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Abstract: Behavioral prediction modeling applies statistical techniques for classifying, recognizing,
and predicting behavior using various data. However, performance deterioration and data bias prob‑
lems occur in behavioral prediction. This study proposed that researchers conduct behavioral predic‑
tion using text‑to‑numeric generative adversarial network (TN‑GAN)‑based multidimensional time‑
series augmentation to minimize the data bias problem. The prediction model dataset in this study
used nine‑axis sensor data (accelerometer, gyroscope, and geomagnetic sensors). The ODROIDN2+,
a wearable pet device, collected and stored data on a web server. The interquartile range removed
outliers, and data processing constructed a sequence as an input value for the predictive model. Af‑
ter using the z‑score as a normalization method for sensor values, cubic spline interpolation was
performed to identify the missing values. The experimental group assessed 10 dogs to identify nine
behaviors. The behavioral prediction model used a hybrid convolutional neural network model to
extract features and applied long short‑term memory techniques to reflect time‑series features. The
actual and predicted values were evaluated using the performance evaluation index. The results
of this study can assist in recognizing and predicting behavior and detecting abnormal behavior,
capacities which can be applied to various pet monitoring systems.

Keywords: text‑to‑numeric generative adversarial network (TN‑GAN); behavioral prediction; data
augmentation; deep learning

1. Introduction
Behavioral prediction models use statistical techniques, such as algorithm clustering,

data mining, or data visualization, to identify and predict object behavior using a machine
model or system based on various data collected from video, voice, or sensor movement
recordings. Studies of behavioral prediction using image data have limitations because
they are sensitive to shooting angle or image quality [1,2]. However, sensor data‑based
behavioral prediction has been studied more actively because it has relatively fewer lim‑
itations and is more cost‑effective than image‑based research [3]. Behavioral prediction
models based on sensor data also use accessible everyday data from automobiles or smart
devices (cell phones, tablets, and watches) to make predictions [3,4]. The rapid develop‑
ment of wireless sensor networks has facilitated the collection of numerous data from var‑
ious sensors [5], and sensors for behavioral prediction include object, environmental, and
wearable sensors [6].

An object sensor plays a crucial role in object detection and can infer related behavior
after detecting movement. A user attaches a sensor to an object to analyze the object pat‑
tern. For example, radio frequency identification automatically identifies and tracks tags
attached to objects or furniture and can be used to monitor human or animal behavior.

An environmental sensor is a monitoring system or an internet of things (IoT)‑based
smart environment application that detects environmental parameters, such as tempera‑
ture, humidity, and illumination. Environmental sensors play a secondary role in identi‑
fying behavior.
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Accelerometer and gyroscope sensors are integrated into a wearable built‑in devices
in smartphones and smartwatch. These sensors are low in cost compared with other sen‑
sors. Moreover, the data collected from these sensors are time‑series data and can be used
for object detection. Additionally, they respond to inputs in the physical environment.
Additionally, sensors have applications in various fields. Accordingly, some studies have
proposed the development of algorithms or learning models for time‑series data analy‑
sis [7,8].

The number of pets has recently increaseddue to the coronavirus disease 2019 (COVID‑
19) [9], and various pet healthcare products have been released as the pet care market has
expanded. Particularly, pet care services using wearable devices have been introduced,
and studies on the behavioral recognition of pets have been conducted [10–12]. However,
such devices have lower accuracy than those used in previous studies on humans. In ad‑
dition, pets are relatively unable to communicate, making it difficult to obtain data on
desired behavior.

Behavioral prediction is based on nine‑axis sensors, not the three‑ or six‑axis sensors
primarily applied in previous studies. This paper proposes that researchers predict pet
behavior using nine‑axis sensor data. A device is created for sensor data collection, and
the bias of behavioral data is mitigated using the augmentedmodel proposed in this paper.
We predict nine behaviors based on this.

2. Related Work
2.1. Time‑Series Data Augmentation

Data augmentation generally improvesmodel performance by increasing the learning
data to ensure good results with insufficient or noisy data. Image data are most commonly
applied, but time‑series data can also be used and are largely divided into data augmenta‑
tion based on statistical or deep learning methods.

