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Abstract: Grain yield (GY) prediction based on non-destructive UAV-based spectral sensing could
make screening of large field trials more efficient and objective. However, the transfer of models re-
mains challenging, and is affected by location, year-dependent weather conditions and measurement
dates. Therefore, this study evaluates GY modelling across years and locations, considering the effect
of measurement dates within years. Based on a previous study, we used a normalized difference red
edge (NDRE1) index with PLS (partial least squares) regression, trained and tested with the data of
individual dates and date combinations, respectively. While strong differences in model performance
were observed between test datasets, i.e., different trials, as well as between measurement dates, the
effect of the train datasets was comparably small. Generally, within-trials models achieved better
predictions (max. R2 = 0.27–0.81), but R2-values for the best across-trials models were lower only
by 0.03–0.13. Within train and test datasets, measurement dates had a strong influence on model
performance. While measurements during flowering and early milk ripeness were confirmed for
within- and across-trials models, later dates were less useful for across-trials models. For most test
sets, multi-date models revealed to improve predictions compared to individual-date models.

Keywords: high-throughput phenotyping; digital breeding; phenomics; multispectral sensing; data
fusion; date fusion; dataset effect; across-trials; non-destructive harvest

1. Introduction

Substantial work has been conducted in recent years with the aim of improving
non-destructive, sensor-based grain yield (GY) prediction for plant breeding. Based on
improved, less expensive and more user-friendly sensor platforms such as drones or
UAV (unmanned aerial vehicles), better camera sensors with better spectral character-
istics, improved vegetation indices or machine learning algorithms, GY prediction was
improved [1–6]. Besides RGB-based sensing, multispectral sensing is recommended due to
its higher sensitivity in the red edge and near infrared (NIR) spectrum [4,6].

Several studies have shown that the time of measurement, i.e., the growth stage during
data collection, is crucial. Often measurements at milk ripeness were found to be most
useful for winter wheat [3,7] and spring wheat [8–10]. In contrast, predictions were found
to be weak during vegetative growth and to decrease during ear emergence and later
grain filling [7,10,11], whereas other studies reported increasing correlations during grain-
filling [12,13]. Thus, optimum time slots for UAV missions differ depending on location,
genotypes, years and weather conditions. Consequently, the transfer of models between
trials is not trivial.

Many of these previous studies focused on the application of the methods in indi-
vidual trials or compared results from various trials. However, model transferability, i.e.,
training and independent application of models in other trials, remains crucial for actual
prediction instead of a posteriori ‘postdiction’. A study on GY prediction in spring barley
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reported good transferability of models across years from spectral data collected during
anthesis using partial least squares regression (PLSR) [14]. For wheat, R2-values for across-
years GY predictions from milk ripeness measurements differed between three pairwise
combined years from 0.16–0.50 [7]. Results were more influenced by the test set compared
to the training set. However, substantial under- or overestimation was observed in both
studies, indicating an offset between spectral data and GY in different trials. Spectral
data was reported to improve genomic GY predictions within, but not consistently across
environments [15].

A study on GY prediction in spring wheat [16] assessed the effect of different years and
locations with combinations of data from different trials and independent testing on other
trials. Independent GY prediction explained 83% variance based on a single training trial,
whereas additional trials for training did not consistently improve predictions. Due to year-
specific weather conditions, a tendency for improvements from year specific models was
found. In addition, locations differed significantly in terms of prediction accuracies. Thus,
the location with the highest soil quality and GY showed the lowest prediction accuracies.
The authors pointed out limitations in model transfer due to differing growth conditions,
weather conditions during spectral measurement and the influence of weeds on spectral
signature. However, the study included differing nitrogen fertilization treatments [16],
limiting the transfer to breeding applications.

In a study on GY prediction between three years for two rice cultivars and multiple
nitrogen levels based on multispectral UAV-based data, correlations differed between
years, cultivars and two sensors [17]. Depending on the year combinations, either a
normalized red edge reflectance or a texture index was recommended. Likewise, models
specific to years and locations performed slightly better than global models for forage yield
estimation [18], indicating that similarity in the training and test conditions may be more
important than the amount of training data.

