
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experimentation. Table 2 depicts a detailed description of the proposed model with the
output shapes of each layer, 1, 2, 3, etc., representing the instances of each layer.

Table 2. Configuration table of the proposed model architecture.

Initial Feature Extraction Block

Layer Output Volume

Input (1024)
Reshape (1024, 1)
Convolution 1D 1 (512, 64)
ReLU 1 (512, 64)
MaxPooling (255, 64)

Multiscale Feature Extraction Block

Branch 1 Branch 2

Layer Output Volume Layer Output Volume

Convolution 1D 2 (255, 64) Convolution 1D 10 (255, 64)
ReLU 2 (255, 64) ReLU 10 (255, 64)
Convolution 1D 3 (255, 64) Convolution 1D 11 (255, 64)
Add 1 (255, 64) Add 5 (255, 64)
ReLU 3 (255, 64) ReLU 11 (255, 64)
Convolution 1D 4 (255, 128) Convolution 1D 12 (255, 128)
ReLU 4 (255, 128) ReLU 12 (255, 128)
Convolution 1D 5 (255, 128) Convolution 1D 13 (255, 64)
Dense 1 (255, 64) Dense 4 (255, 64)
Add 2 (255, 64) Add 6 (255, 64)
ReLU 5 (255, 64) ReLU 13 (255, 64)
Convolution 1D 6 (255, 256) Convolution 1D 14 (255, 256)
ReLU 6 (255, 256) ReLU 16 (255, 256)
Convolution 1D 7 (255, 256) Convolution 1D 15 (255, 256)
Dense 2 (255, 64) Dense 5 (255, 64)
Add 3 (255, 64) Add 7 (255, 64)
ReLU 7 (255, 64) ReLU 14 (255, 64)
Convolution 1D 8 (255, 256) Convolution 1D 16 (255, 256)
ReLU 8 (255, 256) ReLU 18 (255, 256)
Convolution 1D 9 (255, 256) Convolution 1D 17 (255, 256)
Dense 3 (255, 64) Dense 6 (255, 64)
Add 4 (255, 64) Add 8 (255, 64)
ReLU 9 (255, 64) ReLU 17 (255, 64)
Averagepooling 1 (127, 64) Averagepooling 2 (127, 64)
Dropout 1 (127, 64) Dropout 2 (127, 64)

Terminal Block

Layer Output Volume

Add 9 (127, 64)
Flatten (8, 128)
Dense 7 (3,)/(10,)/(8,)

3. Experimental Results

In this section, implementation details, performance metrics, and model performances
are described. Finally, the performance of the proposed model is evaluated with existing
work to analyze the effectiveness of the proposed system and unveil its superiority over
other existing works.

3.1. Implementation Details and Performance Metrics

From the normalized RF signals, 85% of each category is selected for training, and
the remaining 15% of the signals are kept for testing purposes for both detection and
identification tasks. The total training data number 51,765, and the testing data number
9135 for the detection task, including all three categories. The classifier models are trained
using the training data and optimized using an optimizer. Finally, the performance has
been evaluated on the testing data (see Figure 1). For the identification task, three classes
(iPhone 7, iPad 3, and E5 Cruise) are excluded to compare our work with [6]. The total
training data for specific device identification tasks number 43,732, and the testing data
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number 7718. The training and testing procedures were conducted within an Anaconda
Python 3.7 environment on a system featuring a 12th generation Intel Core i7 CPU with a
base clock speed of 2.10 GHz, 16 GB of RAM, and a single Nvidia GeForce RTX 3050 GPU
with 8 GB of dedicated GPU memory. All the hyperparameters utilized for training the
proposed model are shown in Table 3. By varying the noise level, the performance of the
proposed model is evaluated, keeping the number of hyperparameters identical. For the
cost function, categorical cross-entropy is used for both the detection and identification
tasks, which is require multi-class classification. To minimize the loss function, an adaptive
moment estimation (Adam) optimizer is used. The benefit of using Adam is that it perceives
the learning rate individually for all the parameters. Both the detection and identification
models were trained for 120 epochs.

Table 3. Hyperparameters for model training and evaluation.

