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Abstract: Alzheimer’s disease (AD) is now classified as a silent pandemic due to concerning current
statistics and future predictions. Despite this, no effective treatment or accurate diagnosis currently
exists. The negative impacts of invasive techniques and the failure of clinical trials have prompted
a shift in research towards non-invasive treatments. In light of this, there is a growing need for
early detection of AD through non-invasive approaches. The abundance of data generated by
non-invasive techniques such as blood component monitoring, imaging, wearable sensors, and
bio-sensors not only offers a platform for more accurate and reliable bio-marker developments
but also significantly reduces patient pain, psychological impact, risk of complications, and cost.
Nevertheless, there are challenges concerning the computational analysis of the large quantities of
data generated, which can provide crucial information for the early diagnosis of AD. Hence, the
integration of artificial intelligence and deep learning is critical to addressing these challenges. This
work attempts to examine some of the facts and the current situation of these approaches to AD
diagnosis by leveraging the potential of these tools and utilizing the vast amount of non-invasive data
in order to revolutionize the early detection of AD according to the principles of a new non-invasive
medicine era.
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1. Shedding Light on Alzheimer’s Disease: The Current Situation and What We Know
So Far

The current statistics on Alzheimer’s disease (AD) are alarming and paint a grim
picture of the future. AD is a widespread and prevalent disease across the globe and is
the leading cause of dementia in individuals aged 65 and above [1]. According to reports
from the UN Aging Program and the US Centers for Disease Control and Prevention, it
is projected that the global population of individuals aged 65 and above will increase
from 420 million in 2000 to almost 1 billion by 2030 [2]. This demographic shift will result
in a substantial increase in the proportion of older individuals, rising from 7% to 12%
of the world’s population. According to the Special Report examination, an estimated
6.7 million people aged 65 and older are living in the USA with AD, and this number could
be increased to 13.8 million by 2060 [3].

Meanwhile, AD is a complex and multifactorial disorder that arises from a combination
of genetic, environmental, epigenetic, and metabolic factors [4]. Alongside brain-related
etiopathogenic mechanisms, these factors contribute to the heterogeneous cognitive phe-
notype that characterizes AD. This complexity has posed significant challenges to the
development of effective drug treatments for AD, as evidenced by the high rate of fail-
ure of drug candidates entering the AD drug-development pipeline over the past three
decades [5].

Sensors 2023, 23, 4184. https://doi.org/10.3390/s23094184 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094184
https://doi.org/10.3390/s23094184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7704-5368
https://orcid.org/0000-0003-0053-7847
https://doi.org/10.3390/s23094184
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094184?type=check_update&version=1


Sensors 2023, 23, 4184 2 of 17

Despite significant research and development in the past few decades to create new
diagnostic algorithms that utilize biomarkers , the diagnostic rate for Alzheimer’s disease
(AD) remains low [6]. The hallmark of AD is characterized by specific cerebrospinal fluid
(CSF) biomarkers , such as the accumulation of amyloid beta peptide (Aβ) which can be
accurately detected in CSF samples of AD patients. Furthermore, a recent cross-sectional
analysis investigated the inter-play between Ab and tau in early AD and its impact on
cognitive impairment [7]. The study utilized CSF markers and found that cognitive and
memory performance were significantly associated with tau levels in the early stages of
AD, with the correlation being dependent on Ab. A recent indicative study [8] highlighted
the potential of assessing CSF molecules in distinguishing between AD and non-AD
patients. Their findings revealed that the ratio of Ab42 to Ab40 exhibited the most effective
discriminatory ability and may be valuable in clinical practice. As a result, there is a huge
amount of literature focused on the use of CSF-based approaches for the early diagnosis
of AD.

While the use of CSF biomarkers for AD diagnosis shows promising results, it is
important to note that it is an invasive technique with potential drawbacks. The procedure
requires a lumbar puncture, which can be uncomfortable and carries a small risk of side
effects [9]. Additionally, the cost and availability of the test may limit its widespread
use. It should also be noted that even minor bio-chemical changes in the brain can be
reflected in the composition of the CSF [10]. Consequently, CSF is widely considered as a
high-quality biological fluid that has the potential to contain validated clinical signatures
for AD; however, it is important to recognize its limitations and drawbacks.

In the present work, in Section 2, we discuss the need for early diagnosis of AD from a
non-invasive perspective. Section 3 explores cutting-edge studies on the early onset of the
disease using non-invasive techniques, while in Section 4, we present recent advances in
non-invasive AD diagnosis using deep learning and machine learning techniques. Finally,
in Section 5, we discuss the role of artificial intelligence and deep learning as novel insights
into AD monitoring. This study emphasizes the importance of non-invasive methodologies
for the early diagnosis and monitoring of AD, with a particular focus on the potential of
artificial intelligence methods for complex data analysis.

2. Need for Early Diagnosis of AD—The Non-Invasive Perspective

It is widely acknowledged in the scientific community that AD is a debilitating and
progressive neurodegenerative disorder with no known cure. As such, the current focus
of AD research is shifting towards early detection and intervention, as this is considered
critical to improving patient outcomes and developing more effective therapies. The pre-
symptomatic stage of AD, during which cognitive decline is yet to manifest clinically,
has emerged as a key window of opportunity for early detection and intervention [11].
Currently available therapeutics for the management of AD offer solely symptomatic relief.
Over the last ten years, numerous compounds with disease-modifying potential have
been brought to clinical trials and proven ineffective. The limited success of molecular
therapeutic approaches has led to an inclination towards non-invasive therapies as an
alternative, which can circumvent most of the challenges encountered by their molecular
counterparts [12].