Considering the limited studies on GY modelling for predicting genotypic differences
in GY in different locations and years, this analysis aims to evaluate the dataset effect
for GY prediction in winter wheat breeding yards based on data from three years and
two locations. It extends the evaluation of within-trials models from two locations and
two years [19]. This study recommended a red edge index amongst different RGB and
multispectral indices and measurements around anthesis and early milk ripeness. Amongst
machine learning algorithms, comparable small differences in accuracies were found.
The combination of measurement dates generally improved predictions. In the present
study, across-trials models are compared to within-trials models. ‘Trial’ refers to one field
trial within a particular year at one particular location. Since models need to achieve
sufficient prediction accuracies within particular trials, testing is only conducted within
trials. Moreover, based on the results in the analysis from Prey et al. (2022) [19], where
GY predictions differed substantially between locations and years, we expect that the
combination of data from multiple trials for model training will not directly improve GY
predictions, since models would be fitted to the inter-trial variation as opposed to the
intra-trial variation. We expect that the use of models trained on trials most similar to the
trial used for application will be more expedient. Therefore, either year-specific models
or location-specific models might perform better. Different combinations of training and
test datasets are evaluated, including (i) models ‘within years within locations’ (WYWL),
(ii) ‘within years across locations’ (WYAL), (iii) ‘across years within locations’ (AYWL) and
(iv) ‘across years across locations’ (AYAL).

2. Materials and Methods
2.1. Field Trials

Field trials were conducted using a plant breeder in two locations in southeast Ger-
many, near Herzogenaurach (“HZ”; approximately 10.86 E, 49.55 N) and in eastern Ger-
many, near Morgenrot (“MR”; approximately 11.21 E, 51.78 N), each in the growing seasons
2019/20, 2020/21 and 2021/22. The six year*location combinations are denoted as HZ_20,
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MR_20, HZ_21, MR_21, HZ_22, and MR_22 for locations HZ and MR in the first, second
and third year, respectively. Both locations are situated in the Köppen–Geiger climate zone
Dfb (“Warm-summer humid continental climate”). In comparison to HZ, where soil texture
was quite variable and included sandy, silty and loamy soil (Stagnosol) over heterogeneous
terrain, MR trials were characterized by increased water retention capacity with more
homogeneous soil (Tschernosem) and flat terrain.

Both trials were impacted by pronounced drought in 2020 and 2022, while growing
conditions were more favorable in 2021. Thus, 2020 was characterized by relatively dry
and hot conditions during April and May, the months of main vegetative growth, whereas
the second year was colder and more humid (Figure S1). In 2022, the April temperature
in both locations was between that recorded in 2020 and 2021, respectively. While the
April precipitation in HZ was clearly higher in 2022 than in previous years, it was below
25 mm in MR. In both locations, precipitation during May and June was even lower and air
temperature higher in 2022 than in 2020.

Within years, both trials comprised identical germplasm, consisting of pre-selected
material without extreme genotypes in terms of morphology and phenology, F5 generation
and older as well as double haploid lines. To account for the heterogeneous soil, every
fifth trial row was sown with one of two standard (‘references’) cultivars, whereas other
genotypes were sown without replication.

Sowing dates were mostly in the second half of October and harvest dates in the last
and first week of July and August, respectively. Preceding crops were rapeseed, sugar beet
and rapeseed for the HZ trials, and rapeseed for the MR trials for the trials in 2020, 2021
and 2022, respectively. Plots were kept weed-free and fertilized in compliance with local
standards. In contrast to MR, no fungicide was applied in the HZ trials.

Plots were harvested using a combine harvester for determining grain yield (GY) at
kernel moisture of 14%. A fraction of the plots were neglected for harvest, notably based on
pathogen scores, weak biomass growth or plot damage due to lodging. GY was available
for 4423 plots from a total of 4930 plots in MR_20, for 4349 from a total of 4923 plots in
HZ_20, for 2787 plots from a total of 3636 plots in MR_21, for 2711 plots from a total of
3588 plots in HZ_21, for 1785 plots from a total of 2766 plots in MR_22 and for 1869 plots
from a total of 2766 plots in HZ_22 (Table S1).