Statistical‑based methods include jittering, rotation, permutation, scaling, and other
techniques. Random transformation techniques assume that the results do not apply to
all datasets. However, pattern mixing, creating a new pattern by combining one or more
patterns with existing training data, can combine similar patterns and obtain reasonable
results [13].

Deep learning‑based data augmentation methods primarily use GAN‑based gener‑
ation models [14]. The GAN was developed in various forms, such as the deep CGAN,
CGAN, and super‑resolution GAN, to augment data efficiently. Among them, CGAN can
augment data for specific classes, and conditional data corresponding to the class are input
together. Smith et al. proposed the time‑series GAN consisting of two GANs, one regu‑
lar and one conditional, for 1D time series data [15]. The time‑series GAN was applied to
70 time‑series datasets, confirming that performance improved for all datasets. Ehrhart
et al. proposed a data augmentation technique based on the long short‑term memory
(LSTM) fully convolutional network CGAN architecture to detect moments of stress [16].
The data were augmented by changing the architecture of the GAN to make it appropriate
for research, which performs well.

Therefore, we propose a text‑to‑numeric GAN (TN‑GAN) through multidimensional
time‑series augmentation, which generates numerical data when text is input based on
the nine‑axis time‑series sensor data used as input for behavioral prediction models. We
propose a generative model that generates data based on the experimental group most
similar to the input text and that augments the data by specifying specific behaviors. Using
this approach, we intend to alleviate the data imbalance problem and improve the learning
model performance.

2.2. Behavior Recognition
2.2.1. Sensor Data‑Based Behavior Recognition

Behavior recognition based on sensor data is collected as time‑series data [17]. Many
previous studies have used the UCI (University of California, Irvine) dataset or WISDM
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(Wireless Sensor Data Mining) open dataset to perform behavior recognition [18]. At this
time, a fixed time for one behavior is calculated, and a slidingwindow is applied to the data.
Most datasets used in previous studies for behavior recognition mainly used accelerome‑
ter and gyroscope sensors. Additionally, depending on the purpose, more biosensors for
monitoring systems are being added. For example, environmental sensors, such as tem‑
perature, humidity, and illumination sensors, are added to collect data.

Even if behavior recognition is performed by applying the same algorithm to the
same data set, the result may differ depending on the data preprocessing method or re‑
sults. Zheng et al. compared the segment length and data conversion methods of open
datasets, such as WISDM and Skoda open datasets. The multi‑channel method (MCT,
Multi‑Channel Transformation) used by these authors showed better performance [19].

Additionally, the sensors or modules of the collected data offer higher accuracy in be‑
havior recognitionwhenusingmultiple sensors thanwhenusing single sensors. Generally,
only an accelerometer sensor or gyroscope sensor is used with a single sensor. However,
a wearable device is configured with multiple sensors. Moreover, multiple sensors are
characterized by a module, such as accelerometer, gyroscope, and geomagnetic. Mekruk‑
savanich et al. confirmed that when single‑sensor and multi‑sensor values were divided,
using a smartwatch as input values, the learning results of the samemodel were better [20].

Thus, we aim to predict the composition of the sensor based on behavior recognition
after classifying the behavior, using an accelerometer, gyroscope, and geomagnetic sensor
module rather than a single sensor.

2.2.2. Deep Learning‑Based Behavior Recognition
Monitoring systems are studied for behavioral recognition and pattern analysis ap‑

plied to humans in real life, and behavioral recognition performs well due to the devel‑
opment of artificial intelligence [21]. Existing recognition approaches include machine
learning (e.g., the decision tree, random forest, support vector machine, naive Bayes, and
Markov models). A machine learning algorithm has been used to achieve human activity
recognition [22,23]. However, this method is inefficient and time‑consuming because it
involves many preprocessing steps and inefficient operations.