By identifying biomarkers of AD pathology in the pre-symptomatic phase, it may
be possible to predict the onset of cognitive symptoms and enable the implementation of
preventative measures and targeted interventions. The importance of early detection and
intervention in AD will lead to the development of more personalized treatment strategies,
incorporating both pharmacological and non-pharmacological interventions, that can better
meet the complex needs of AD patients. Ultimately, this will require ongoing research
efforts and collaborations across multiple disciplines to develop a more comprehensive
understanding of AD pathology and effective interventions.
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The urgent need to implement effective diagnostic methods that can detect the disease
at an early stage is inextricably linked to the use of non-invasive methods. Such approaches
for early detection of AD have gained considerable attention in recent years, owing to their
accessibility, safety, and cost-effectiveness. A non-invasive perspective on the challenges
of AD is an important area of research that has the potential to revolutionize the way the
disease is diagnosed and managed. Non-invasive techniques for the early prediction of
AD include a range of methods. Imaging techniques, such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) [13], can provide insights into the structural
and functional changes in the brain associated with AD symptoms. These techniques can
detect early signs of neurodegeneration, such as changes in brain volume, reduced glucose
metabolism, and the accumulation of beta-amyloid plaques. Furthermore, analysis of blood-
based samples can also provide early indications of AD pathology, by measuring levels of
AD-related proteins such as Aβ and tau [14]. In addition to these established techniques,
digital data from wearables and bio-sensors are emerging as promising non-invasive tools
for early prediction of AD. Wearable devices, such as smartwatches and fitness trackers,
can collect data on physical activity, sleep patterns, and other lifestyle factors that may be
linked to AD risk, while bio-sensors can monitor changes in physiological parameters, such
as heart rate and breathing, which may reflect early signs of AD pathology [15]. Tarnanas
and Rapp, introduced a novel digital bio-marker, the neuro-motor-index (NMI), that can
provide personalized prognostic information and feasible scalability [16]. NMI was proven
to detect subtle changes in pre-clinical AD patients starting 24 months before any symptoms
of cognitive impairment develop. There is a variety of other sensor-based approaches and
applications that can be used for distinguishing AD, as described below.

3. Cutting-Edge Studies for Early-Onset AD through Non-Invasive Techniques
3.1. Wearable Devices for Digital Biomarkers

There is a growing body of literature suggesting that cognitive, behavioral, and motor
changes may occur years prior to the onset of clinical symptoms in individuals with
AD [17]. As researchers strive to establish a gold standard for the assessment of the disease,
there is a growing interest in the identification of easily accessible digital biomarkers that
utilize advancements in consumer-grade mobile and wearable technologies. In recent
years, a notable advancement has been made in the identification of digital biomarkers for
early prediction of AD through the analysis of wearable data [18]. Indicatively, this study
provided evidence that digital bio-marker prognostic models can serve as a valuable tool to
aid in the large-scale screening of populations for early detection of cognitive impairment,
as well as for ongoing patient monitoring [18]. The authors utilized a smartphone/tablet-
based digital bio-marker that implemented augmented reality tasks inspired by complex
functional instrumental activities of daily living (Altoida iADL tasks). These tasks primarily
focused on assessing spatial memory and navigation abilities. Along the same lines,
Lancaster et al. [19] introduced the Gallery Game, an episodic memory task that serves as a
digital bio-marker for Alzheimer’s disease. This bio-marker has demonstrated a significant
ability to identify individuals in the pre-clinical stages of the disease, thereby enabling more
effective recruitment for clinical trials and enhancing the tracking of disease progression
and treatment response.

3.2. Sensors-Based Biomarkers

Data obtained from sensors have the potential to enable early prediction. By collecting
digital biomarkers related to eye movements, pupillary reflexes, speech, and other relevant
features, sensors can be employed to detect changes in these biomarkers that may be
indicative of the early stages of AD. Indicatively, the acquisition of digital biomarkers
related to eye movements and pupillary reflexes is commonly accomplished through
the utilization of cameras and light sensors. These sensors have significant potential for
employment in AD since individuals with Alzheimer’s disease may demonstrate early-
stage deficits in eye movements [20].
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Early detection of biomarkers associated with diseases is of utmost importance for
the development and implementation of effective treatments, which can alleviate the
disease’s progression and enhance the patient’s quality of life. In their research, Haider et al.
(2020) [21] utilized an open-source software suite, namely the openSMILE v2.1 toolkit, to
evaluate acoustic features for the detection and diagnosis of AD. By automatically extracting
speech features and applying machine learning methods, this toolkit produced reasonably
accurate outcomes for AD detection. Thus, the use of this toolkit could potentially serve
as a cost-effective and non-invasive screening method for AD in comparison to blood or
imaging biomarkers .

3.3. Blood-Based Biomarkers for AD-Related Brain Changes

Brain-derived biomarkers are typically detected at relatively low concentrations com-
pared to cerebrospinal fluid because of the blood-brain barrier, which prevents the free
passage of substances between the central nervous system and circulation compartments.
However, blood analysis, and mainly non-invasive plasma analysis, presents advantages as
a promising screening tool, and improvements have been developed to increase analytical
sensitivity. Moreover, combining blood bio-marker detection with imaging markers may
help enhance the accuracy of AD diagnosis [22]. The measurement of high-performance
plasma amyloid-b biomarkers (APP)669-711/amyloid-b (Ab)1-42 mass spectrometry (IP-MS)
was performed, indicating high performance when predicting brain amyloid-b burden [23].