2.2. Sensor Measurements and Data Preprocessing

Multispectral (MS) drone-based data was acquired during all major growth stages
throughout the growing season, on 8, 9, 7, 6, 8 and 13 dates in the MR_20, HZ_20, MR_21,
HZ_21, MR_22 and HZ_22 trials, respectively (Table 1). A Tetracam µMCA (Tetracam Inc.;
Chatsworth, CA, USA) was used in MR_20, HZ_20, HZ_21 and HZ_22 and a Tetracam
MCAW in MR_21 and MR_22, with the exception of June 9 in MR_22, when the Tetracam
µMCA was also used. Both cameras are equipped with the same snapshot sensors, thus,
capturing the entire picture at the same time. The focal length of the optics of both cameras
was 9.6 mm. The resolution of the band-specific CMOS sensors was 1.3 MP for both
cameras, resulting in individual images of 1024 × 1280 pixel extent. Radiometric resolution
was 8 and 16 bit depth for the µMCA and MCAW data, respectively. The cameras were
carried by a DJI M600 or a XR6 (AIR6 Systems GmbH, Klagenfurt am Wörthersee, Austria).
The cameras comprised six bands each, including a red edge band and a near infrared
band, which were used in the present study. The forward and sideward image overlap
were targeted to be at minimum 80% and 60% in MR and 80% and 75% in HZ location,
respectively. Flight height was about 60–80 m and flight speed typically 4–8 ms−1. The
resulting pixel size of the orthomosaics was 3–6 cm. However, additional resampling of the
image data showed that the applied methods are robust with respect to the effect of the
pixel resolution (not shown).



Sensors 2023, 23, 4177 4 of 15

Table 1. Overview on UAV measurements: Dates (year–month–day) with approximate average
growth stages (Zadok’s scale) for the two locations (MR and HZ) and three years. * 27 May 2022 was
not included in the previous analysis [19], due to missing RGB data.

Trial Date Growth Stage Trial Date Growth Stage

MR_20

1 April 2020 25

HZ_20

26 March 2020 25
23 April 2020 30 9 April 2020 30
8 May 2020 33 6 May 2020 33

19 May 2020 43 20 May 2020 43
27 May 2020 * 65 29 May 2020 65

8 June 2020 72 8 June 2020 75
24 June 2020 75 19 June 2020 81
9 July 2020 83 26 June 2020 84

26 July 2020 85

MR_21

24 March 2021 24

HZ_21

25 March 2021 22
20 April 2021 30 15 April 2021 27
28 April 2021 31 30 April 2021 33
3 June 2021 63 14 May 2021 37
17 June 2021 72 8 June 2021 57
6 July 2021 79 13 July 2021 85

20 July 2021 85

MR_22

3 March 2022 21

HZ_22

3 March 2022 21
18 March 2022 22 23 March 2022 22
30 March 2022 25 31 March 2022 25
12 April 2022 27 13 April 2022 27
26 April 2022 29 22 April 2022 31
5 May 2022 33 3 May 2022 33

19 May 2022 37 12 May 2022 35
9 June 2022 67 25 May 2022 37

2 June 2022 63
9 June 2022 67
15 June 2022 71
28 June 2022 79
18 July 2022 85

PixelWrench for Macaw or PixelWrench 2 was used to preprocess the multispectral
cameras’ raw data (Tetracam Inc.; Chatsworth, CA, USA). The data was calibrated using
values from a 22% grey reflectance standard that was recorded immediately after takeoff
or before the UAV touched down. Spatial co-registration was carried out for each band
to account for the spatial offset. Reflectance was calculated by dividing the up-welling
radiation measured in each band by the down-welling radiation measured simultaneously
using the incident light sensor. Images were processed for image alignment and the
generation of a sparse and dense point cloud, based on which the orthomosaics were
generated using the software Agisoft Metashape Professional Edition (versions 1.5–1.8;
Agisoft LLC., St. Petersburg, Russia). Based on ground control points (GCP) taken with an
RTK-enabled GNSS-device with an accuracy of 1.5 cm at nine positions in each of the trials,
the data was georeferenced to an accuracy of 2–3 cm. Based on the GNSS-guided sowing of
the trials, parcel boundary polygons were created using the software MiniGIS (versions
2.11–2.13; geo-konzept GmbH, Adelschlag, Germany).
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2.3. Postprocessing of Spectral Data and Grain Yield Modelling

The methodology is based on that described in detail in Prey et al. (2022) [19]. Based
on that study [19], which identified the normalized difference red edge index (NDRE1) as
overall best vegetation index for GY estimation among several tested multispectral and
RGB bands and vegetation indices, this study focuses on this spectral index. The index was
calculated as

NDRE1 =
ρNIR1 − ρRE1

ρNIR1 + ρRE1

With ρNIR1 and ρRE1 denoting reflectance in the NIR and red edge bands, centered at
780 nm and 700 nm, respectively. The full width at half maximum (FWHM) band width
was 10 nm. The vegetation index was calculated on the pixel level using the input raster
layer in a custom-made analysis pipeline developed in Python [20]. The raster data was
extracted on the plot level using “Grid Statistics for Polygons” in SAGA [21]. All quantiles
were calculated at intervals of 5%, including minimum, median and maximum, as well as
the standard deviation and mean values. Plot boundaries were buffered inside by 20 cm in
order to exclude the boundary pixels.

