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Abstract: Reinforcement learning (RL) methods for energy saving and greening have recently ap-
peared in the field of autonomous driving. In inter-vehicle communication (IVC), a feasible and
increasingly popular research direction of RL is to obtain the optimal action decision of agents in
a special environment. This paper presents the application of reinforcement learning in the vehi-
cle communication simulation framework (Veins). In this research, we explore the application of
reinforcement learning algorithms in a green cooperative adaptive cruise control (CACC) platoon.
Our aim is to train member vehicles to react appropriately in the event of a severe collision involv-
ing the leading vehicle. We seek to reduce collision damage and optimize energy consumption
by encouraging behavior that conforms to the platoon’s environmentally friendly aim. Our study
provides insight into the potential benefits of using reinforcement learning algorithms to improve
the safety and efficiency of CACC platoons while promoting sustainable transportation. The policy
gradient algorithm used in this paper has good convergence in the calculation of the minimum energy
consumption problem and the optimal solution of vehicle behavior. In terms of energy consumption
metrics, the policy gradient algorithm is used first in the IVC field for training the proposed platoon
problem. It is a feasible training decision-planning algorithm for solving the minimization of energy
consumption caused by decision making in platoon avoidance behavior.

Keywords: carbon emissions; green driving; green eco; reinforcement learning; policy gradient; platoon

1. Introduction

The aim of green autonomous driving is to enable a vehicle to navigate and make
decisions based on its surroundings without human intervention while adhering to envi-
ronmental protection standards. A critical component of achieving this goal is developing
driving strategies that can automatically output control signals such as steering, throttle,
and brake in response to the observed environment.

The behavioral decision-making methods of automatic driving are divided into tra-
ditional methods and reinforcement learning methods. Traditionally, the decision control
software system of an automatic driving system includes environmental prediction, behav-
ior decision, action planning, path planning, and other functional modules. Traditional
methods are often rule-based state control algorithms, including fuzzy logic [1], PID
Bayesian control [2], and so on. Although these estimation algorithms are very accurate,
such as Kalman filter [3], Kalman estimating IMU [4,5], Kalman estimating GNSS [5,6],
and YOLO for RGB image detection [7], this paper focuses more on behavioral decision
algorithms. For traditional behavioral decision making, behavioral decision algorithms
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have the advantages of easy construction and adjustment, good real-time performance,
simple application, etc. However, because it is difficult to adapt to all situations, they need
to make targeted adjustments and their behavioral rule base can easily overlap and fail,
and it is difficult for a finite state machine to cover all the conditions that the vehicle may
encounter, resulting in decision making errors. For behavioral decision making based on
reinforcement learning, the influence of environmental uncertainties can be reduced by
simulating and learning various unexpected situations due to the strong computing power.
The traditional approach is to utilize multiple sensors, such as cameras [8], radar [9,10],
and lidar [11], to map visual inputs directly to action outputs [12,13]. However, traditional
methods for developing driving strategies, such as utilizing multiple sensors, can generate
excessive heat and consume a significant amount of energy, which is not conducive to the
green and low-carbon aims of autonomous driving. Furthermore, these methods can be
cumbersome and require significant resources to develop and implement [14]. In contrast,
reinforcement learning offers a promising alternative to traditional methods for developing
driving strategies. Unlike these traditional methods, which rely on human supervision and
can be cumbersome and resource-intensive, reinforcement learning is achieved through an
iterative trial-and-error approach that does not require explicit human supervision. This
technique is well suited to action planning and has shown promise in developing effective
driving strategies [15]. On the other hand, little research has been conducted on whether
autonomous driving is more energy efficient than manual driving, particularly with regard
to obstacle avoidance strategies [16].

Veins [17] is an open-source framework that enables the simulation of wireless com-
munication in mobile in-vehicle environments. It is a useful tool for studying topics such
as autonomous vehicle driving, formation driving, path planning, and coordination in
signalized areas within connected vehicle environments. The framework’s underlying
structure can be used directly, allowing researchers to avoid wasting time and effort on
non-research elements that can still significantly impact simulation results [18]. On the
other hand, by exporting Veins simulations as OpenAI Gyms, Veins-Gym enables the use
of reinforcement learning algorithms to address problems in the domain of vehicular ad
hoc networks (VANETs) [19].