Amyloid b 1-42 (Ab)1-42, total tau (t-tau), p-Tau-181, and neurofilament light chain
(NFL) are potential biomarkers for AD. In a recent study, a plasma-based primary screening
of NFL/(Ab)1-42 was introduced as a strong bio-marker reflecting brain neurodegeneration
and amyloid pathology in AD. Plasma NFL/(Ab)1-42 was associated with high diagnostic
accuracy. In early AD while in a pre-clinical state, it changed more rapidly than the
compared CSF for tau (t-Tau or p-Tau-181), demonstrating this ratio as a non-invasive
plasma-based bio-marker for early diagnosis and monitoring of AD progression [24].

Plasma tau phosphorylated, at threonine 181 (p-tau181) level quantification, was signif-
icantly enhanced in AD patients compared to the control cohort following an ultrasensitive
Simoa immunoassay, demonstrating p-tau181 as a promising blood bio-marker for the
detection of brain AD pathology [25]. Brain-derived tau as a new blood-based bio-marker
that outperformed plasma total-tau indicated specificity to AD-type neurodegeneration.
Total tau levels were also measured from stored plasma samples in Framingham Heart’s
study participants, using single-molecule array technology, suggesting that this marker
may improve the prediction of future AD dementia [26]. Longitudinal alterations in plasma
p-tau181 and plasma neurofilament light chain levels were related to prospective neurode-
generation and cognitive decline and can support monitoring of disease progression in AD,
as was provided by a recent study with participants from the multi-centric Alzheimer’s
Disease Neuroimaging Initiative study [27].

3.4. Bio-Sensors for Biofluid Marker Detection in AD

Bio-sensors are analytical devices that convert biological reactions into measurable
signals. Along with numerous approaches in clinical practice, such as enzyme-linked im-
munosorbent assays, immunohistochemistry, mass spectrometry, magnetic resonance imag-
ing, and positron emission tomography, their contribution can bring many improvements
to AD monitoring by detecting circulated biomarkers in bio-fluids with high sensitivity and
specificity. A new chain-shaped electrode was developed to avoid the edge effect of the
electric field distribution by immobilizing a specific anti-Ab antibody onto a self-assembled
monolayer functionalized inter-digitated chain-shaped electrode designed to improve the
sensing area homogeneity. Recent studies highlight various types of bio-sensors, which
include electrochemical, fluorescent, and (FET)-based sensor configurations for AD clinical
monitoring [28].
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The bio-sensor was characterized as highly sensitive for the non-Faradaic detection of
(Ab)1-42 peptide in human serum at different concentrations and bypassed the denaturation
of the protein caused by the metallization between the protein and ferric ion in the redox
probe [29]. In a similar work, the design of an Ab electrochemical aptasensor was performed
using a fern leaf-like gold nano-structure as a transducer, a specific RNA aptamer as a
recognition element, and ferro/ferricyanide as a redox marker [30]. Amyloid-b oligomers
(AbO) are important diagnostic markers for AD. Qin et al., prepared a hierarchical gold
electrode with gold dendrites and dendritic electropolymerized poly(pyrrole-3-carboxylic)
acid substrate for the immobilization of prion protein and the selective detection of Ab
oligomers. The sensor offers high conductivity, high selectivity, and a large surface area
and could be used for Ab oligomer measurement in blood samples of AD patients [31].

A label-free electrochemical bio-sensor has also been designed for the specific recog-
nition of AbO based on the binding of these markers to specific thiol-terminated ssDNA
aptamer receptors, attached to gold electrodes, which can be used for the early detection of
AD symptoms [32]. A sensitive electrochemical immunosensor platform has been reported
for the quantitative detection of Ab peptides, using gold nano-particle functionalized
chitosan-aligned carbon nano-tube nano-composites on glassy carbon electrodes. The sen-
sor performance was evaluated in diluted serum and presented remarkable results against
peptide detection, which may be helpful for diagnosis and disease management [33].

A reduced graphene oxide-based field-effect transistor bio-sensor for in situ analysis
was designed against AD to monitor the enzymatic kinetics of acetylcholinesterase and
acetylcholine, which could serve as a potential application in clinical practice as well as in
the treatment of the disease [34]. A graphene oxide-based single-use electrochemical
bio-sensor was developed for the sensitive and selective detection of serum miRNA-
34a. PGEs were used for developing a disposable bio-sensor platform, graphene oxide
was modified onto the pencil graphite electrode surface by EDC-NHS chemistry, and
different experimental conditions such as DNA probe concentration, miRNA-34a target
concentration, and hybridization time were performed during the development steps [35].
A cost-effective method for the clinical diagnosis of AD was introduced based on the
electrochemical detection of clusterin in spiked plasma using a screen-printed carbon
electrode modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester and decorated
with specific anti-clusterin antibody fragments [36].