Deep learning is a structure created by imitating human neural networks. Deep learn‑
ing technology in artificial neural networks has been developed to solve machine learning
problems, and learning methods that can be applied in various ways by learning features
have been studied. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) have been devised as representative learning methods. CNNs perform excellently
in image processing and preserve spatial structural information, with 1D vector values
being used as learning input. Although learning takes a long time due to the numerous
nodes within the hidden layer, the shortcomings have been supplemented with parallel
computing operations using graphics processing units (GPUs) [24].

RNNs are artificial neural network models in which the previous calculation results
influence the current output of cells. In a general deep neural network structure, values
with an activation function proceed toward the output layer. However, an RNN sends data
from the nodes of the hidden layer to the output and hidden layers. Thus, continuous in‑
formation can be reflected; however, a dependency problem occurs when the dependence
period becomes long. The LSTMmethod was developed to solve this problem [25,26] and
was designed for long‑termdependency on related information by adding cell statesf to the
existing RNN model. Therefore, LSTM methods are used in various fields in time‑series
data‑based research [27]. CNN and LSTM method are predominantly employed because
each CNN extracts features from deep learning‑based behavioral recognition, and because
the LSTM reflects time‑series characteristics.

2.3. Comparison with Previous Studies
Most studies on human behavioral recognition have used open datasets, and vari‑

ous studies have been conducted on preprocessing and model construction. Therefore, re‑
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search on behavioral recognition based on sensor data is not limited to humans but has also
been conducted on pets and livestock. Table 1 compares previous studies on sensor data‑
based behavioral recognition. This study contributes to the existing research on behavioral
prediction based on nine‑ and three‑axis sensor data that previously recognized and pre‑
dicted behavior. We predict pet behavior using a hybrid deep‑learning CNN and LSTM
model that outperformed machine learning. Additionally, data augmentation removed
bias to improve performance, and the prediction was made after a nine‑behavior classifi‑
cation.

Table 1. Comparison of research on behavioral recognition based on sensor data.

No. Sensor Data Device
Position

Frequency
(Hz)

Number of
Behaviors Suggested Model

[20] Gyro +Acc Wrist 20 18 CNN‑LSTM
[28] Acc Neck + leg 10 4 Random Forest

[29] Gyro + Acc Neck + Back 100 7 SVM, Decision
Tree

[30] Gyro + Acc Neck + Tail 33.33 10 CNN
[31] Acc Neck + Back 50 8 LSTM
[32] Acc Neck 25~50 9 FilterNet

[33] Acc + Mag Neck 12.5 7 KNN, Random
Forest

Proposed Gyro + Acc + Mag Neck 50 9 CNN‑LSTM
Note: Gyro: gyroscope; Acc: accelerometer; Mag: geomagnetic sensor; CNN: convolutional neural network;
LSTM: long short‑term memory; SVM: support vector machine; KNN: k‑nearest neighbors.

3. CNN‑LSTM‑Based Behavior Prediction with Data Augmentation
This study proposes deep learning‑based behavioral prediction through multidimen‑

sional time‑series augmentation, grouped into data collection, preprocessing, and behav‑
ioral prediction. Figure 1 illustrates the entire process.
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After collection, the nine‑axis sensor data (accelerometer, gyroscope, and geomag‑
netic sensors) and image data were stored in the data collection device using Bluetooth
communication. Afterward, the saved data were transmitted to the web server database,
in which sequences were used as input values for the learning models, and processed to
detect outliers and missing values. When data biases occurred, time‑series sensor data
were augmented using the data augmentation model for the text data, such as the breed,
size, and behavior. Then, performance was verified using the trained deep learning CNN‑
LSTM model. Moreover, the actual labeled behavioral data and predicted values were
compared using the performance verification index.
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3.1. Data Preprocessing
3.1.1. Remove Outliers

Outliers were removed using the interquartile range (IQR), the difference between the
values at 25% and 75%. The IQR is commonly used to remove outliers because it sorts data
in ascending order and divides datasets into four equal parts. The data is divided into the
quartiles of 25%, 50%, 75%, and 100%of the data. After determining the IQR,wemultiplied
it by 1.5 and added the result to the 25% value to determine the minimum value and to the
75% value to determine the maximum value. Values which were smaller or larger than the
determined minimum or maximum values, respectively, were outliers.