The connection established by Max Schettler between Veins tools and reinforcement
learning by coupling Veins with OpenAI Gym provides a bridge for researchers who
possess expertise in either field to leverage their knowledge in the other. This interface
enables VANET researchers to access a compatible platform based on the generic RL
framework [20]. Researchers can concentrate on studying algorithms and communication
within the framework without the need to develop complicated interfaces for both Veins and
reinforcement learning from scratch [21]. For platoon control, vehicle speed and acceleration
are important state inputs, but these states cannot be obtained directly. Through sensor
data such as GNSS, IMU, and camera, many scholars design robust estimation methods to
obtain the states indirectly. However, in the Veins-Gym platform of this study, researchers
do not need to pay much attention to environment building and state acquisition beyond
reinforcement learning algorithms.

The field of reinforcement learning for energy conservation, green economy, and
reducing CO2 emissions is extensive and encompasses a wide range of studies [22]. For
example, in the optimal regulation of microgrids, carbon emissions allowances take into
account volume prediction [23], electrical energy consumption management of household
appliances [24], hybrid clouds harnessing renewable energy, task scheduling [25], and so
on, which all concern green and low-carbon environmental protection. However, despite
the significant attention given to reinforcement learning applications for energy conserva-
tion and carbon emission reduction, limited studies have addressed the issues related to
autonomous driving, connected vehicle communication, and energy consumption. These is-
sues include carbon emissions from the decision-making behavior of autonomous vehicles,
energy consumption during connected vehicle communication, etc., and how to reduce
greenhouse gas emissions from vehicles. Max Schettler’s development of Veins-Gym has
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made it easy to perform data statistics and analysis, offering an excellent simulation and
development tool for investigating fleet behavior decision making [26,27], particularly the
obstacle avoidance problem on which this paper concentrates [28,29].

This paper focuses on examining how reinforcement learning algorithms can be
utilized to train the behavior of member vehicles in a CACC platoon [30,31] consisting of
vehicles with varying parameters in the event of a serious collision involving the leading
vehicle [32]. Additionally, the paper aims to determine the most energy-efficient and
eco-friendly solution that consumes the least amount of energy while also fulfilling the
requirements of avoiding collisions or minimizing collision damage. The conventional
approach relies on using sensors that operate independently, without any communication,
to assess the surroundings and determine the appropriate course of action.

The main contributions of this paper are as follows:

1. A hypothetical situation is created to depict a scenario where a line of vehicles is
present on a two-lane highway. When there are no other vehicles present, the front
vehicle of the platoon suffers a serious traffic accident.

2. To prevent further damage, reinforcement learning (policy gradient algorithm) is used
to obtain the most efficient strategy to be adopted by the member vehicles to reduce
the impact of the collision on the team.

3. While solving the collision avoidance problem, the reinforcement learning algorithm
also examines the damage caused by the vehicle behavior and computes the strategy
that minimizes the damage.

4. In order to break the limitations of traditional algorithms, reinforcement learning
algorithms (policy gradients) are applied to the behavioral decision of the fleet, which
is a leap forward and a hot spot for future research.

2. Platoon Algorithms with RL

This section focuses on several aspects, including inferring the formula of the policy
gradient (PG) algorithm for reinforcement learning, modeling the Veins simulation model,
and assuming a universal and typical simulation scenario [33].

2.1. The CACC Car-Following Model

xi is the displacement of the following vehicle, vi is the speed of the following vehicle,
e is the error between the actual distance and the desired distance, T is the minimum safe
headway time distance, i− 1 is the front car, and vkprev is the speed of the vehicle in the
previous moment.

vi = vkprev + kpe + kd
.
e

e = xi−1 − xi − Tvi
(1)

2.2. Proposed Car Dynamics Cost Model

This paper assumes that the nature of the collision between vehicles is inelastic:{
m2v0 = m1v1 + m2v2

1
2 m2v2

0 = 1
2 m1v2

1 +
1
2 m2v2

2 + E
(2)

For individual vehicle loss functions within a fleet:

Ji = Ei =
1
2

m2

(
v2

0 − v2
2

)
− 1

2
m1v2

1 (3)

In contrast to the actual scenario, Wentao Chen posits that the nature of vehicle
collisions is completely inelastic. However, the analysis and reconstruction of heavy goods
vehicle traffic accidents categorizes the nature of vehicle collisions based on three distinct
properties associated with three different vehicle speeds. This approach aligns more
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accurately with real-world situations. In this paper, the relationship between mass and
collision loss is proposed as:

v2

v1
=

1
2

1

1 + eln m1
m2

=
1
2

m2

m1 + m2
(4)

To facilitate the calculation, we specify:

• When m1 < m2, it is elastic collision; v2/v1 = 1/2.
• When m1 = m2, it is inelastic collision; v2/v1 = 1/4.
• When m1 > m2, it is completely inelastic collision; v2/v1 = 0.

The platoon cost function is defined as:

J =
N

∑
i=1

Ji (5)

2.3. Markov Decision Process (MDP)

For a complete sequence of state behavior trajectories τ = (s0, a0, . . . , sT−1, aT−1, sT),
i.e., the process of obtaining the next state si+1 after obtaining behavior ai at state si, there are
single-step reward functions R(st, at) and total reward functions R(τ) = ∑T−1

t=0 γiR(st, at)
for obtaining the maximum expected reward, where πθ is the parameterization strategy of
the neural network composition. Under the strategy πθ , the expected value τ is used for
the trajectory, so the problem can be transformed into finding the optimal parameter θ.

The gradient of the desired reward can be obtained from the gradient descent∇θEπθ R(τ),
and the parameters are updated by the hyperparametric learning rate α.

θ ← θ + α∇θEπθ R(τ) (6)

Let P(τ|θ) be the probability of the trajectory τ under the strategy πθ . Then, the
gradient can be calculated:

∇θEπθ R(τ) = ∇θ∑
τ

P(τ|θ)R(τ)

= ∑
τ

∇θ P(τ|θ)R(τ)

= ∑
τ

P(τ|θ)
P(τ|θ)∇θ P(τ|θ)R(τ)

= ∑
τ

P(τ|θ)∇θ log P(τ|θ)R(τ)

= Eπθ(∇θ log P(τ|θ)R(τ))

(7)

Therefore, the probability of the trajectory τ can be calculated:

P(τ|θ) = p(s0)

T−1

∏
t=0

p(st+1|st, at)πθ(at |st) (8)

where p(st+1|st, at) is the probability of transitioning to state st+1 after taking behavior at
at the moment of state st.
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2.4. Policy Gradient Algorithm

Consider the optimization model from the gradient of the objective function:

∇Jθ(θ) =
∫
∇πθ(τ)r(τ)dr = Eτ∼πθ(τ)∇θ log πθ(τ)r(τ))

to obtain the gradient:

Eτ∼πθ(τ)

∑
t

∇θ log πθ(at|st)


∑

t

r(st, at)

 (9)

Strategy function:
When designing policy functions, it is important to address the discrete state space

and the continuous state space separately due to their substantial differences in the quantity
and definition of states.

2.5. Gauss Policy Function

The Gauss strategy function for the continuous behavior space is generated from a
Gaussian distribution with a fractional function:

∇θ logπθ(s, a) =

(
a− φ(s)Tθ

)
φ(s)

σ2 (10)

2.6. Softmax Policy Function

Softmax for discrete spaces:

πθ(s, a) =
eφ(s,a)Tθ

∑b eφ(s,a)Tθ
(11)

The odds of a behavior occurring are weighed using a linear combination of the fea-
tures φ(s, a) describing the state and the behavior with the parameter θ. The corresponding
score function is its derivative:

∇θ logπθ(s, a) = φ(s, a)−Eπθ [φ(s, ·)] (12)

3. Proposed Model
3.1. Vehicle Dynamics and Network Parameters

Consider a smooth and empty two-lane, one-way straight highway with a row of N
convoys with the following parameters.

The fleet uses the CACC follow-the-leader model such that the fleet member i ∈ N
can maintain a relative speed of 0.