The data was analyzed in R [22] using an automated processing pipeline based on
the caret package [23]. The partial least squares regression (PLSR) was chosen based
on its overall good performance and its calculation efficiency in the previous analysis
within trials [19]. The NDRE1 input data was centered to mean 0 and scaled to standard
deviation 1. By default, all statistical variables of the NDRE1 at the plot level were included
as predictors, thus, including 23 predictors per measurement day. All data was used as
aggregated on the plot level. Outliers were automatically detected and filtered based
on local outlier factor [24] identified from the Mahalanobis distance following principle
component analysis using the R-package “bigutilsr” [25,26].

PLSR parameters were tuned using 10-cross validation. The optimum number of latent
variables was determined based on the minimum root mean squared error (RMSE) in the
cross validation. The predictions on the test set data were compared to the measured yield.
The comparison focuses on the R2-values since GY prediction in phenotyping requires
relative discrimination of the data, but, unlike the situation for precision farming [27],
can generally tolerate an offset in the predictions [28]. Values for mean absolute error
(MAE), root mean squared error (RMSE), relative RMSE (RRMSE_mean), bias and offset
are reported in the supplementary material.

2.4. Dataset Combinations for Grain Yield Modelling

Models for GY estimation were trained and evaluated with respect to the individual
trials used for training and testing, referred to as ‘trial combination types’, i.e., within
or across years (WY and AY, respectively), and within or across locations (WL and AL,
respectively). The combinations of both factors result in four model types ‘within years
within locations’ (WYWL), ‘within years across locations’ (WYAL), ‘across years within
locations’ (AYWL) as well as ‘across years across locations’ (AYAL). Thus, for each of the
six trials used as a test set, six datasets were used for model training, resulting in 36 dataset
combinations as visualized in the connecting bars in Figure 1a. In the case of across-trials
models, all plots of the test trials were used as a test set.



Sensors 2023, 23, 4177 6 of 15
Sensors 2023, 23, 4177 6 of 15 
 

 

 
Figure 1. Visualization of coefficients of determination (R2) for the train*test set combinations for the 
‘full models’ based on all matched measurement days (‘all times’). Green (MR) and blue (HZ) colors 
in (a) denote the locations, color intensity the three years, respectively. The width of the connecting 
bars represents the R2-levels and the outer, circular bars the cumulative R2-values in the test evalu-
ation. Boundary colors in (a) and label background colors in (b) denote the dataset combinations 
(W: within, A: across, Y: year and L: location): WYWL (grey), WYAL (black), AYWL (light beige) and 
AYAL (dark beige). 

Figure 1. Visualization of coefficients of determination (R2) for the train*test set combinations for the
‘full models’ based on all matched measurement days (‘all times’). Green (MR) and blue (HZ) colors in
(a) denote the locations, color intensity the three years, respectively. The width of the connecting bars
represents the R2-levels and the outer, circular bars the cumulative R2-values in the test evaluation.
Boundary colors in (a) and label background colors in (b) denote the dataset combinations (W: within,
A: across, Y: year and L: location): WYWL (grey), WYAL (black), AYWL (light beige) and AYAL
(dark beige).
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The WYWL models were reported in [19] for the trials in 2020 and 2021 and evaluated
in the same way for the MR_22 and HZ_22 trials, based on an independent test set using
20% of the data based on random data splitting. For modelling across trials, dates were
matched between trials based on the least temporal differences as calculated from the day
of the year (DOY), assuming that the measurement dates, i.e., for the training and the test
data should be the most similar. Thus, for each training date, the testing date with the
lowest difference in terms DOY was used. Dates were translated to approximate growth
stages according to the Zadok’s scale, e.g., 25_30, where 25 and 30 denote the growth stage
for the train data and 30 the growth stage for the test data, respectively.

As for the WYWL analysis in Prey et al. (2022), besides individual-date models, multi-
date models were tested, either using the complete seasonal data (“all times”) or by adding
incrementally the data from the next measurement date (date increments 1 to i, with i being
number of measurement dates − 2). Thus, for example, “date_increment_1” comprises the
data from the first and second date.