3.1.2. Data Normalization
Normalization refers to a change in the range of values on a common scale without

distorting differences in the range by adjusting them. The z‑score normalization was per‑
formed on the dataset, a method in which the IQR removes outliers. The z‑score refers to
changing the value corresponding to the standard normal distribution, and is calculated
using the standard deviation and mean value.

3.1.3. Missing Value Interpolation
A missing value occurs when no value exists in the data after data collection. Sub‑

stantial existing data are lost if missing values are not processed or if interpolation is not
performed. This study employed the cubic spline interpolation to address missing value
problems. Cubic spline interpolation interpolated a curve, connecting two points using a
cubic polynomial, and was performed in sequences where the rate of missing sequences
that constituted a behavior was 10% or less.

3.1.4. Creating Sequences
It is vital to create data sequences as the input to the learning model. A sequence

is created by estimating 3 s behavior based on the previously processed outliers, normal‑
ization, and missing value‑interpolated data. The sensor data frequency was 50 Hz; thus,
the length of one data sequence corresponding to 3 s comprised a sequence of 150 s. The
constructed dataset comprised a three‑axis accelerometer, three‑axis gyroscope, and three‑
axis geomagnetic sensor. Thus, nine data sequences were created, consisting of 150 s. A
sliding window was applied to the generated sequences, with a ratio of 50%.

3.2. TN‑GAN‑Based Multidimensional Time‑Series Augmentation
We propose a multidimensional time‑series data augmentation method based on the

TN‑GAN. The establishment of the model structure began with the word embedding part
of stackGAN, which has a structure that creates an image when text is entered. This paper
presents a model structure that fuses the upsampling of stackGAN and the downsampling
process of a general GAN.

Data were generated using a generative model to augment multidimensional time‑
series data. The text datawere received as input values, and the input behavioral datawere
augmented using word embedding based on the experimental groupwhich was most sim‑
ilar to the input value. The input values included gender, age (in months), breed, weight,
and behavior. Then, these variables were converted into dense vectors using word2vec.
Weight values were adjusted on variables that affected pet activity after establishing inter‑
nal criteria based on veterinary papers [34,35]. A vector value was calculated based on
weights of 0.5 for the breed, 0.4 for age, and 0.1 for gender. The behavioral input was aug‑
mented based on the sum of the embedding vectors calculated through word2vec based
on the most similar experimental group. Behaviors were converted into one‑hot vectors to
classify input behaviors separately. Afterward, data augmentation proceeded by receiving
the biased behavior or the behavior requiring augmentation as the last input value.

Figure 2 presents the overall process of the generative model, and Figure 3 displays
the model structure of the generator and discriminator of the TN‑GAN. The input layer
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of the generator model comprised (150, 9); we derived these values based on sensor data
lengths of one sequence of 150 s and the gyroscope, accelerometer, and geomagnetic field
values, consisting of x, y, and z, respectively. Then, the upsampling structure of the stack‑
GANwas implemented using the stacking 1D CNN layers. The leaky rectified linear units
(ReLU) activation function was used, and fake sensor data were created in the form of
(150, 9). The discriminator model received data in the form of (150, 9) and was created
using a generator that passed through a 1D CNN layer and leaky ReLU with a downsam‑
pling structure. Finally, the neurons were spread through the flattened layer and, using
the dense layer and softmax function, the discriminator model determined whether the
generated data were fake or real with a value from 0 to 1.
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3.3. Pet Behavior Prediction Model
Behavioral recognition was performed on a dataset that had undergone preprocess‑

ing and data augmentation. In this study, the behavioral recognition model comprised a
1D form of the CNN‑LSTM hybrid model designed to reflect the characteristics of behav‑
ioral recognition patterns, and LSTM reflected time‑series features. Figure 4 illustrates the
structure of the behavioral recognition model.
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The sensor data employed as input values were not calculated immediately but were
divided into values from a three‑axis accelerometer, three‑axis gyroscope, and three‑axis
geomagnetic sensor. After receiving each set of three‑axis data as input values and apply‑
ing a 1D CNN layer, the size of the existing filter was reduced by half, and the CNN of the
downsampling process was performed again. After passing the dropout layer to prevent
overfitting, the LSTM layer proceeded in the sameway as in the CNN. The layerwas added
after completing the calculation up to the LSTM layer for each sensor. The dense layer for
multiclassification and behavior was classified using the softmax function, and the perfor‑
mance was measured through indicators for the predicted behavior based on the actual
behavior.