Hyperparameters Values

Train data shape
(51,765, 1024), (51,765, 3) (Detection stage)

(43,732, 1024), (43,732, 10) (Specific identification stage)
(43,732, 1024), (43,732, 8) (Manufacturer Identification stage)

Test data shape
(9135, 1024), (9135, 3) (Detection stage)

(7718, 1024), (7718, 10) (Specific identification stage)
(43,732, 1024), (43,732, 8) (Manufacturer identification stage)

Learning rate 0.001

Number of epochs 120

Cost function Categorical cross-entropy

Activation function ReLU, softmax

Optimizer Adam

Batch size 512

To evaluate the performance of our model, we have computed the accuracy (ACC),
precision (PR), sensitivity (SE), and F1-score (F1), which are also known as evaluation
metrics. PR is the ability of the classifier to avoid incorrectly labeling instances as positive
if they are truly negative. On the other hand, SE is defined as the ability of the classifier
to identify the positive instances. F1 is the weighted harmonic mean of both PR and SE.
These are defined as follows:

ACCi =
TPi + TNi

TPi + TNi + FPi + FNi
(11)

PRi =
TPi

TPi + FPi
(12)

SEi =
TPi

TPi + FNi
(13)

F1i =
2 × PRi × SEi

PRi + SEi
(14)

where TPi, TNi, FPi, and FNi are true-positive, true-negative, false-positive, and false-
negative, respectively, of the ith class. True-positive and true-negative stand for the number
of the ith class predicted correctly and the number of other classes that are not predicted as
the of ith class, respectively. Whereas false-positive and false-negative are the outcomes
that refer to the number of other classes, which are predicted as the ith class and the number
of ith classes classified as the other classes, respectively.
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3.2. Performance Analysis

In this section, the performance of the proposed model is analyzed across different
noise levels for both detection and identification tasks. Figure 5a,b depict the training and
testing accuracy curves over 120 epochs for detection and specific device identification
tasks, respectively. From the figures, it can be seen that the models do not have overfitting
issues. It can also be seen that both models converge rapidly. The training process of the
models has been stopped, even though the training accuracy was still improving because of
no noticeable improvement in the testing data. The overall training and testing accuracy of
the proposed model are 98.7% and 97.53%, respectively, for the detection task, and for the
identification task, the model has an accuracy of 76.42%. For the detection task, the accuracy
of RF signal detection has higher accuracy as opposed to the specific device identification
task, as the model has a higher rate of misclassifying the UAS signals from the devices that
are manufactured by the same maker.
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Figure 5. Training and test accuracy curve of the proposed models over 120 epochs for (a) RF signal
detection task and (b) specific device identification task.

We have varied the kernel sizes for the convolutional layers of our models to observe
the performance of the model to find the most optimal hyperparameters. Table 4 demon-
strates the performance comparison of the proposed model for different kernel sizes. From
the table, it can be seen that for the higher SNR values, the accuracy of the model slightly
differs, but with the increase in noise, the differences in the performance of the model
are more visible. For the detection task, the model shows an accuracy of 98.63% when
kernels of size 3 and 7 have been used, which is only 0.01% less than kernel sizes of 5 and 7.
However, for 0 dB SNR, the model demonstrates an accuracy of 93.81% with kernel sizes of
5 and 7, which is 0.93% and 0.95% higher than the accuracy of the model with kernel sizes
of 3, 7, and 3, 5. The overall accuracy of the model is also higher with 5 and 7 kernel sizes.
The same scenario can be seen for the detection task as well. For 0 dB SNR, the accuracy of
the model is 88% and 1.81% higher with kernel sizes of 5 and 7 than the models with kernel
sizes of 3, 7, and 3, 5. The model yields better results with larger kernel sizes because they
reduce false positives and improve accuracy [24]. Moreover, larger kernels also capture
more spatial information and extract more relevant features from the noisy signals.

Table 5 shows the overall performance of the model for the detection task in terms of
four evaluation metrics numerically using TPi, TNi, FPi, and FNi. From the SE metrics,
it can be seen that the model can identify 97.53% of UAS signals correctly. The model
demonstrates a PR of 98.06%. This high precision rate means the model has a very high
rate of TPi in terms of UAS signals. The model also shows a higher SE for UAS signals.
These high PR and SE leads to a high F1 score as well. The PR, SE, and F1 are similar for
the UAS and Bluetooth classes. That describes the model can almost accurately classify
these two classes. The lower value PR, SE, and F1 for WIFI can be explained by the fewer
training samples of the class.
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Table 4. Overall accuracies of the proposed model for different kernel sizes.

Noise Level Signal Detection Task Device Identification Task

Kernel 3
and 5 (%)

Kernel 3
and 7 (%)

Kernel 5
and 7 (%)

Kernel 3
and 5 (%)

Kernel 3
and 7 (%)

Kernel 5
and 7 (%)

30 dB 98.63 98.64 98.64 80.50 80.51 80.62
25 dB 98.60 98.61 98.63 80.50 80.60 80.61
20 dB 98.20 98.27 98.62 79.49 79.96 80.60
15 dB 98.04 98.36 98.46 78.26 78.39 78.58
10 dB 96.10 96.12 97.59 73.72 74.13 75.58
5 dB 94.65 94.85 96.00 66.29 66.35 66.73
0 dB 92.86 92.88 93.81 55.29 56.50 57.70

Unseen 91.33 91.40 95.88 66.20 67.45 68.78
Overall 97.00 96.60 97.53 74.00 75.54 76.42

Table 5. Overall classification performance of the proposed model.

