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Abstract: Recently, various sophisticated methods, including machine learning and artificial intel-
ligence, have been employed to examine health-related data. Medical professionals are acquiring
enhanced diagnostic and treatment abilities by utilizing machine learning applications in the health-
care domain. Medical data have been used by many researchers to detect diseases and identify
patterns. In the current literature, there are very few studies that address machine learning algo-
rithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine
learning algorithms in improving time series healthcare metrics for heart rate data transmission (ac-
curacy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare
applications. After a comprehensive overview and investigation of supervised and unsupervised
machine learning algorithms, we also demonstrated time series tasks based on past values (along
with reviewing their feasibility for both small and large datasets).

Keywords: machine learning; machine learning algorithms; healthcare; mobile health; supervised
learning; unsupervised machine learning

1. Introduction

Machine learning is a mechanism that enables machines to learn automatically without
explicit programming. The main area of machine learning is to use advanced algorithms
and statistical techniques to access the data and predict accuracy instead of a rule-based
system. The dataset is a primary component of machine learning accuracy prediction. As a
result, the data are more relevant and the prediction is more accurate. Machine learning
has been used in different fields, such as finance, retail, and the healthcare industry [1]. The
rising use of machine learning in healthcare provides more opportunities for disease diag-
nosis and treatment [2]. Machine learning has a great feature of continuous improvement
for data accurate prediction and classification purposes for disease analysis. The prediction
model will learn to make a better decision for accurate prediction as the increasing data
are gathered [3]. Patient datasets recorded in electronic healthcare records can be used to
enable the extraction of pertinent data using machine learning techniques [4]. Machine
learning algorithms can help in disease diagnosis by analysing data and predicting the
underlying causes of an illness by employing disease-causing variables from electronic
health records [5]. Machine learning gained popularity in terms of classification, prediction,
and clustering tasks over the traditional biostatistical approach for analysing and integrat-
ing enormous amounts of complicated healthcare data [6]. Machine learning has recently
demonstrated outstanding results in a variety of tasks, including the identification of body
organs from medical images [7], interstitial lung diseases classification [8], reconstruction
of medical images [9,10], and segmentation of brain tumors [10].
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Cloud computing, deep learning, artificial intelligence, big data, and machine learning
are all used in mobile health (mHealth) nowadays. By using cellular network technologies,
wearable sensor devices can transmit health data to hospital databases and then to cloud
storage systems. Data collected from these sources can then be analyzed for medical
purposes [11]. Many researchers have used machine learning for disease detection and
pattern recognition [12]. There have been a number of studies that have examined how
multi-layer inference algorithms can improve the trade-off between efficiency and accuracy
in data analysis [13]. Despite this, only a limited number of studies have demonstrated that
machine learning algorithms can enhance healthcare data accuracy and network efficiency.
Thus, this paper aimed to explore and evaluate whether machine learning techniques are
practical for enhancing healthcare data metrics like accuracy and efficiency. This study’s
primary goal was to fill the knowledge gap in the application of machine learning in
healthcare. The following are this paper’s contributions:

• Supervised machine-learning: the papers in this category cover different machine-
learning models’ performance and limitations in the healthcare industry.

• Unsupervised machine learning in the healthcare industry: this category covers the ad-
vantage and disadvantages of unsupervised models, where labeled data are unavailable

• Comparative analysis of machine learning model: the papers in this category cover
all possible machine learning model used in the healthcare industry and their perfor-
mance which will provide a future direction for the researcher to think more about
machine learning-based solutions in healthcare.

2. Overview of Machine-Learning in Healthcare

Machine learning is a type of artificial intelligence that involves training algorithms on
data so that they can make predictions or take actions without being explicitly programmed.
In healthcare, machine learning has the potential to revolutionize how we diagnose, treat,
and prevent diseases, as shown in Figure 1. Some potential applications of machine learning
in healthcare include:

• Predictive analytics: Machine learning algorithms can analyze data from electronic
health records, claims data and other sources to predict the likelihood of specific health
outcomes, such as hospital readmissions or the onset of chronic diseases. This can help
healthcare providers identify high-risk patients and take proactive steps to prevent
adverse outcomes.

• Diagnosis and treatment: Machine learning algorithms can be trained to analyze
medical images, such as CT scans or X-rays, to help diagnose or identify the most
appropriate treatment for a patient.

• Personalized medicine: Machine learning can be used to predict which treatments are
most likely to be effective for a given patient based on their individual characteristics,
such as their genetics and medical history.

• Clinical decision support: Machine learning algorithms can be integrated into clinical
decision support systems to help healthcare providers make more informed decisions
about patient care.