Let the lead vehicle in the convoy with marker i = 0 at the moment t = 0 have a larger
vehicle collision, so that:

v0 =


120, t < 0

110− 8t, t ≥ 0
0, t ≥ 13.75

(13)

Vehicle 1, when vehicle 0 experiences the accident, brakes in response when the relative
distance is reduced to 6.8 m; when the vehicle speed is reduced to 0, the relative speed
is reduced to 57.16 m, which is greater than the head time distance of 1.5 s, that is, 50 m,
resulting in vehicle 1 causing a rear-end accident and a chain of further rear-end accidents
from the cars behind it.

Consider the workshop communication using protocol IEEE802.11p for short-distance
communication. To verify and confirm the network adjacency, hello packets are sent
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periodically by the vehicle. To ensure the timeliness of the communication, the transmission
protocol uses the faster UDP and the packet interval is set to 0.2 s. Learning rate α
and exploration rate ε are the reinforcement learning training parameters. The detailed
simulation parameters are shown in Table 1.

Table 1. Assumed speed and routing protocol.

Parameter Value

Car speed 120 Km/h
Headway 1.5 s
Response time 1 s
Deceleration 8 m/s2

Routing packet size 512 Bytes
Simulation distance 1000 m
Maximum rate 10 MB/s
Number of nodes 4
Communication distance 250 m
Hello packet interval Ls
Transfer Protocol UDP
Packet interval 0.1 s
MAC layer protocol 802.11
Channel transmission rate 3 Mbps
Learning rate α 0.001, 0.01, 0.05, 0.1
Exploration rate ε 0.01, 0.05, 0.1, 0.2

Additionally, considering the scenario, the mass of the motor vehicle does not satisfy
mi = mj and the deceleration does not satisfy ai = aj; therefore, in scenarios where traffic
accidents are caused by the leading vehicle, braking may not be the optimal approach. The
growing volume of road traffic necessitates further reduction in driving distances, which
in turn calls for increased attention to the safety of autonomous vehicles. It is essential
to focus on developing more intelligent approaches for path planning and safe decision
making. Policy gradient algorithm for platoon is as follows (Algorithm 1).

Algorithm 1 Policy gradient for platoon

Input: a differentiable policy parameterization π(a|s, θ)
Algorithm parameter: step size a > 0
Initialize policy parameter θ ∈ Rd′ , environment and state S0

1 Loop for each episode:
2 Generate an episode S0, A0, R1, . . . , ST−1, AT−1, RT , following π(·|·, 0)
3 Loop for each step of the episode t = 0, . . . , T−1:
4 S← return from step t (St)
5 R← R + γiR(st, at)

6 θ ← θ + αγt∇
−
Rθ

7 If episode is complete:
8 Break
9 Train and learn for agent:
10 Return θ

3.2. Strategic Gradient Decision-Making Behavior
3.2.1. State Space and Action Space

In certain public platforms, such as Gym, the state space for most domains is readily
accessible, allowing scholars to compare the performance and convergence speed of various
algorithms. However, in real-world projects, state space design work must be carried out
independently. Based on the author’s personal experience, adding new state information
can significantly improve performance, more so than other aspects (such as tuning), which
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is very cost effective, so the optimization of the state space is almost always carried out in
the project.

3.2.2. Mission Analysis

The following situation was established: the foremost vehicle of a convoy on a highway
becomes engaged in a significant collision, resulting in a severe reduction in speed. At this
point, the convoy members are compelled to make crucial choices to evade the collision or
decrease the harm caused by an unavoidable collision.

3.2.3. Observation Spatial Information Filtering

The information in the environment is passed to the intelligence (agent) for generating
the reward function (reward). In this paper, we consider that for the ith member car,
the key point is the relative position, the relative velocity of the previous car i-1 and i-
2. Moreover, if the car decides to change lanes, the environmental feedback data of the
next state, which include the relative position and velocity with the preceding car after
changing lanes, are analyzed. The state space is defined as [x1, x2, x3, v1, v2, v3], where
x and v denote the distance and speed, respectively, and the labels 1, 2, and 3 denote the
physical quantities with the car in front, the car behind, and the car in front of the next lane,
respectively. The behavior space comprises [lane change, deceleration], and their elements
are Boolean values.