Results reported for WYWL models for the years 2020 and 2021 correspond to those
reported in [19] for the chosen spectral data and PLSR algorithm, but slightly differ for
MR_20 due to an additional date: May 19.

3. Results
3.1. The Effect of Train and Test Datasets

Based on the full models with all matched dates, the train*test set combination types
are compared for the 36 pairwise trial combinations (Figure 1). Within all test sets, the
WYWL models (grey color), trained on independent data of the same trial, achieved best
predictions, yet on different levels. Coefficients of determination (R2-values) were highest
in MR _20 (R2 = 0.81) and HZ_20 (R2 = 0.76), followed by HZ_22 (R2 = 0.66), MR_21
(R2 = 0.49), MR_22 (R2 = 0.44) and HZ_21 (R2 = 0.27; Figure 1b). Thus, the effect of year of
the test set, with high values in 2020 but low values in 2021 in both locations, was dominant
compared to the effect of location, with higher values in MR in 2021, but lower values in
2022 compared to HZ.

For a given test set, the effect of the training set was comparably low, as is visible from
the similar cumulative R2-values in the lower half of the figure (Figure 1a). In contrast, as
in the within-trials models (WYWL), results in different test sets differed substantially.

3.2. The Effect of Across-Trials Model Types

Across-trials models were described by two factors ‘year’ and ‘location’, as well as
their combinations. The variation of the R2-values was compared both for the model
groups ‘individual-date’ (Figure 2a) and ‘multi-date’ (Figure 2b). In both groups, WYWL
models achieved significantly (p < 0.05%) better predictions than the other model types.
However, R2-values of the across-trials model types (WYAL, AYWL and AYAL) did not
differ significantly amongst each other. These results are complementary with lower RMSE,
RRMSE_Mean and MAE values from the WYWL models—both in individual and multi-
date models (Figure S3). In contrast, bias and offset were not significantly different between
the across-trials and WYWL models. However, bias was always close to zero in WYWL
models, but showed considerable positive and negative variation between across-trials
models (Figure S3). Unlike for R2, RMSE and RRMSE_Mean were lower in WYAL than in
AYAL multi-date models. Likewise, MAE was lower in WYAL and AYWL than in AYAL
models, but still higher than in WYWL multi-date models.
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Figure 2. Comparison of coefficients of determination (R2) for the train*test set trial combinations.
W: within, A: across, Y: year and L: location. (a): Comparison of individual-date models and
(b) Comparison of multi-date models. Letters denote groups according to Tukey’s post hoc test,
numbers the number of compared models. See Figure S3 for further metrics.

3.3. The Effect of Measurement Time for Individual-Date Models

In all trials except that of MR_22, R2-values in individual-date models increased over
time in the within-trials (WYWL) models (Figure 3; violet color), peaked around anthesis
and early milk ripeness and steadily decreased thereafter. In general, this temporal pattern
was similar for the across-trials models.
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growth stage numbers. See Figure 4 for comparisons with multi-date models.
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WYWL figures indicate approximate growth stages. 

For each test set, the WYAL models correspond to only one train set per time slot. In 
HZ_20, WYAL models peaked at a similar R2-level as WYWL models but decreased 
sharply after anthesis. This pattern was similar in MR_20, yet with a higher level in WYWL 
models. In 2021, the temporal pattern of WYAL models followed that of WYWL models, 
but on a clearly lower level with maximum R2-values below 0.20. In MR_22, data was 
sparse during the grain-filling phase. R2-values were low (R2 < 0.20) during the vegetative 
phase and still at anthesis. In HZ_22, WYWL and WYAL models followed a similar pat-
tern, but WYAL models were mostly missing post anthesis due to missing data in MR_22. 

For each test set, two AYAL and AYWL models were available per measurement date, 
respectively. In HZ_20, results for both model types had a similar seasonal shape with 
lower values before, but higher values after anthesis, compared to the WYAL model. The 
results were less consistent in MR_20, with low predictions from some models around 
anthesis. In HZ_21, predictions from AYAL and AYWL models were mostly lower than 
from the WYAL and especially WYWL model. In HZ_22 and MR_22, the seasonal pattern 

Figure 4. Comparison of coefficients of determination (R2) by trial combination types (columns), date
combination types (grey and black lines), test trials (rows) and training trials (line types). W: within,
A: across, Y: year and L: location. Lines are fitted using local polynomial regressions. Results for
WYWL correspond to those in Figure 3. For the incremental multi-date model (black), the R2-value
is positioned at the measurement date of the last included date. Thus, multi-date models include
dates in the temporal order of measurement. The full model is positioned at the rightmost position,
respectively. See Figure S4 for comparisons of further evaluation metrics. Numbers within WYWL
figures indicate approximate growth stages.