• Population health management: Machine learning can be used to analyze data from
large populations to identify trends and patterns that can inform the development of
public health initiatives.

Overall, the use of machine learning in healthcare has the potential to improve patient
outcomes, reduce costs, and enhance the efficiency of the healthcare system.
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Figure 1. Concept of machine learning in healthcare area.

The rest of this paper is organized as below.

3. Review of Machine Learning

Machine learning can be categorized into two categories: supervised learning and un-
supervised learning, shown in Figure 2. Supervised machine learning trains the algorithms
on known input and output data to predict future outputs. Unsupervised machine learning
discovers hidden patterns or internal structures within the input data. Supervised machine
learning can perform both classifications and regression tasks, while unsupervised machine
learning tackles the clustering tasks [14].

Figure 2. Types of machine learning such as supervised and unsupervised learning.

3.1. Some Common Supervised Classification Machine Learning Algorithms

Supervised machine learning classification techniques are algorithms that predict a
categorical outcome called classification, the given data are labelled and known compared
to unsupervised learning. The input data are categorised into training, and testing data [15].
The classification algorithms predict discrete responses by classifying the input data into
categories. The classical supervised machine learning application includes heart attack
prediction, medical image processing, and speech recognition [14]. Supervised learning
derives classification models from these training data. These models can then be used to
perform classification on other unlabelled data. The training dataset includes an output
variable that needs to be classified. All algorithms learn specific patterns from the training
data and apply them to the test data for a classification problem [14]. Some well-known
supervised classification machine learning algorithms are decision trees, support vector
machines, naïve Bayes, K-nearest neighbors, and neural networks.

The general machine learning architecture is shown in Figure 3 and the details of this
step are described as follows:
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Figure 3. The general architecture of machine learning with requires steps such as data to feature
extraction and training to prediction using different machine learning models.

3.1.1. Health Datasets

Healthcare datasets are comprehensive collections of information related to patients’
health. These datasets typically contain a broad range of data points, including medical
history, diagnostic test results, medication usage, and demographic information. They
serve various purposes, such as clinical research, public health monitoring, and quality
improvement initiatives. Examples of healthcare datasets include electronic health records
(EHRs), which are digital records of patient’s medical information, and claims datasets,
which provide information about healthcare services received and their associated costs.
Additionally, there are disease registries that contain data on individuals with specific
diseases or conditions, and clinical trial datasets that contain information on participants,
interventions, and outcomes. Healthcare datasets are complex and can be challenging
to analyze due to their size and complexity. Nevertheless, researchers can use advanced
analytical techniques such as machine learning and natural language processing to gain
insights into patient health outcomes and develop targeted interventions to improve
patient care.

3.1.2. Feature Extractions

Selecting the most relevant features from a dataset is a crucial component of machine
learning known as feature extraction [16]. Feature extraction involves transforming the raw
data into features that possess a strong ability to recognize patterns. In this process, the
original data are considered to have weak recognition ability compared to the extracted
features [17]. The objective of this process is to identify the vital attributes or traits from
the original data that will serve as inputs for a machine learning algorithm to execute a
specific task. Numerous methods are available for feature extraction, including principal
component analysis (PCA) [18], linear discriminant analysis (LDA) [19], t-distributed
stochastic neighbor embedding (t-SNE) [20], autoencoders [21], filter methods [22], and
wrapper methods [23].

• PCA: PCA is a widely used dimensionality reduction method in data analysis and
machine learning. As a linear transformation approach, it aims to discern patterns in
high-dimensional data by projecting it onto a lower-dimensional space. The primary
objective of PCA is to encapsulate the most important variations in the data while
minimizing noise and redundancy [18].

• LDA: Linear discriminant analysis (LDA) is a supervised dimensionality reduction
method extensively used in machine learning, pattern recognition, and statistical eval-
uation. LDA’s main goal is to convert high-dimensional data into a lower-dimensional
space while optimizing the distinction between different classes. This property makes
LDA especially fitting for classification tasks, as well as for extracting features and
visualizing multifaceted, multi-class data [19].

• t-SNE: t-SNE is a non-linear dimensionality reduction method that is especially adept
at visualizing high-dimensional data. Laurens van der Maaten and Geoffrey Hinton
created t-SNE in 2008. Its primary purpose is to conserve local structures within the
data, which entails preserving the distances between adjacent data points during di-
mensionality reduction. This characteristic renders t-SNE highly effective in unveiling
patterns, clusters, and structures within intricate datasets [20].



Sensors 2023, 23, 4178 5 of 21

• Autoencoders: Autoencoders are a form of unsupervised artificial neural network
employed for dimensionality reduction, feature extraction, and representation learn-
ing. They comprise an encoder and a decoder that collaboratively compress and
reconstructs input data while minimizing information loss. Autoencoders are espe-
cially valuable for tasks such as denoising, anomaly detection, and unsupervised
pre-training for intricate neural networks [21].