3.2.4. Reward Function Settings

The fleet collision loss function is utilized to consider the environment space key
points. The reward in the next moment within the current lane is dependent on the state
space, where any behavior ai must result in a new change in the environment si. To ensure
the safety of all vehicles and that each vehicle remains within the safety threshold, the
reward function must be designed accordingly. Additionally, the reward function takes into
account the fuel consumption that results from the vehicle’s braking and lane-changing
behaviors.

4. Analysis of Simulation Results

The convergent process of each loss function value in the whole training process is
compared under different learning and exploration rates. The energy loss function and
the collision loss function are slightly different. The two are not strongly correlated. When
the energy loss is low, the collision loss may be larger; sometimes, the opposite result
is produced. The selection of super parameters is extremely important. The training
system is chaotic, and any small change in the parameter value leads to great changes
in the convergence characteristics, even in the non-convergence situation. The value of
the learning rate parameter used for the constraint training convergence curve is set to
[0.001, 0.1]. The exploration rate parameters used to explore more decisions have values of
[0.001, 0.2].

Considering the complexity of the scenario, it is reasonable to assume that there is
no need to dynamically adjust the learning rate. Figures 1–4 show the loss calculated
by the strategy gradient algorithm according to the training time under the condition of
different learning rates and exploration rates in the target scenario. In order to obtain faster
convergence time and reduce training time in the whole training process, the value of the
learning rate should be larger. A low learning rate leads to a difficult training process
and long convergence time. Too high a learning rate causes a serious loss value jump,
makes it difficult to obtain the overall downward trend, and even causes the problem of
non-convergence. In order to obtain more strategy choices during the initial training, the
value of the exploration rate needs to be set high. Too low an exploration rate makes it
difficult to jump out of the current decision, that is, the loss gradient drops to a minimum
point that is not relatively good and the existing decision remains unchanged. Too large an
exploration rate causes the agent to hesitate, try repeatedly among many possible choices,
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and fail to make the optimal decision. Based on the training results, the optimal learning
rate, α = 0.05, and the optimal exploration rate, ε = 0.1, are obtained.
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test continuously tests and trains the deep neural network. Sensor-based vehicle distance
decision algorithms need no training. The decision of CACC is determined by the headway,
min-Gap (the distance between the front bumper and the rear bumper of the vehicle in
the queue), and the reaction time τ. The optimal headway = 1.5 s, min-Gap = 2.5 m, and
τ = 1 s are adopted. Comparing the traditional algorithm with the proposed algorithm, the
following is obtained.

In one thousand training sessions, a target vehicle exhibits a pattern of both overall
convergence and local oscillation in the collision loss generated by the fleet and the reward
value it receives. The proposed method differs from the traditional approach in that lane
changes occur between vehicles instead of all vehicles changing lanes. The loss convergence
process of the agent, which is highly correlated with the reward function, can be evaluated
using multiple metrics. When evaluating a single intelligent entity, the most crucial factor
to consider is the trend of collision loss and reward value changes.

There is no strong correlation between energy loss and collision loss, which is par-
ticularly obvious in the traditional algorithm; that is, all CACCs of the team members
may adopt the same lane change strategy at the same time, which makes the decision
without safety significance and increases energy consumption. According to the Figure 5,
the policy gradient algorithm-based reinforcement learning method outperforms conven-
tional methods in anticipating autonomous driving situations, devising optimal routes,
and issuing timely warnings. This superiority is evident in both subjective impressions and
objective assessments.
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Analysis of Three-Lane Scenario Simulation Results