Razzino et al. developed an amperometric immunosensor for the sensitive mea-
surement of tau protein by implementing a sandwich immunoassay onto disposable
screen-printed carbon electrodes grafted with p-aminobenzoic acid, modified with a gold
nano-particle-poly(amidoamine) (PAMAM) dendrimer nano-composite and involving a
horseradish peroxidase-labeled detector antibody [37]. A neutrally charged immunosensor
was developed by Dai et al. and offers a simple, rapid fabrication method for routine clinical
analysis of tau protein. The bio-sensing platform, based on the pico-molar level detection
limit, could be sufficiently low for quantification of this characterized AD marker. [38]. A
nanocomposite bio-sensing platform consisting of an indium tin-gold electrode coated by
polyethylene terephthalate was constructed for tau-441 antibodies binding in serum using
a nano-composite of reduced graphene oxide and gold nano-particles, which presented
high efficiency for the immobilization of the antibody and selective determination of the
protein [39]. A novel electrochemical aptamer-antibody sandwich assay for the detection of
another tau isoform, tau-381, in human serum, was designed, combining the advantages of
signal amplification of the gold nano-particles and increasing the affinity of the aptamer
through cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse
voltammetry techniques [40]. Similar approaches, including sensor-based platforms, have
been implemented in other NDs, such as Parkinson’s disease, as recently presented [41].
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3.5. PET and MRI Data for Imaging Biomarkers

Magnetic resonance imaging (MRI) and positron emission tomography (PET) are two
medical imaging techniques that are widely used for the early detection of AD [42]. MRI is
a completely non-invasive and safe medical imaging technique that does not require any
invasive procedures, such as needles or injections. On the other hand, PET scans involve
the injection of a radioactive tracer, but they can still be considered non-invasive since
no cutting or instrument insertion into the body is necessary. The procedure of inserting
the radioactive tracer is similar to getting a routine blood test, and it is usually painless,
causing no discomfort.

By combining medical imaging techniques such as MRI and PET with deep and
machine learning methods, non-invasive and early diagnosis strategies for neurodegen-
erative diseases, such as Alzheimer’s can be developed. For example, Ding et al. [43]
used prospective F-FDG PET brain scans to train a 48-layer deep convolutional neural
network called InceptionV3. This model outperformed three radiology readers in the ROC
space, suggesting it could be a promising non-invasive medical decision support system.
Mehmood et al. [44] used MRI images with a pre-trained VGG convolutional neural net-
work to achieve high accuracy in distinguishing between AD patients and normal controls.
Their model also had high classification accuracy in distinguishing between early mild
cognitive impairment (EMCI) and late mild cognitive impairment (LMCI). Guo et al. [45]
proposed a graph-based convolutional neural network architecture called PETNet, which
analyzes PET scans as signals on a group-wise inferred graph structure. By modeling PET
images as signals on a network structure, PETNet offers an effective and computation-
ally efficient approach for medical image analysis and the early diagnosis of Alzheimer’s
compared to other machine learning models.

3.6. Sensors for Oculomotor Functions

Cameras and light sensors are most commonly used to collect digital biomarkers
linked to eye movements and pupillary reflexes. Such sensors can be used in disease diag-
nosis and overall research. People with AD can show impairments in eye movements very
early in the disease [46]. Visuomotor network dysfunctions may be a potential bio-marker
for Alzheimer’s disease (AD) as well as mild cognitive impairment (MCI), a prodromal
stage of AD. The functionality of this network was tested using goal-directed eye-hand
tasks recorded with a head-mounted video infrared eye-tracking system (Chronos and
EyeSeeCam). The data collected suggests that dysfunctions of the visuomotor network
could be used as biomarkers for research purposes. Additionally, the proposed eye-hand
tasks could help to solidify and provide a clear definition of the pre-clinical phenotype
of AD [47]. Another study also supported the use of eye-tracking tests (utilizing an eye-
tracking device—Gazefinder NP-100, JVC KENWOOD Corporation, Kanagawa, Japan—to
distinguish cognitive functions between controls, MCI, and AD patients [48]. Boz et al.
showed in a recent study, which included a cohort of AD patients, amnestic mild cogni-
tive impairment, and neurotypical adults, that correct saccade rates and latency may be
distinguishing parameters of early AD [49]. Jonell et al., 2021, proposed a system that
uses non-invasive tools to record data from multiple sources during clinical interviews
as part of AD cognitive assessments. The system utilizes the following sensor devices:
smartphones, tablets, eye trackers, a microphone array, and a wristband. The findings
suggest that this data can be used to improve the clinical assessment of early dementia [50].
Bartoli et al., 2017, described a low-cost robotic interface that can be used to record oculo-
motor functions in AD patients [51]. In particular, it measures the hand trajectory, reaction
times, and movement tracking errors. The Omni robot (Omni®, Sensable) is a tool that
may be easily installed on or beside any desktop and employed in outpatient clinics. The
findings corroborate the notion that memory capacity and use of visuo-spatial correlations
may underpin motor behavior impairment observed in AD patients. NeuroGlasses, which
are wearable sensor-based glasses, were also implemented in a cohort of early-stage AD
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patients to assess, for the first time, the number of blinks and the essential tremor of the
head [52].

3.7. Sensors for Movement, Speech, and Language Functions

One of the symptoms of AD is the progressive decline of motor functions, as well
as degeneration in cognitive functions. Early diagnosis ensures timely treatment and
improved quality of life for the patient. A study by Serra-Añó et al., 2019, used smartphone
sensors in order to assess the mobility of people with AD [53]. The software FallSkip®

(Biomechanical Institute of Valencia) was utilized via an Android device (Xiaomi Redmi 4x
Model MAG138) to evaluate how well individuals with various stages of AD and those
without dementia performed on a variety of tasks. Both mild and moderate AD patients
exhibit impairments in some important motor functions, including gait, turning and sitting,
standing from a sitting position, and reaction time [53]. Suzumura et al., 2018, used the
JustTouch screen to record eight parameters in order to screen for finger function and detect
finger dexterity irregularities in AD patients [54]. In conclusion, decreased finger dexterity
can be a sign of deteriorating cognitive function. This smart tool that records finger dexterity
can be used to facilitate the screening of MCI and AD. Alvarez et al. monitored the daily
motion and detected abnormal behavior and gait abnormalities through motion location
tracking and body signal processing [55]. A foot-mounted wearable sensor device including
9-axis inertial sensors (accelerometer, gyroscope, and magnetometer) named Sensor Foot
was developed to collect walking data and explore the benefits of aerobic activity along
with traditional cognitive protocols [56]. Lu et al. used a wrist-worn accelerometer for a
short period of time to compare patterns of physical activity and sedentary behavior among
AD and MCI patients and normal cognitive individuals, showing differences between
patients and healthy cohorts [57].