• Filter methods: these techniques prioritize features by evaluating them using specific
statistical metrics such as correlation, mutual information, or the chi-square test.
Subsequently, the most prominent features are chosen. Filter methods are exemplified
by approaches like Pearson’s correlation and Information Gain (IG) method [22].

• Wrapper methods: Wrapper methods represent feature selection approaches utilized
in machine learning and data analysis. Their main objective is to determine the best
subset of features that enhances the performance of a specific machine learning algo-
rithm. By directly evaluating various feature combinations based on the performance
of the learning algorithm, wrapper methods are more computationally demanding
than filter methods, which are based on the data’s inherent characteristics [23].

3.1.3. Decision Trees

A decision trees classifier uses graphical tree information to demonstrate possible
alternatives, outcomes, and end values (Figure 4). This involves a computational process
to calculate probabilities in deciding on a few courses of action [24]. The decision trees
algorithm starts with training data samples and their related category labels. The training
set is recursively divided into subsets based on feature values, so the data in each subset is
purer than the data in the parent set. Each internal node of the decision tree represents a
test feature, whilst every branch node presents the test result, and the leaf nodes present
the class label. Since the classifier decision tree is used to identify an unknown sample’s
category label, it will be able to track the path from the root node to the leaf nodes and hold
the sample’s category label [25]. The advantage of the decision tree algorithm is that it is
fast and simple, where no domain knowledge or parameter setting is required, and high
dimensional data can be handled in the context. Further, decision tree algorithms support
incremental learning, which is immutable because of the alternative functions based on
each internal node [25].

Figure 4. Demonstration of decision trees with the root, decision, and Leaf nodes. Start from the root
node, then move to the decision node using the leaf node information.

Building decision trees can be a lengthy process, particularly when working with
sizable datasets or a high number of features. This is because the algorithm must evaluate
every potential split at each level of the tree, which can be computationally costly [26].

Medical experts frequently employ data mining techniques to aid in the diagnosis of
cardiac disorders. Regarding sensitivity, specificity, and accuracy, the decision tree is one of
the effective machine-learning algorithms for heart attack detection [27]. In the medical
field, heart disease has been extensively detected and prevented using the decision tree
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classification technique. Using eight patient data variables and a decision tree, Pathak and
Valan were able to predict heart disease with an accuracy of 88% [28], while [29] used the
decision tree for prediction of heart disease. In [24], researchers employed decision tree
algorithms to reduce the volume of data by converting data into a more condensed form in
order to preserve the crucial features and increase accuracy in mobile health technology.

3.1.4. Support Vector Machine (SVM)

Support vector machine (SVM) is a classical machine learning technique that can
address classification problems. Importantly, SVM supports multidomain applications in a
big data mining environment [30]. SVM uses some model features to train data to generate
reliable estimators from a dataset [31]. The concept of SVM maximizes the minimum
distance from the hyperplane to the nearest point of the sample presented in Figure 5 [32].

Figure 5. Demonstration of support vector machine. The solid red line indicates the separating
hyperplane and the distance between two dotted lines is the maximum margin for separating
different classes.

SVM produces higher performance when dealing with a large dataset than other
pattern recognition algorithms, such as Bayesian networks, etc. Additionally, one main
advantage of SVM is that its data training is comparatively easy (Pradhan, 2012). Most
importantly, according to (Bhavsar and Ganatra, 2012), SVM provides high accuracy among
machine learning algorithms. The disadvantage of SVM is that it is exceedingly slow
in machine learning, as a large amount of training time is needed. Further, memory
requirements increase with the square of the number of training examples [33]. SVM
is one of the most effective machine learning algorithms for pattern recognition. Most
SVM applications are used for facial recognition, illness detection and prevention, speech
recognition, image recognition, and facial detection [34]. Some authors have used an
improved stacked SVM for early heart failure (HF) prediction in medical applications.
Their findings demonstrated that the model has superior performance with an accuracy
range from 57.85% and 91.83% [35]. In a different study, fuzzy support vector machines
were utilized to make diagnoses of coronary heart disease. Experiments revealed that,
when compared to non-incremental learning technology, this technique significantly sped
up illness diagnosis computation time [36].