In the three-lane experiment, the parameters and the design of the model were different
compared to those for the two-lane experiment. According to Figure 6,the distance and
steering model was introduced here, which is more in line with the actual situation. The
expansion region is defined as follows: the centroid of the top view of the car is the center
of the expansion rectangle; the side length is the rectangular edge, which is determined
by the car edge and the speed of the two vehicles. The minimum distance between the
rectangles corresponds to the safety car distance of the two vehicles. When the following
vehicle’s speed is greater than that of the leading vehicle and the lane changes, the velocity
vector at the minimum distance point is used to predict the collision and decide the change
in the reward function. When the speed of the following vehicle is close to or less than the
speed of the leading vehicle, the velocity vector has little significance. It is used to share
the speed of the forward direction and increase the distance between the two vehicles.
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The operation loss parameter of the reward function is set to a larger value, that is,
the reward value is more affected by the operation loss. The vehicle trajectories over a
period of time are shown in the Figures 7 and 8 below. The agent should pay as little
attention as possible to the influence of the distance change outside the expansion interval
on the security. Agents are trained several times, and the three agents with the maximum
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reward value are taken as the training results. There are some commonalities among these
three results. The first and second cars are always in different lanes, while the third car
has no obvious correlation with the position of the car in front. This is because the third
car is furthest away from the accident vehicle and therefore has more maneuvering time
and distance.
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Figure 7. Results of agent training with minimum operational loss priority. The trajectories of (a) car
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Examining the relationship between the sequence of fleet members and important
physical quantities over time is of great interest. Even though vehicles make many steering
movements during high-speed driving, the results of experiments conducted in a rein-
forcement learning agent simulation environment are worth investigating. Even if the
directional change resulting from this movement is very small, typically less than 10 de-
grees, it can have catastrophic consequences. For instance, in rainy or snowy weather,
the friction between the tire and the ground in the vertical direction to the direction of
travel can cause rolling friction which transforms into sliding friction. Once this occurs, the
vehicle’s state becomes uncontrollable, leading to serious traffic accidents. In this three-lane
experiment, the behavior of each member is intrinsically linked to the entire system. Due
to communication delay and uncontrollable hardware control random delay, the behavior
of each vehicle has a reasonable lag and delay in response to the previous vehicle’s actions.
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The function that describes the change in the minimum distance between a vehicle and
its leading vehicle as a function of time is always monotonically decreasing, but for vehicles
with different indices, the curves exhibit reasonable differences. In general, vehicles with
higher indices exhibit greater negative acceleration, i.e., they tend to maintain a greater
distance from their leading vehicle. Acceleration, as the second derivative of distance,
must have a sufficiently large integral to increase the distance between vehicles; therefore,
the acceleration of rear vehicles must be larger and initiated earlier to obtain a larger
reward for the agent. To increase the distance between vehicles under loose conditions,
vehicles can gain greater distance by making free turns and agents will do whatever it
takes, including changing lanes continuously, to achieve this goal. When the vehicle that
continuously changes lanes reaches the front of the road and no longer detects a leading
vehicle, it is not motivated to change lanes or decelerate. Although the vehicle in this
situation should accelerate and overtake surrounding vehicles to leave the accident area as
quickly as possible, the simulation environment does not have parameters or behaviors
that are less related to obstacle avoidance, minimal energy loss, and minimal safety cost.
Therefore, the acceleration of the vehicle is always non-positive, sometimes negative, and
sometimes zero.

5. Conclusions

In this paper, we propose a policy gradient algorithm for computing the minimum
energy consumption for autonomous driving decisions in the context of a green economy.
The approach utilizes the Veins-Gym reinforcement learning and the Telematics training
platform. Two experiments were designed to train the proposed algorithm for obstacle
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avoidance strategies in two-lane and three-lane highway situations when the team’s lead
vehicle is involved in a major traffic accident. By training the optimal decision, the vehicles
perform better in terms of obstacle avoidance and energy loss performance and achieve
minimized cost loss. Due to different parameter settings, the vehicles’ obstacle avoidance
strategy can be switched between conservative and aggressive operations. In the future
deployment of a large number of self-driving vehicles, reinforcement learning has great
promise for some decisions, such as environmental prediction and behavioral decisions.

Future research should address the following:

1. This study used short-range communication networks only for small-scale vehicle
communication, and when more vehicles and more network types (such as base
stations) are added, how reinforcement learning can cope with them should be specif-
ically analyzed.

2. When the road environment is more complex, reinforcement learning intelligences
should be multi-agents and consideration should be given to whether to use dis-
tributed or centralized agents.

3. The crash environment in this study is only one of many small probability situations;
a more generalized decision algorithm should be sought to minimize loss.

4. There is endogeneity in the road passage, traffic calming methods, and crash behavior
decisions, and their correlation should be studied.
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