3.8. Sensors for Autonomic Nervous System Functions

The autonomous nervous system (ANS) has been shown to undergo pathological
changes in AD, according to some studies [58]. ANS disruptions can be an efficient way
to detect AD at an early stage, seeing as autonomic brainstem nuclei are among the first
areas of the brain affected by AD-related tau aggregation, years before the onset of cog-
nitive symptoms [59]. A key marker of ANS balance is heart rate variability (HRV) [60].
Taking into account the connection between HRV and cognition, the early cholinergic and
parasympathetic system disruption, in addition to its steady deterioration in AD, HRV can
be considered a convincing diagnostic bio-marker for AD development. Heart rate sensors
using photoplethysmography (PPG) technology have been proposed for monitoring heart
rates in AD patients [61]. The degree of cognitive function has been demonstrated to
be inversely connected with HRV in AD and MCI populations, where parasympathetic
activity is inhibited as a result of damage to the cholinergic systems [62]. Gwak et al., 2019,
suggested a novel approach to MCI diagnosis, comprising a commercial wristwatch, a
wireless pulse oximeter, a photoplethysmography (PPG), and gait (accelerometer and gyro-
scope) sensors to identify predictors [63]. The sensor-derived data was used to distinguish
between MCI and cognitively healthy subjects. The results of this study demonstrate the
potential of sensor-derived measurements to support disease diagnosis and reduce the la-
bor of healthcare professionals in this field. Table 1 summarizes non-invasive sensor-based
approaches to AD monitoring.
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Table 1. Non-invasive approaches to AD monitoring presented in the current study.

Non-Invasive Approach Targeting/Monitoring Ref.

OpenSMILE v2.1 toolkit Evaluation of acoustic features [21]
Immunoassay p-tau181 detection [25]

Non-Faradaic platform, metallization between the protein and ferric
ion in redox probe Ab1-42 measurement in human serum [29]

Electrochemical aptasensor Ab detection [30]
Gold electrode with gold dendrite and dendritic electropolymerized

poly(pyrrole-3-carboxylic acid substrate)
immobilization of prion protein and the selective

detection of Ab oligomers [31]

Label-free electrochemical bio-sensor including thiol-terminated
ssDNA aptamer receptors, attached to gold electrodes Ab oligomers recognition [32]

Electrochemical immunosensor platform using gold functionalized
nanoparticle detection of Ab peptides [33]

Graphene oxide-based field-effect transistor bio-sensor acetylcholinesterase and acetylcholine
monitoring [34]

Graphene oxide based single-use electrochemical Bio-sensor detection of serum miRNA-34a [35]
Screen-printed carbon electrode modified with PBA acid NHS ester electrochemical detection of clusterin [36]

Amperometric immunosensor/screen-printed carbon electrodes tau measurement by implementing a sandwich
immunoassay [37]

Neutral charged immunosensor Tau measurement [38]
Bio-sensing platform consisting of indium tin gold electrode coated by

PET tau-441 measurement in serum [39]

Electrochemical aptamer-antibody sandwich assay tau-381 measurement in serum [40]

F-FDG PET brain scans a 48-layer deep convolutional neural network
training [43]

MRI images with a pre-trained VGG convolutional neural network distinguish between AD patients and normal
controls, EMCI and LMCI [44]

PETNet, a graph-based convolutional neural network architecture PET scan analysis [45]
Eye-hand tasks recorded with a head-mounted video infrared

eye-tracking system visuomotor network dysfunctions [47]

Eye-tracking tests cognitive functions discrimination between
controls, MCI, and AD patients [48]

System including smartphones, tablet, eye trackers, microphone array
wristband AD cognitive assessment through record data [50]

Low-cost robotic interface oculomotor functions record in AD patients [51]
Eye-tracking glasses head tremor and eye blink [52]
Smartphone sensors AD mobility assessment [53]

Smart terminal device for screening finger function records finger dexterity to facilitate the screening
of MCI and AD [54]

System for body signals monitoring (heart rate and skin temperature)
and motion location tracking

abnormal behavior in daily motion and gait
abnormalities [55]

Foot-mounted wearable sensor-based device correlation of aerobic activity along with
traditional cognitive protocols [56]

Wrist-worn wearable accelerometer sedentary behavior and bout [57]
Heart rate sensors using PPG technology monitoring heart rates in AD patients [61]

Bio-sensing platform comprising a wristwatch, a wireless pulse
oximeter, a PPG and gait sensors

discriminating symptoms of MCI and
cognitively healthy subjects [63]

4. Recent Advances in Non-Invasive AD Diagnosis Using DL and ML Techniques

In this section, we provide an overview of the recent cutting-edge DL and ML method-
ologies for non-invasive AD data. One promising aspect of studies in this field is the use
of wearable data, which provides a purely non-invasive technique for collecting digital
data. This approach holds great potential for improving the accuracy and effectiveness of
non-invasive AD diagnosis. Under this perspective, utilizing advanced ML-based classifi-
cation models for early diagnosis, gait data was collected from 145 subjects using wearable
sensors with built-in inertial measurement units [64]. The collected data was used to train
an elimination method-based ensemble and oversampling model, which demonstrated
high accuracy in detecting the early stages of AD. The focus on enhancing the machine
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learning aspects of the methodology highlights the potential of utilizing deep learning (DL)
and machine learning techniques to improve the accuracy and efficiency of AD diagnosis.
Ultimately, this can lead to improved patient outcomes. Similarly, a novel approach for
early identification of AD using machine learning-based classification models that analyze
spectrogram features extracted from speech data is presented [65]. In the experiments, the
authors compared different machine learning methods using speech data from AD and
healthy control (HC) subjects. They highlight the potential of utilizing machine learning-
based classification models to analyze AD speech data, offering a promising approach to
address the challenges of early diagnosis of AD.