3.1.5. Naïve Bayes

Naïve Bayes is one of the most widely used classification algorithms. The assumption
of naïve Bayes only includes one parent node and a few independent child nodes rendering
it the simplest Bayesian network [37]. Naive Bayes (NB) uses the probability classification
method by multiplying the individual probability of each attribute-value pair, as shown in
Figure 6. This simple algorithm presumes independence between attributes and provides
remarkable classification results [38]. One strength of the naïve Bayes algorithm is that it
has a short computational data training time [39], where classification performance can be
improved by removing irrelevant attributes [40]. This can lead it to perform better with
small datasets and in dealing with multiple classification tasks. In addition to this, naïve
Bayes is suitable for incremental training (where it can train supplementary samples in real-
time) [41]. As the algorithm is not very sensitive to missing data, is relatively simple, and
can often be used for text classification, naïve Bayes is easy to understand the interpretation
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of the results [42]. The drawbacks of the naïve Bayes include its lower rate of accuracy
compared to other sophisticated supervised machine learning algorithms, such as ANNs.
Further, naïve Bayes requires many training records to achieve excellent performance
results [43]. Since naïve Bayes is very efficient and easy to implement, it is commonly
used in text classification, spam filtering, or news classification [44]. In the medical field,
the naïve Bayes algorithm has been used for disease detection and prediction. One study
deployed a naïve Bayes classifier to skin image data for skin disease detection, revealing
the results to outperform other methods with accuracy from 91.2 to 94.3% [45]. Gupta et al.
have used naïve Bayes for heart disease detection through feature selection in the medical
sector, with experimental results achieving 88.16% accuracy in the test dataset [46].

Figure 6. Demonstration of naïve Bayes with the distribution of different classes.

3.1.6. K-Nearest Neighbours (K-NN)

The K-nearest neighbours (K-NN) classification algorithm is one of the simplest meth-
ods in data mining classification technology. The assumption of K-NN is to identify an
unknown pattern by assigning a value to the K, where the nearest neighbor category of the
K training sample is considered the same as the classification illustrated in Figure 7 [47]. A
few factors are involved in the classifier, such as selected K-value and distance measure-
ment, and so on [48]. K-NN requires less computational time to train the data than other
machine algorithms. However, it requires more computational time in the classification
phase [33]. The advantage of K-NN is that it is easy to understand and implement for
classification. Further to this, it can perform well with many class labels for a dataset.
Similarly, the data training stage is faster than other machine learning algorithms [33]. The
drawbacks of the K-NN are its computational cost, with a sizeable unlabelled sample, and
time delay during the classification phase. Apart from cross-validation, k-NN also lacks
the principles to sign a K’s value and is expensive computationally. Further, confusion may
occur if too many unrelated attributes are in the data, leading to poor accuracy [33]. K-NN
is also frequently utilized for disease detection and diagnosis [49]. K-NN is one of the most
used data mining approaches for classification problems, and researchers have tried to
utilize it to help medical professionals diagnose heart disease [50]. To identify heart disease,
for instance, some researchers have developed a unique algorithm that combines K-NN
and genetic algorithms in an effort to increase the accuracy of prediction [49]. Shouman
et al. studied whether incorporating other algorithms into K-NNs can improve accuracy
in the diagnosis of cardiac disease. According to their findings, using K-NN instead of a
neural network could increase the accuracy of diagnosis of heart disease [50]. The summary
of existing supervised learning performance in terms of accuracy in the healthcare industry
using classification algorithms is presented in Table 1.
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Figure 7. Demonstration of K-NN identifying unknown pattern by assigning a value to the K, where
the nearest neighbor category of the K training sample is considered the same as the classification.

Table 1. Summary of existing supervised learning performance in terms of accuracy in the healthcare
industry using classification algorithms.

Classification
Algorithms Reference Year Task Accuracy

Decision trees [28] 2020 Heart disease
prediction 88%

[24] 2012 Data volume
reduction 80/32%

[29] 2001 Hear disease
prediction 81.11%

Support vector
machine (SVM) [35] 2019

Facial
recognition,

illness detection
and prevention,

speech
recognition,

image
recognition, and
facial detection

57.85–91.3%

Naïve Bayes [45] 2020 Skin disease
detection 91.2–94.3%

[46] 2020 Heart disease
detection 88.16%

[29] 2001 Hear disease
prediction 81.48%

K-nearest
neighbours

(K-NN)
[49] 2013 Heart disease

diagnosis 75.8–100%

[50] 2012 Heart disease
diagnosing 94–97.1%

4. Some Popular Supervised Machine Learning Regression Algorithms

Supervised regression techniques are algorithms that can predict a continuous re-
sponse, known as regression techniques [51]. The goal of the supervised regression task
is to forecast an outcome’s specific value rather than to classify the data [13]. Input data
are split into training and testing data, where the continuous response or target outcome is
predicted by selected algorithms [15]. Typical regression techniques are used in algorithmic
trading and electricity load forecasting [51]. The most popular regression machine learning
algorithms are linear regression, logistic regression, ensemble methods, and support vector
regression (SVR), as discussed below.
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4.1. Linear Regression