Signal ACC (%) PR (%) SE (%) F1 (%)

Bluetooth 98.95 98.16 98.02 98.5

UAS 97.53 98.06 98.0 98.0

WIFI 98.53 93.23 94.23 93.72

Figures 6 and 7 show the confusion matrix of the proposed model for the detection
task and specific identification task, respectively. Test accuracy for identification tasks is
98.64%, 98.63%, 98.62%, 98.45%, 97.59%, 95.96%, and 93.81% for 30 dB, 25 dB, 20 dB, 15 dB,
10 dB, 5 dB, and 0 dB, respectively. The model maintains an accuracy of more than 80% for
SNR of 20 dB and above, but the accuracy drops with the increase in the noise level because
of the presence of more noise. At 10 dB SNR, the accuracy of the model is 76.16%. The
performance of the models was evaluated with a set of unseen data from different unknown
noise levels. For the detection task, the accuracy was 95.89%. The confusion matrix of the
unseen noise for the detection and identification tasks are shown in Figures 6h and 7h. RF
signal detection has a higher accuracy as opposed to the specific device identification task,
as the model has a higher rate of misclassifying the UAS signals from the devices that are
manufactured by the same maker. That can be confirmed from the confusion matrices, as
all DJI UAS signals are clustered in an area.

The comparison of the model performance in terms of accuracies with [6] for both
tasks is shown in Figure 8. For the detection task, the performance of the proposed model
is close to the SqueezeNet architecture exploited in [6] for 30 dB to 10 dB SNR, but with
the increase in the noise level, the performance of the SqueezeNet model decreases rapidly,
which can be seen in Figure 8a.

After 10 dB SNR, the accuracy of the SqueezeNet model is lower than 90%. However,
the proposed model maintains an accuracy of over 93% for all the noise levels discussed
in this work. The superior performance of the proposed model can be described because
of multiscale architecture. The model extracts features of multiple scales, which assist the
proposed model in identifying more prominent features from the noisy data. This shows
that the proposed model is more reliable than the SqueezeNet architecture. Figure 8b
shows the comparison of the models for the identification task. It can be clearly seen that
the proposed model not only outperforms the SqueezeNet but also has a more stable and
reliable performance than the methods proposed in ref. [6] for all the noise levels from 0 dB
to 30 dB.

Table 6 demonstrates the comparison of average PR, SE, and F1 of the proposed
model with existing work for RF signals of 30 dB SNR. From the table, it can be said
that the proposed model not only outperforms the existing work in terms of accuracy
but also in other metrics. For the detection task, the proposed model exhibits a 0.4% and
0.6% higher SE compared to the SqueezeNet with WST and CWT, respectively, which
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means the proposed model is able to find and correctly classify more of the instances with
fewer FNi. As F1 depends on PR and SE, the model demonstrates a higher F1. In the
identification task, the model exhibits a 7.55% and 6.25% improvement in precision and a
6.97% and 7.67% enhancement in sensitivity when compared to SqueezeNet with WST and
CWT, respectively.
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Table 6. Comparison of models in terms of various performance metrics.

Method Detection Task Identification Task

PR (%) SE (%) F1 (%) PR (%) SE (%) F1 (%)

SqueezeNet + CWT [6] 99.70 99.0 - 77.40 76.50 -
SqueezeNet + WST [6] 99.70 99.20 - 76.10 77.20 -

Proposed Model 99.70 99.62 99.60 83.65 84.17 83.88
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The comparison of accuracies in Figure 8 and other performance metrics in Table 6
demonstrates the superiority of the proposed model in terms of performance.

To address the issue of the higher misclassification among the devices from the same
manufacturer observed in Figure 9 the identification model is further modified to classify
the devices based on the manufacturers. The four DJI drones and Bluetooth devices from
Apple are kept in the same cluster. The performance of the model greatly improves while
identifying the signature of the device makers. The overall training and testing of device
manufacturer identification are 90.52% and 84.43%, respectively. For the signals from
unseen SNR, the accuracy of the model is 84.1%, and for 30 dB to 15 dB, the accuracy
of the model is above 85%, and for 0 dB, the accuracy is 71%. The confusion matrix in
Figure 9 shows the performance of the model for each class, which shows the model’s
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ability to classify devices from different manufacturers across various different noise levels.
Figure 9h shows that the proposed model can identify most of the devices from the unseen
noise levels accurately.
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Figure 8. Comparison of models in terms of accuracies with [6] across different noise levels for the
(a) detection task and (b) specific device identification task.