For each test set, the WYAL models correspond to only one train set per time slot. In
HZ_20, WYAL models peaked at a similar R2-level as WYWL models but decreased sharply
after anthesis. This pattern was similar in MR_20, yet with a higher level in WYWL models.
In 2021, the temporal pattern of WYAL models followed that of WYWL models, but on a
clearly lower level with maximum R2-values below 0.20. In MR_22, data was sparse during
the grain-filling phase. R2-values were low (R2 < 0.20) during the vegetative phase and still
at anthesis. In HZ_22, WYWL and WYAL models followed a similar pattern, but WYAL
models were mostly missing post anthesis due to missing data in MR_22.

For each test set, two AYAL and AYWL models were available per measurement date,
respectively. In HZ_20, results for both model types had a similar seasonal shape with lower
values before, but higher values after anthesis, compared to the WYAL model. The results
were less consistent in MR_20, with low predictions from some models around anthesis. In
HZ_21, predictions from AYAL and AYWL models were mostly lower than from the WYAL
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and especially WYWL model. In HZ_22 and MR_22, the seasonal pattern of both model
types was similar to that of the WYWL model, but again clearly on a lower level.

3.4. The Value of Multi-Date Models

Multi-date models include data from two up to all measurement dates, depending on
the number of matched dates between train and test datasets. Dates were incrementally
added in temporal order. Scatterplots in Figure S2 depict exemplary WYAL model predic-
tions for individual-date models (first row in (a), (b) and (c), respectively, and multi-date
models, second row, respectively). The best R2-values from all multi-date models are
compared to those from individual-date models from all trial combinations (Table 2). In all
except two train*test set combinations, the best predictions from multi-date models were
higher than those from individual-date models (Table 2). The advantage of best multi-date
models did not show particular patterns but tended to be relatively stronger in some of the
across-trials combinations. In 2021, irrespective of the training trial, improvements were
pronounced in MR_21, but marginal in HZ_21.

Figure 4 depicts differences in R2-values of multi-date models in comparison to those
from individual-date models by measurement time. With only a few exceptions, multi-date
models, based on included data until a particular measurement date, improved predictions
from individual-date models at this date. While improvements were marginal for many
earlier dates during vegetative growth, they were more pronounced during later growth
stages, in particular for the MR_20 and HZ_20 test sets. The improvements from multi-
date models over individual-date models at best individual measurement dates differed
between train*test set combinations (Figure 4, Table 2). Thus, improvements were found in
WYWL models in HZ_20 and HZ_22, but hardly in the across-trial models WYAL, AYWL
and AYAL. In contrast, in MR_20, improvements were neglectable in WYWL but more
pronounced in AYWL and AYAL models.

Table 2. Comparison of individual-date models and multi-date models by maximum prediction
accuracy (R2-values) by trial combination type (W: within, A: across, Y: year and L: location) as
well as training and test set combinations. R2-difference was calculated as the difference between
multi-date and individual-date models.

Train Set Test Set Individual
Dates (R2)

Multi Dates
(R2) R2 Difference

WYWL

HZ_20 HZ_20 0.61 0.76 0.16
HZ_21 HZ_21 0.24 0.27 0.03
HZ_22 HZ_22 0.55 0.66 0.11
MR_20 MR_20 0.77 0.81 0.04
MR_21 MR_21 0.30 0.49 0.19
MR_22 MR_22 0.17 0.44 0.27

WYAL

MR_20 HZ_20 0.58 0.68 0.10
MR_21 HZ_21 0.19 0.19 0.00
MR_22 HZ_22 0.25 0.31 0.06
HZ_20 MR_20 0.55 0.73 0.17
HZ_21 MR_21 0.13 0.41 0.27
HZ_22 MR_22 0.12 0.37 0.25
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Table 2. Cont.