The linear regression technique is the most simple and desired method to measure
the relationship between response variables and continuous predictors. Linear regression
assumes that the predictor and target variables have a linear relationship, as shown in
Figure 8. Its simplicity makes the linear regression technique the best option for small
sample analysis with high accuracy, where it is comparatively easy to understand and
interpret. However, this model may not achieve the expected result if there are too many
predator variables [52]. Further, as it involves a one-to-one relationship between variables,
it is not a good fit when dealing with non-linear relationship data [26], where most problems
involve non-linear characteristics to differing extents. Linear regression is also unsuitable
for highly non-linear problems when the relationship cannot be approximated by a linear
function between input and output variables. However, before applying other complex
machine learning algorithms, it may be worthwhile to try linear regression or other simple
machine learning algorithms to understand the difficulty of a problem [53]. Authors in [54]
use linear regression to achieve healthcare resource utilization.

Figure 8. Demonstration of linear regression with best-fit line.

4.2. Logistic Regression

Unlike linear regression, which is used to predict continuous quantities, logistic
regression is mainly used to predict discrete class labels. A logistic regression algorithm
predicts probability with two possible categories for classification problems. Logistic
regression uses a logistic function to classify the label in a binary outcome between 0 and
1 presented in Figure 9. Therefore, the output variable can be used to indicate which
category a sample belongs to [53]. The authorsofin [55] use logistic regression to predict
health-related behaviours.

Figure 9. Demonstration of logistic regression with s-curve line.
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4.3. Ensemble Methods

Ensemble methods are not a single machine learning algorithm, rather, they combine
the strength of other algorithms. This can complete learning by constructing and combining
multiple machine-learning devices (Figure 10). One advantage of ensemble methods
is that they have high predictive accuracy that can be achieved in machine learning;
however, the model’s training process may be more complicated, where efficiency may
not be possible. There are two standard ensemble learning algorithms currently: bagging-
based algorithms and boosting-based algorithms. Bagging-based representative algorithms
include random forest and boosting-based representative algorithms include Adaboost,
GBDT, and XGBOOST [56]. There are a few advantages to using ensemble methods.
Firstly, they can avoid the overfitting problem. A single machine learning algorithm
can easily find many different hypotheses that can ideally forecast all the training data
with less accuracy prediction for unseen examples when using a small data size. Thus,
using combined algorithms (the different hypotheses of Averaging) minimizes the risk of
selecting unsuitable hypotheses, thus improving overall forecasting performance. Secondly,
ensemble methods have the advantage of computation. Ensemble methods can reduce the
risk of reaching a local minimum by combining several algorithms as a single algorithm to
perform a local search that may fall into the optimal solution. In any single model of an
algorithm, the optimal hypothesis may go outside of space. Ensemble methods can extend
the search space to fit the data by integrating different algorithm models. The ensemble
method can suit complex problems with large datasets [57]. The ensemble methods were
used in [58] to predict patients’ weekly average expenditures on certain pain medications.

Figure 10. Demonstration of ensemble methods which combine the different machine learning algorithms.

4.4. Support Vector Regression (SVR)

Support vector regression (SVR) is a supervised regression technique used to study
the relationship between one or more independent variables and a dependent variable
(continuous value) shown in Figure 11. Unlike linear regression techniques that rely on
model assumptions, SVR learns the importance of variables to characterize the relationship
between input and output [59]. SVR attempts to seek a linear regression function that
can maximally approximate the vector of actual data output with tolerance of error [60].
One of the primary advantages of SVR is that its complexity of computation does not rely
on the dimensionality of the input variables. In addition, it has incredible generalization
ability and high prediction accuracy [61]. However, SVM is expensive computationally and
requires a large dataset. In study [62], the authors used SVR to visualize and predict the
COVID-19 outbreak. The summary of existing supervised learning performance in terms
of accuracy in the healthcare industry using regression algorithms is shown in Table 2.
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Figure 11. Demonstration of support vector regression. The solid black line indicates the sepa-
rating hyperplane, and the distance between two dotted lines is the boundary line for separating
different classes.

Table 2. Summary of existing supervised learning performance in terms of accuracy in the healthcare
industry using regression algorithms.