Significant progress has also been made in the field of imaging data analysis, partic-
ularly in the application of DL processes. In an indicative study [66], the potential of DL
techniques was explored in the detection of AD and its core pathologies, including amyloid
pathology, tau pathology, and neurodegeneration, using voxel-based analysis of structural
MRI. The researchers implemented a three-dimensional convolutional neural network (3D
CNN), trained with a data augmentation strategy to classify Alzheimer’s dementia, and
generated class activation maps. This method offers practical advantages by potentially
reducing patient burden, risk, and cost when extracting bio-marker information from
conventional MRIs using DL techniques. Moreover, a hybrid model (called CNN-SVM)
that combines CNN and the support vector machine (SVM) classifier to predict the early
stages of AD from MRI data is proposed [67]. The results of the study show the potential
of this model, highlighting the significance of using hybrid deep and machine learning
techniques for the early detection of Alzheimer’s disease.

An effective computational method for the diagnosis of Alzheimer’s disease from
brain MRI scans was recently proposed [68]. It involves two phases: segmentation and clas-
sification, both based on deep and machine learning. The segmentation model combines the
Gaussian mixture model (GMM) and CNN to segment brain tissues, while the classification
model combines extreme gradient boosting (XGBoost) and a support vector machine (SVM)
to classify Alzheimer’s disease based on the segmented tissues. The authors conclude
that DL techniques are effective for segmentation and feature extraction in medical image
processing and that the combination of XGboost and SVM improves classification results.

Blood-based data is gaining ground as a promising AD non-invasive bio-marker.
Such data are typically generated with omics techniques and exhibit high complexity,
large data volumes, and high dimensionality, making it challenging to extract meaningful
information manually. Therefore, the use of DL and machine learning processes has
become increasingly important for analyzing and interpreting blood-based omics data. In
this context, a recent study focuses on utilizing machine learning algorithms to discover
small sets of blood transcripts that can be distinguished between healthy individuals
and those with neuro-degenerative diseases, including Alzheimer’s disease and other
neuro-degenerative diseases [69]. The researchers developed a tree-based machine learning
algorithm and applied it to transcripts present in blood, resulting in the discovery of
small sets of transcripts that can be used to distinguish between these diseases with high
sensitivity and specificity. Furthermore, the study [70] focuses on combining molecular
markers as “weak learners” using machine learning approaches to obtain more accurate
diagnostic results for AD. Various machine learning approaches, including support vector
machines, decision trees, neural networks, and gradient-boosted trees, were explored.

A combination of DL models with imaging from blood samples to investigate AD is
suggested [71]. According to this process, the potential link between AD and morpholog-
ically abnormal neutrophils on blood smears can be achieved. DL models were trained
to predict AD from neutrophil images due to the complexity and subjectivity of the task
by human analysis. Control models were also trained for a known feasible task and for
detecting potential biases of overfitting. The authors concluded that a solid DL pipeline
with positive and bias control models and visualization techniques is helpful to support
DL model results.
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An AI pipeline to evaluate the accuracy of putative cytosine epigenetic markers for
Alzheimer’s disease (AD) diagnosis was recently published [72]. Methylation profiling
of circulating cfDNA was collected from individuals suffering from AD and cognitively
healthy controls. The study employed six AI algorithms, including DL, to perform classifica-
tion and regression analysis. The study also highlighted the importance of the hierarchical
learning process in DL and the calculation of the activation value of the hidden layer.
Pathway analysis was used to understand the molecular pathogenesis of AD.

Regarding the (bio)sensors-based data, there is a plethora of such data for AD, enhanc-
ing the need for more DL and ML processes to capture their challenges. In this direction,
this study [73] explores the use of wireless body sensor networks (WBSNs) and DL algo-
rithms for diagnosing AD at an early stage. WBSNs are a novel technology consisting of
multiple sensors implanted in or on the human body to track various physiological param-
eters, such as temperature, blood pressure, ECG, and EEG. Computer-aided algorithms
have shown significant promise in scientific research, but no practical diagnostic approach
is currently available for AD. As a result, there is a growing interest in applying DL to
medical diagnoses, including AD.

Furthermore, a promising approach to early AD detection using wearable bio-sensor
devices, potentially enabling early interventions and improving patient outcomes, was
shown [74]. Herein, the collected data from wearable bio-sensor devices was analyzed
using un-supervised machine learning to separate participants into distinct phenotypic
groups based on their bio-metric data. The un-supervised machine learning approach
involved a clustering process that grouped participants with similar bio-metric data into
clusters or phenotypic groups. The clustering process helped to identify distinct patterns in
the bio-metric data and identify sub-groups of participants that may be at higher risk for
AD. The authors showed that data clustering is a crucial aspect of identifying meaningful
patterns, enabling early interventions, and improving patient outcomes.