Train Set Test Set Individual
Dates (R2)

Multi Dates
(R2) R2 Difference

AYWL

HZ_21 HZ_20 0.41 0.72 0.30
HZ_22 HZ_20 0.50 0.73 0.24
HZ_20 HZ_21 0.15 0.22 0.07
HZ_22 HZ_21 0.17 0.22 0.05
HZ_20 HZ_22 0.49 0.52 0.03
HZ_21 HZ_22 0.17 0.32 0.15
MR_21 MR_20 0.36 0.76 0.40
MR_22 MR_20 0.42 0.56 0.14
MR_20 MR_21 0.12 0.34 0.22
MR_22 MR_21 0.09 0.18 0.08
MR_20 MR_22 0.08 0.17 0.09
MR_21 MR_22 0.15 0.25 0.10

AYAL

MR_21 HZ_20 0.60 0.68 0.08
MR_22 HZ_20 0.49 0.67 0.19
MR_20 HZ_21 0.16 0.19 0.03
MR_22 HZ_21 0.17 0.14 −0.03
MR_20 HZ_22 0.24 0.42 0.18
MR_21 HZ_22 0.51 0.51 0.01
HZ_21 MR_20 0.55 0.72 0.18
HZ_22 MR_20 0.65 0.76 0.11
HZ_20 MR_21 0.22 0.38 0.16
HZ_22 MR_21 0.24 0.44 0.20
HZ_20 MR_22 0.14 0.23 0.09
HZ_21 MR_22 0.08 0.25 0.17

4. Discussion

Spectral GY models can be trained and applied based on different data sources. How-
ever, when training and test data are generated from the same field trials, test sets do
not reflect real-world prediction application cases, where no training data would be avail-
able from trials in which models should be applied. This study, therefore, assessed the
application of models trained from the data of individual trials to trials in other years
and locations.

4.1. The Influence of Combinations of Training and Test Datasets

As in the previous analysis within four of the included trials [19], prediction accuracies
differed strongly between trials. With respect to the trial combinations, the dominant factor
was (i) the data available for applying the models in the test set rather than (ii) the trial
the training data was generated from. Thus, neither a location-specific nor a year-specific
strategy was significantly better in the relative GY discrimination, as expressed using the
coefficient of determination (R2), than in ‘across years, across location’ (AYAL) models. In
spite of mostly similar year-specific weather conditions (Figure S1), growing conditions
differed significantly between both locations, due to better soil quality and—in contrast to
HZ—fungicide treatment in MR. Likewise, weather conditions differed strongly between
years within locations. Thus, GY differed significantly between both locations within all
years as well as between all years within locations, but not between HZ_20 and MR_22
(Table S1). This may explain that in spite of strong R2-variation within the three across-trials
strategies (Figure 2), none of them was superior. The dominant influence of the test set
data is in line with across-years GY prediction from milk ripeness measurements in one
location for winter wheat [7] as well as the significant effect of both location and year for
GY prediction in spring wheat [16]. While predictions in this study [16] mostly profited
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from data from the same year in train and test sets, in some cases across-years models
performed better, similar to the present results.

In contrast to the results for R2, the mean absolute error (MAE), root mean squared
error (RMSE) and relative RMSE were lower in multi-date models for ‘within years, across
location’ models than in ‘across years, across location’ (AYAL) models (Figure S3). This
indicates that the differences in absolute GY levels, which were mostly significant between
locations and years, resulted in higher errors in the AYAL models.

The weak predictions in both locations in 2021 are likely to be related to the moister
conditions in this year, which resulted in increased vegetative biomass, and therefore, likely
saturation of the spectral data [12]. Moreover, unlike the situation in the other years, fungal
diseases were relevant, which were reported to counteract spectral predictions over time [9].
In contrast, the weak prediction in MR_22 is likely influenced by the lack of dates during
grain filling—the phase when useful predictions were observed in HZ the same year.

4.2. The Effect of Measurement Dates

This study confirms the seasonal pattern for GY prediction with generally weak
predictions before flowering but relatively better predictions during flowering and milk
ripeness for the ‘within years within locations’ (WYWL) models (see Figure 4) [19], which is
confirmed by a number of previous studies [2,3,7–9]. During this stage, vegetative growth
is mostly terminated, the yield components ear number and kernel density are mostly
determined [29] and the spectral signal is still little distorted by shifted senescence [30].
Across-trials models are sensitive to the ‘translation’ of measurement dates between training
and test data. As a simplified approach, which requires no additional information, dates
were matched based on the least temporal difference and translated to growth stages. While
approximate growth stage information was available, its determination is error-prone and
not feasible for thousands of trial plots. In addition, it is likely that growth stage as scored
on the kernels does not reflect the canopy appearance notably of leaves, which, however, is
dominant for the spectral signal [31]. Thus, the date translation was affected by trial-specific
shifts in phenological development and by differing measurement frequencies between
trials (Table 1). Therefore, not all dates in the test datasets could be used or important
dates were missing, notably in MR_22 post anthesis. Moreover, imperfect date translation
may explain that in spite of good predictions of the WYWL models within both trials
during milk and early dough ripeness in 2020, these stages were not useful any more in the
across-trials models and exceptionally high RMSE values were observed (Figure S4).