Regression
Algorithms Reference Year Task Accuracy

Linear
regression [54] 2019

Healthcare
resource

utilization
95%

Logistic
regression [55] 2003

Predict
health-related

behavior
87.7%

Ensemble
methods [58] 2020

Predict patients’
weekly average
expenditures on

certain pain
medications

78–98%

Support vector
regression (SVR) [62] 2022

Visualizing and
predicting the

COVID-19
outbreak

94%

5. Unsupervised Machine Learning

Unsupervised machine learning techniques are used to analyze large amounts of
unlabelled data with highly non-linear learning, using millions of parameters of complex
models [63]. As a common clustering learning technique, this technique can be used to
group or find hidden patterns in data for exploratory data analysis. Unsupervised machine
learning draws inferences from datasets, including input data without labelled responses.
Most unsupervised learning applications are used for market research, gene sequence
analysis, and object recognition [64]. One of the fundamental rules of unsupervised learning
is grouping data into suitable groups. While clustering analysis is used with the same
attributes, the formal approach and techniques used to cluster and categorise the data are
based on similarities and properties of the objects. This does not entail categorising labels
with categories, which is how data clustering differs from it in the absence of category
information [63]. There are two categories of clustering algorithms: soft clustering and
hard clustering. Hard clustering occurs when data points belong to one cluster, whereas
data points belonging to one or more clusters are referred to as soft clusters. Some popular
unsupervised machine learning algorithms are discussed below.
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5.1. Common Hard Clustering Algorithms
5.1.1. K-Means

K-means is an extensively used unsupervised algorithm [63] where its simplicity and
fast speed [65] allow it to solve well-known clustering problems [66]. The K-means algo-
rithm partitions data points into k clusters by minimizing the sum of the squared distance
between the point [67,68] and its nearest neighbor set distance as shown in Figure 12. The
matching degree between a point and the cluster depends on the distance from the point to
the cluster center [69]. The best use of the K-means algorithm is when the number of clus-
ters is known for fast clustering with a large number of datasets [66]. Therefore, K-means
remains the most well-known population for massive datasets analysis in unsupervised
learning [69]. In practice, the advantages of the K-means algorithms include: being easy to
learn, fast training speed, and no requirement to follow the input data order, and its “vector
quantization” concept can be used to construct a feature [68]. This algorithm can adjust
the cluster membership for unsupervised clustering learning tasks [70]. K-means has the
disadvantages of sensitivity to outliers and scale of datasets; requirements for specifying
the number of clusters in advance, resulting in different outcomes with different initial
centroids; and the inability to handle density and varying size of convex clusters [70]. The
authors of [71] used K-means to predict heart disease and achieved 88% accuracy.

Figure 12. Demonstration of K-means algorithm by the partition of data points into k clusters by
minimizing the sum of the squared distance between the point.

5.1.2. K-Medoids

K-medoids is similar to K-Means but uses an actual object to find the most central
object within the cluster and assign the nearest object to the medoids to create a cluster
instead of using the mean value of an object in the cluster as a reference point (Figure 13).
K-medoids is less sensitive to outliners and can adjust cluster membership, and it has a
similar limitation of producing different results with different initial centroids. Further, it
employs best practices when scaling to large datasets, fast clustering of categorical data,
and the number of clusterings is known [70]. The researchers in [72] used K-medoids to
detect anomalies in smart healthcare.
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Figure 13. Demonstration of K-medoids through finding the most central object within the cluster
and assigning the nearest object to the medoids to create a cluster as a reference point.

5.1.3. Hierarchical Clustering

Hierarchical cluster analysis (HCA), also called hierarchical clustering (Figure 14), is a
typical cluster analysis method in data mining, which attempts to establish a hierarchical
structure of clusters by analysing similarities of the characteristics in clusters [73]. The hier-
archical clustering technique recursively produces nested sets of clusters in a dendrogram
with cluster [70]. Two strategies are used in hierarchical cluster analysis: agglomerative
and divisive strategy. The agglomerative clustering strategy approach is known as “bottom
to up”, directing “the leaves” to “the root” of a cluster tree. Contrastingly, the divisive
clustering approach is “top-down”, directing “the root” to “the leaves”. All observations
are initially treated as one cluster, and then splits occur when moving down into the hierar-
chical structure [73]. Hierarchical clustering can detect different sizes and shapes within
datasets. There is no requirement to specify the number of clusters in advance, forming a
dendrogram graphical visualisation when it is not sure how many clusters are in the data.
Conversely, this approach has the disadvantages of high complexity and low speed due
to expensive computation, where no adjustments can be made after the clustering task.
In addition to this, it is not easy to decide the dendrogram level in this approach, where
clusters reply on the distance metric used [70]. Hierarchical clustering is used in [74] for
mental health prediction and achieves 90% accuracy.

Figure 14. Demonstration of hierarchical clustering by analysing similarities of the characteristics
in clusters.