3.3. Computational Performance of the Proposed Model

Table 7 shows the inference time and the number of parameters of the proposed
system compared with the previous work. SqueezeNet requires 180 milliseconds (ms) with
CWT and 151 ms with WST. The higher inference time is due to the utilization of manual
feature extraction techniques, which are computationally expensive, but our proposed
DL-based method, despite having more parameters, demonstrates an inference time of
0.379 ms for the detection task. For specific device identification task, the inference time of
the proposed model is 0.343 ms, which is also significantly lower than [6]. The significant
improvement in inference time is because the proposed model does not require any manual
feature-extraction technique. The multiscale feature-extraction method utilized in this
article is sufficient to extract features from the noisy RF signal.

Table 7. Computational and time complexity of the proposed model.

Method Detection Task (ms) Identification Task (ms) Number of
Parameters

SqueezeNet + CWT [6] 180 190
722,374

SqueezeNet + WST [6] 151 159

Proposed Model 0.379 0.343 2,444,928

From the table it is evident that the proposed model offers a reduction in inference time by
eliminating the need for feature extraction, which is advantageous for real-time applications.



Sensors 2023, 23, 4202 16 of 18
Sensors 2023, 23, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 9. Confusion matrix for device manufacturer identification task at (a) 30 dB, (b) 25 dB, (c) 20 
dB, (d) 15 dB, (e) 10 dB, (f) 5 dB, (g) 0 dB, and (h) unseen SNR. 

3.3. Computational Performance of the Proposed Model 
Table 7 shows the inference time and the number of parameters of the proposed sys-

tem compared with the previous work. SqueezeNet requires 180 milliseconds (ms) with 
CWT and 151 ms with WST. The higher inference time is due to the utilization of manual 
feature extraction techniques, which are computationally expensive, but our proposed 
DL-based method, despite having more parameters, demonstrates an inference time of 
0.379 ms for the detection task. For specific device identification task, the inference time 
of the proposed model is 0.343 ms, which is also significantly lower than [6]. The signifi-
cant improvement in inference time is because the proposed model does not require any 
manual feature-extraction technique. The multiscale feature-extraction method utilized in 
this article is sufficient to extract features from the noisy RF signal. 

Table 7. Computational and time complexity of the proposed model. 

Method Detection Task (ms) 
Identification Task 

(ms) 
Number of  
Parameters 

SqueezeNet + CWT [6] 180 190 
722,374 

SqueezeNet + WST [6] 151 159 
Proposed Model 0.379 0.343 2,444,928 

Figure 9. Confusion matrix for device manufacturer identification task at (a) 30 dB, (b) 25 dB,
(c) 20 dB, (d) 15 dB, (e) 10 dB, (f) 5 dB, (g) 0 dB, and (h) unseen SNR.

4. Conclusions

In this article, we have utilized an end-to-end deep learning architecture for detecting
and identifying UAV signals based on their RF signature. We have considered both UAV
and UAV controller signals for our classifier. The communications of the UAV and the
flight controller are established at the 2.4 GHz frequency band. Other devices, such as
Bluetooth and WIFI signals, also operate in the same range, so we have considered both of
these signals as well. Our proposed model is trained on signals from different noise levels,
and it can classify signals from unknown SNRs as well, which makes our proposed model
more effective. Our proposed model does not require any feature-extraction techniques,
which makes it computationally efficient. The raw RF signals, after being normalized, are
fed into the network model for training. The model is trained with the data from 0 dB to
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30 dB SNR. The average accuracy of the model is 97.53%. Furthermore, the network is
evaluated on the data from unseen noise levels to evaluate the performance of the classifier.
The overall accuracy for the detection task on unseen data is above 94%. We have obtained
an overall accuracy above 76% for specific device identification tasks because of the higher
misclassification rate from the same makers. The classification accuracy greatly improves
when devices from the same manufacturers are clustered together. The model yields
an accuracy of 84% on average when classifying the RF signature of the manufacturers.
Finally, we have compared our work with the existing framework and found that the
performance of our model, despite having no feature-extraction steps, is more stable across
different SNRs.

Our proposed model holds the potential to benefit surveillance systems by effectively
detecting and identifying UAS signals in real-time scenarios. The model eliminates the need
for manual feature extraction, thus enabling deployment in edge devices. Moreover, its
scope of application extends beyond surveillance systems, as it can also be used for image
segmentation, feature extraction [25], and video analysis [26] for industries such as health
care and others that require similar functionalities. Going forward, we are committed to
implementing our model in a diverse range of applications to highlight its versatility and
the significant impact it can have across various industries.
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