In addition, although the spectral data was captured only under suitable measurement
conditions, potential influences from differing illumination intensities, wind speed, flight
height, temperature and possible effects of background dark current should be addressed
in more detail for optimizing both the merging of data from different measurement dates
and the date translation.

4.3. Multi-Date Models

As GY is influenced over time by growing conditions in all growth stages, the incre-
mental combination of measurement dates generally increased prediction accuracies and
decreased RMSE, RRMSE_Mean, MAE and Offset values (Figure S4). These improvements
were steady and mostly increased with more included dates, at least until anthesis, indi-
cating that information from multiple growth stages was important. This is in line with
previous studies reporting mostly moderate improvements from multiple measurement
dates [12,32–34]. However, a saturation was observed as soon as the best individual dates
were included, especially in the WYWL models (Figure 4). Thus, the predictions did not
further profit from measurements during late dough ripeness. Still, multi-date models
showed the advantage of temporal stability with rarely decreasing predictions during late
growth stages (Figure 4).

Improvements were not consistently stronger for cases of weaker predictions from
individual-date models. This indicates that the test set limitation from unsuited measure-
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ment dates or unfavorable conditions, as visible especially for HZ_22 (Table 2), could
not be compensated for by date combinations. In addition, the clearly stronger relative
improvements from multi-date models in MR_21—irrespective of the training set—indicate
that besides the dominant effect of the test set for the maximum prediction potential, the
improvement from multi-date modelling was also dominated by the test rather than the
training set.

4.4. Limitations and Outlook

The results indicate that GY prediction shows good potential under favorable con-
ditions in HZ_20, MR_20 and HZ_22, whereas distinct limitations became evident in the
other trials and in multi-date models irrespective of the trials used for training. Given the
known differences in soil and weather conditions between trials, and contradicting results
from ‘global models’ in the literature, we deliberately have not included global models
in this study. Moreover, only one spectral trait, NDRE1, and one algorithm, PLSR, were
used. More spectral traits should be tested, as well as more machine learning algorithms.
Thus, random forest was recommended in a number of studies [35–37], notably for its
ability to handle heterogeneous data. This aspect might be more relevant in across-trials
compared to within-trials models, in which prediction accuracies had been similar, but
training time significantly higher [19]. In addition, the translation, i.e., matching of dates
from different trials, should be further optimized. Thus, possible phenological shifts of
the canopy in spite of similar growth stage should be addressed. Furthermore, besides the
incremental data combinations, further date combinations should be tested for alleviating
the effort of additional measurements. Moreover, two camera models were used in this
study, which, however, use the same sensor. A previous simulation analysis for comparing
multiple satellite sensors found very close relationships of R2 = 0.99 between sensors for
the normalized difference vegetation index [38], thus, indicating sufficient consistency of
the data of the included cameras. Since some trial combinations with different cameras
showed better results than other trial combinations with the same cameras, the effect of
different cameras appears to have been neglectable but should be further addressed.

5. Conclusions

This study extended GY prediction within trials to three across-trial cases of predictions
across years and locations. In addition, individual-date and multi-date models were
compared. While the feasibility of GY prediction was also confirmed for across-trials
cases, prediction accuracies generally slightly decreased. The influence of the different
trial-specific training datasets was relatively low; thus, neither a location-specific nor a
year-specific strategy performed better. In contrast, the test data as influenced by the year-
and location-specific growing conditions, was most influential for the prediction accuracies.
In addition, pronounced differences between measurement dates were confirmed, with
generally better predictions around anthesis and early milk ripeness. However, some
growth stages, especially post anthesis, were less reliable compared to within-trials models.
Both within and across trials, date combinations were promising for improved predictions
if useful individual dates were included.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23084177/s1. Figure S1: Weather conditions in the six location*trial
combinations. Figure S2: Scatterplots of the WYAL predictions between trials within years. Figure S3:
Comparison of model evaluation metrics for model testing by trial combination type for individual-
date models (left) and multi-date models (right). Figure S4: Comparison of model evaluation metrics
by trial combination types (columns), date combination types (line colors), test trial (rows) and train
trial (line types). Table S1: Descriptive statistics of grain yield by field trial.
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