5.2. Some Common Soft Clustering Algorithms
5.2.1. Fuzzy c-Means

The fuzzy c-means clustering algorithm is a popular approach that clusters data
points when it belongs to more than one cluster. This is similar to the K-means but is
suitable for pattern recognition when clusters overlap. The strength of fuzzy c-means
is in how it allows clusters to assign flexibility, where it is more practical to provide the
probability of belonging to a cluster, as shown in Figure 15. However, this algorithm
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has some weaknesses relating to high complexity in specifying the number of clusters in
advance [70]. Authors in [75] use fuzzy c-means to analyze patient satisfaction perception
and achieve 76% accuracy.

Figure 15. Demonstration of fuzzy c-means by grouping the data into N clusters when clusters overlap.

5.2.2. Gaussian Mixture Model

The Gaussian mixture model (GMM) is an extension of a single Gaussian probability
density function (Figure 16) [76], which uses multiple Gaussian probability density func-
tions (normal distribution curves) to quantify the distribution of variables accurately. This
decomposes the variable distribution into several Gaussian probabilities of the statistical
model of densities function (normal distribution curve) distribution [77]. The Gaussian
mixture model assigns a few single Gaussian distributions, where each of the Gaussian
distributions is known as a component with its evaluation index—covariance and mean.
The model adjusts the means, coefficients, and covariance through a sufficient number of
Gaussian distributions to approximate any continuous function of density closely [78]. The
Gaussian mixture model can effectively capture the internal correlation structures within
datasets [79]. When data points come from different multivariate normal distributions with
specific probabilities and belong to more than one cluster, clustering based on Gaussian
mixture is partition-based [76]. The Gaussian mixture model is a flexible model for a wide
range of distribution probabilities [64] The feature of clusters can be a few parameters [70].
In addition, it has high accuracy and real-time implementation [80]. The drawbacks of the
Gaussian mixture model relate to it being computationally expensive with large distribu-
tions or with few observed data points in datasets. Further, it can be difficult to estimate
the number of clusters, which requires large datasets [79]. The gaussian mixture model is
used in [81] for anomaly detection.

Figure 16. Demonstration of Gaussian mixture model involves representing the probability density
function as a blend of several Gaussian distributions, with each distribution corresponding to a
cluster present in the data.

5.2.3. Hidden Markov Model

The hidden Markov model belongs to the clustering model-based, valuable, and
suitable for time series data. Each data point represents the observer value according to the
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time sequence by using the hidden Markov model. Future values are clustered based on a
time series past value (observed value). The hidden Markov model includes two sections.
The first section is the time series observation that generates the observation, followed by
the second section-unobserved state variables [70]. A set of states features the model, and
the state-related probability distribution manages to generate time-series data. The related
state is the first stage—the initial probability distribution, the transition probability matrix
connecting successive states, and the dependent probability distribution state (Figure 17).
Observers can only see time-series observations, while state variables are hidden. The
hidden Markov model provides statistical information such as the standard deviation,
mean, and weight value of a cluster based on the cluster’s observation results. The hidden
Markov model can deal with a variety of types of data. However, this algorithm requires
many parameters and is mostly/only suitable for large datasets [70]. The hidden Markov
model was used in [82] to achieve a 70% accurate healthcare audio event classification.

Figure 17. Demonstration of hidden Markov model for a sequence of hidden states over time.

The summary of existing unsupervised learning performance in terms of accuracy in
the healthcare industry is presented in Table 3.

Table 3. Summary of existing unsupervised learning performance in terms of accuracy in the
healthcare industry.

Common Hard
Clustering
Algorithms

Reference Year Task Accuracy

K-means [71] 2021 Heart disease
prediction 88%

K-medoids [72] 2021
Anomaly

detection in
smart healthcare

75.89%

Hierarchical
clustering [74] 2018 Mental health

prediction 90%

Some Common
Soft Clustering

Algorithms
Reference Year Task Accuracy

Fuzzy c-means [75] 2019

Analysis of
patient

satisfaction
perception

76%

Gaussian
Mixture Model [81] 2021 Anomaly

Detection 95.5%

Hidden Markov
Model [82] 2020

Healthcare
audio event
classification

70%
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6. Evaluation of Matrix for Machine Learning
6.1. Evaluation Matrix of Supervised Classification Algorithms

The performance of supervised classification algorithms is commonly evaluated by
accuracy, sensitivity, and specificity. Accuracy assesses the percentage of prediction rate in
the model; sensitivity is the amount of the true positive data points are identified correctly
in actual positive data points, and specificity is the quantity of the true negative data
points identified in actual negative data points [83] (TP = true positive, TN = true negative,
FN = false negative, FP = false positive).