Beyond the bio-sensors, visual attention, as a typical eye-tracking behavior, is of great
clinical value in detecting cognitive abnormalities in AD patients. The proposed multi-
layered comparison convolution neural network (MC-CNN) showcases the contribution of
DL techniques in diagnosing AD based on eye-tracking behaviors [75]. It has the potential
to distinguish the differences in visual attention between AD patients and normal individu-
als. The MC-CNN utilizes hierarchical convolution to obtain multi-layered representations
of heatmaps, which are then integrated into a distance vector to benefit the comprehen-
sive visual task. Additionally, DeTrAs is a comprehensive study under the sensors-based
perspective, proposing a DL-based Internet of Health framework for the assistance of
Alzheimer patients [76]. It comprises three phases: a recurrent neural network-based
Alzheimer prediction scheme that uses sensory movement data, an ensemble approach
for abnormality tracking that includes a convolutional neural network-based emotion
detection scheme and a timestamp window-based natural language processing scheme,
and an IoT-based assistance mechanism for AD patients. DeTrAs highlights the potential
of advanced sensors and DL techniques to provide personalized assistance to severely
mentally affected patients, such as AD patients, in a patient-centric healthcare system.
Furthermore, the development of a hybrid CNN architecture that leverages the strengths
of multiple CNN models (Darknet53, InceptionV3, and Resnet101) for Alzheimer’s dis-
ease brain MRI classification was proposed [77]. The approach also utilizes the mRMR
feature selection method to optimize the extracted features and improve the classification
performance. The study demonstrates the potential of using hybrid CNN architectures
and feature selection techniques in medical imaging applications for disease diagnosis.
The use of multiple CNN models and feature selection can help capture more diverse and
complementary information from the input images, leading to improved classification
accuracy. Table 2 summarizes cutting-edge computational approaches to non-invasive
sensor-based AD data.
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Table 2. Computational methods applied to non-invasive AD data presented in the current study.

Origin of Non-Invasive Data Technique Computational Method Ref

Wearable sensors Gait Data Elimination method-based ensemble and oversampling
model [64]

Wearable IoT devices Speech data Multiple ML models [65]
Imaging MRI Convolutional Neural Network (3D CNN) [66]
Imaging MRI CNN and SVM [67]

Imaging MRI
Combination of Gaussian Mixture Model (GMM), CNN

for image segmentation, combination of Extreme
Gradient Boosting (XGBoost) and SVM for classification

[68]

Imaging Neutrophil images Deep Learning [71]
Imaging MRI Convolutional Neural Network [77]

Blood Transcriptomics Machine Learning [69]

Blood small non-coding RNAs
Various machine learning approaches (support vector

machines, decision trees, neural networks, gradient
boosted trees)

[70]

Blood Circulating cfDNA
(Methylation)

Deep Learning, SVM, Generalized Linear Model (GLM),
Prediction Analysis for Microarrays (PAM), Random
Forest (RF), and Linear Discriminant Analysis (LDA)

[72]

Bio-sensors Wireless Body Sensor
Networks Deep Learning algorithms for AD diagnosis [73]

Bio-sensors Wearable bio-sensor device
data Un-supervised machine learning (Clustering) [74]

Sensors Eye-Tracking Deep Learning [75]
Sensors Sensory movement data Deep Learning [76]

5. The Role of AI and DL as Novel Insights in AD Monitoring

While non-invasive methods hold potential for early prediction of AD, the data
generated from these techniques poses several computational challenges that need to
be addressed. The data generated by such procedures can be extremely complex in terms of
noise, volume, dimensionality, and heterogeneity. For instance, analyzing thousands of MRI
or PET images presents a computational complexity that cannot be managed by simple
methods since the presence of noise in these images makes their analysis difficult [78].
Similarly, data from blood screening often comprises omics (genomics, transcriptomics,
and proteomics) measurements with an ultra-high number of samples and features [79]. A
typical transcriptomics data consists of thousands to tens of thousands of samples (cells
or tissues) and up to around 20,000 dimensions (genes). In addition, data obtained from
wearable devices or bio-sensors is voluminous and continuous, and hence necessitates
specialized methods for effective analysis.

This complexity makes it challenging to analyze and interpret using traditional sta-
tistical methods. Therefore, the use of AI and deep learning (DL) algorithms has become
increasingly popular in recent years, as they are well-suited to handle such large and
complex datasets [80]. AI and DL techniques can identify patterns and relationships in data
that may be overlooked by other analysis methods, and can generate predictive models that
can assist in the early detection and management of AD. These techniques can also be used
to develop personalized risk profiles for individuals based on their unique combination of
risk factors, which can facilitate early interventions and improve outcomes. Therefore, the
integration of non-invasive data with AI and DL has the potential to revolutionize the field
of AD prediction and management.

There are numerous benefits to using these sophisticated computational approaches
to derive potential non-invasive biomarkers. The accuracy of such frameworks is directly
proportional to the amount of data available for analysis. As the amount of available
data increases, the accuracy of AI and DL models also increases. This inherent attribute
lies in the fact that these models are designed to learn from patterns and relationships
within datasets, and the more data that is available for analysis, the more patterns and
relationships that can be identified. This results in models that are more comprehensive and
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accurate in their identification and characterization of potential biomarkers. Meanwhile, we
are currently living in a big data era where we have an unprecedented amount of available
data generated by non-invasive techniques for the early detection of Alzheimer’s disease.
Hence, all these non-invasive technologies (imaging, blood-based, bio-sensors, wearable
devices, etc.) enable the collection of large and complex datasets that can be used to identify
potential biomarkers of early AD detection [81]. The benefits of these techniques in this
context are significant and have the potential to revolutionize the way we can diagnose
AD in its early stages, leading to improved outcomes for AD patients and a more efficient
healthcare system (Figure 1).
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5.1. The Potential of Explainable AI Perspective