Accuracy =
TP + TN

TP + FN + TN + FP
; (1)

sensitivity =
TP

TP + FN
; (2)

Speci f icity =
TN

TN + FP
. (3)

6.2. Evaluation Matrix of Supervised Regression Algorithms

For the regression tasks, Mean Absolute Error (MAE), MSE (Mean Squared Error), and
Root Mean Squared Error (RMSE) are commonly used to measure the model performance.

MSE (Mean Squared Error) is a commonly used metric for comparing predicted
values to their corresponding actual values. MSE can be defined by

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (4)

where n is the number of data points, yi is the actual value for the ith data point, and ŷi is
the predicted value for the ith data point.

RMSE (Root Mean Squared Error) measures the difference between a set of predicted
values and the corresponding actual values, which is similar to MSE but takes the square
root of the average of the squared differences. The RMSE is expressed as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (5)

where n is the number of data points, yi is the actual value for the ith data point, and ŷi is
the predicted value for the ith data point.

MAE (Mean Absolute Error) is a measure of the difference between a set of predicted
values and the corresponding actual values, which is calculated as the average of the
absolute differences between the predicted values and the actual values. The MAE is
expressed as:

MAE =
1
n

n

∑
i=1
|(yi − ŷi)|, (6)

where n is the number of data points, yi is the actual value for the ith data point, and ŷi is
the predicted value for the ith data point.

MAPE (Mean Absolute Percentage Error) is a measure of the accuracy of a prediction
or a model, which is calculated as the average of the absolute percentage differences
between the predicted values and the actual values. The MAPE is expressed as:

MAPE =
1
n

n

∑
i=1
|(yi − ŷi)/yi| × 100, (7)

where n is the number of data points, yi is the actual value for the ith data point, and
ŷi is the predicted value for the ith data point. These are commonly used performance
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evaluation metrics in various fields, particularly in forecasting, time series, and medical
data analysis using regression algorithms.

6.3. Evaluation Matrix of Unsupervised Clustering Algorithms

Evaluating the performance of clustering algorithms is crucial as it is part of data
analysis. The evaluation matrix has developed well in supervised learning and is widely
accepted. Unlike supervised learning, its evaluation matrix has not developed well, so
it is not easy to define the performance of algorithms. However, some indicators can
be used to assess the quality of the model. SSE (sum of squared errors) can be used to
calculate the Euclidean distance. The smaller SSE value means a good cluster performance.
The Calinski–Harabaz index is also called the variance ratio criterion, a metric based on
dispersion within clusters and between clusters. The silhouette coefficient is used to define
the interval with −1 and 1. Rand index and Fowlkes–Mallows scores (FMI) are used for
external criteria validation [84].

7. Discussion

Supervised and unsupervised are machine learning methods that have shown great
potential in healthcare. Each type has its strengths and limitations, and their applications
in healthcare vary based on the type of data and task at hand.

Supervised learning involves training a model with labeled data, where the model
learns to predict the outcome based on the input features [85]. In healthcare, supervised
learning has been widely used for classification, diagnosis, and prognosis prediction
tasks [86]. For example, supervised learning algorithms such as decision trees, support
vector machines, and logistic regression have been used to predict the risk of cardiovascular
disease, identify cancerous cells, and classify medical images [87]. However, supervised
learning requires a large amount of labeled data and may suffer from bias if the training
data does not represent the population [88].

On the other hand, unsupervised learning involves training a model with unlabeled
data, where the model learns to identify patterns and relationships in the data without
explicit guidance [89]. Unsupervised learning has been used in healthcare for clustering,
anomaly detection, and feature extraction tasks [90]. For example, unsupervised learning
algorithms such as K-means clustering have been used to group patients with similar
characteristics, identify rare diseases and extract relevant features from medical images [71].
However, unsupervised learning may be difficult to interpret, and the results may not
always be clinically meaningful.

To summarize, supervised and unsupervised learning both have unique strengths
and limitations in healthcare. The choice of which type of learning to use depends on the
specific task, available data, and resources. As healthcare data grow, machine learning will
be essential in improving patient outcomes and advancing medical research.

8. Conclusions and Future Work

Healthcare could undergo a variety of technological revolutions because of machine
learning. It can increase the precision of the diagnosis, assist in finding patterns and trends
in patient data, simplify administrative procedures, and enable individualized treatment
regimens. However, there are difficulties with applying machine learning in healthcare,
such as issues with data privacy, ethical issues, and the requirement for rigorous validation
and regulation. Overall, a deep understanding of the intricate and constantly evolving
healthcare landscape, collaboration between healthcare professionals and data scientists,
and a dedication to using machine learning ethically and responsibly for the benefit of
patients are necessary for successfully integrating machine learning in healthcare.
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