Although researchers have focused their attention on developing AI systems that
can contribute to the early detection and prediction of AD, the lack of interpretability and
transparency in these AI models has limited their effectiveness in clinical applications. This
has led to a growing interest in the development of explainable AI (xAI) approaches that
can provide insights into the decision-making processes of these models. It is a branch
of AI that focuses on developing AI systems that can provide clear and understandable
explanations of their decision-making processes to humans. It creates models that are
transparent, and interpretable, and can explain their reasoning and actions in a way that
humans can understand. This is important because traditional AI models can be complex
and challenging to interpret, which can limit their trustworthiness and effectiveness. By
making AI systems more explainable, xAI can help to increase human trust in these systems,
improve the quality of decision-making, and enable human oversight and intervention
where necessary. Hence, the development of xAI approaches that leverage data from
non-invasive techniques has the potential to revolutionize the field of AD prediction [82].
This potential lies in the nature of xAI models, which will provide greater insight into the
underlying mechanisms of AD.

The most indicative xAI method for non-invasive data is the feature selection process,
which identifies and selects the most important features or variables from a larger set of
features that are used to train a model or to discriminate various classes (e.g., health vs.
AD) [83]. It follows the principles of xAI by improving the transparency and interpretability
of machine learning models. Furthermore, given that we have available an avalanche of
non-invasive data, feature selection can help to simplify the model and make it more
interpretable. There are various techniques used in feature selection, such as filter methods,
wrapper methods, and embedded methods. In filter methods, features are ranked based on
their relevance to the target variable, using statistical tests or other measures of correlation
or mutual information. Features with low scores are then discarded, while the most
important features are retained for model training. Wrapper methods, on the other hand,
involve training a machine learning model on different subsets of features and selecting
the sub-set that produces the best performance. This method is more computationally
expensive than filter methods but can provide better accuracy in selecting the most relevant
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features. Embedded methods involve feature selection as part of the model training process.
For example, some machine learning algorithms, such as Lasso and Ridge regression, can
automatically select the most important features during model training.

An indicative study [84] exploits the xAI nature of ML techniques by identifying
the most dominant features in a big dataset. It combines three different feature selec-
tion methods using a ranking strategy to identify the best genes for classification tasks,
with an emphasis on using tree-based ML techniques to achieve explainability and in-
terpretability of the results. This approach provides a useful tool for the analysis and
interpretation of single-cell RNA-sequencing data and may facilitate the early diagnosis of
Alzheimer’s disease.

Summarizing, feature selection is a useful xAI method that can help improve the
interpretability and transparency of machine learning models. By selecting the most
relevant features, feature selection can help to simplify models, reduce overfitting, and
identify potential biases, making it easier for humans to understand and trust the model’s
decision-making processes [85].

5.2. The Potential of Deep Learning Perspective

DL is a powerful technique for image analysis that has revolutionized the field of
computer vision and has shown promise in predicting the onset of AD based on various
bio-medical images such as MRI and PET. Image analysis involves the use of algorithms
to extract meaningful information from digital images, and deep learning has emerged as
one of the most effective methods for achieving this goal [86]. DL is under the AI umbrella,
and it is a sub-set of machine learning that involves the use of neural networks, which are
designed to simulate the function of the human brain. DL models consist of multiple layers
of inter-connected nodes, or neurons, which are trained on large datasets of images to learn
patterns and features that are useful for image analysis.

DL thrives on data, and the more data it has access to, the more precise and accurate
its outcomes become. In the field of AD prediction, there is a wealth of bio-medical images
available for analysis, including MRI scans, PET scans, and other imaging modalities. By
applying DL to these large datasets, we can hypothesize that it may be possible to identify
key patterns and features that are predictive of AD onset.

xAI methods can potentially help to improve outcomes in AD prediction using DL
models that show promise in accurately predicting AD onset; however, their black box
nature makes it challenging to understand how they rise to their predictions. By incorporat-
ing xAI methods into DL models for AD prediction, we can better understand the features
and patterns that the model is relying on to make its predictions [87]. This can help to
identify which features are most predictive of AD onset and provide greater transparency
and interpretability of the model’s decision-making process.

For example, DL models that use xAI methods to analyze imaging data, such as MRI
scans, can help identify which regions of the brain are most affected by AD and provide
insights into the progression of the disease. This information can be used to develop
personalized treatment plans and improve patient outcomes [88]. Hence, incorporating xAI
methods into DL models for AD prediction allows for improved outcomes by providing
greater transparency and interpretability, identifying key predictive features, and enabling
personalized treatment plans.

6. Conclusions

In view of the ever-increasing volumes of bio-medical data obtained through non-
invasive techniques, a new era of medicine is rising, with digitalization offering significant
advantages in terms of reduced costs, patient discomfort, and risk of side effects. With the
emergence of xAI and DL techniques, non-invasive-driven data could play an important
role in predicting AD, transforming the perspective of medicine. AD diagnosis is of utmost
importance since it could offer a better quality of life for patients by taking preventative
measures. For these purposes, there is a growing demand for the identification of digital
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biomarkers that could detect early-stage deviations from normal cognition to AD. As
non-invasive technologies advance and new data is generated, the active participation and
contribution of AI and DL will be enhanced and continuously improved. By implementing
these computational tools alongside the non-invasive bio-marker approach, promising
results in the early diagnosis of AD could be achieved.
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