4. Experiments
4.1. Experimental Setup

This study was implemented using Keras as the backend and TensorFlow in Python.
Table 2 lists the detailed specifications of the experiment.
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Table 2. Experimental specifications.

Metric Description

CPU AMD Ryzen 5800X
GPU NVIDIA RTX 3090(2way)
RAM 64 GB
CUDA 11.1
cuDNN 8.1
Python 3.9.6

TensorFlow 2.10.0

4.2. Data Collection and Dataset
The participants were recruited for data collection, and data were collected on 10 pets.

The data collection environment was set indoors, and data were only collected in an envi‑
ronment where a companionwaswith the pet so that it was not anxious. Basic information
on the dogs is presented in Table 3.

Table 3. Basic experimental subject information.

No Breed Age (Month) Weight (Kg)

1 Yorkshire terrier 60 8
2 Toy poodle 76 4.7
3 Toy poodle 150 5
4 Toy poodle 130 1.5
5 Mini poodle 68 2.2
6 Mini bichon 94 3.1
7 Mix dog 36 4.6
8 Mix dog 42 4.2
9 Border collie 24 14.5
10 Mix dog 12 6.3

The data collection screen in the ODROID application is shown in Figure 5, and the
console screen of the collected data is shown in Figure 6. The wearable data collection
devicewas fabricated using a nine‑axis sensor‑based printed circuit board (PCB). Itsweight
was approximately 28 g, excluding the collar, and the case was created using a 3D printer.
Figure 7 provides the images of the board and case, and Figure 8 depicts theworn example.
The frequency of the sensor datawas 50Hz, and the devicewasdevelopedusing the Eclipse
Maximum SDK.
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Table 4. Experimental dataset configuration.

No. (Label) Behavior Number of Data

0 Standing on two legs 434
1 Standing on four legs 4769
2 Sitting on two legs 7179
3 Sitting on four legs 6492
4 Lying on the stomach 2524
5 Lying on the back 1277
6 Walking 1529
7 Sniffing 774
8 Eating 1934

Total 26,912

4.3. Data Preprocessing
Outlier removal and data normalization were performed based on the collected nine‑

axis sensor dataset. Figure 9 illustrates the original data and results after preprocessing.
Then, cubic spline interpolation was applied to the preprocessed training data. The stan‑
dard for one behavior was calculated as 3 s, and the sensor data were collected at 50 Hz;
thus, the length of sensor data constituting one sequence was 150 s. Interpolation was
performed for sequences in which 10% of the length had fewer than 15 missing values.
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Multidimensional sensor data were augmented by using the TN‑GAN to mitigate
data bias. Instead of removing behaviors with numerous data, reinforcement was per‑
formed for behavior with insufficient data. When there were 500 or fewer data, the data
were augmented by a factor of 3, and 1000 data or fewer were augmented by a factor of
2. Figure 10 presents the graph before and after augmentation, and Table 5 displays the
dataset distribution that merges the original and augmented data through the TN‑GAN.
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Table 5. Configuration before and after experimental dataset augmentation.

No. (Label) Behavior Number of Data
(before Augment)

Number of Data
(after Augment)

0 Standing on two legs 434 1302
1 Standing on four legs 4769 4769
2 Sitting on two legs 7179 7179
3 Sitting on four legs 6492 6492
4 Lying on the stomach 2524 2524
5 Lying on the back 1277 1277
6 Walking 1529 1529
7 Sniffing 774 1548
8 Eating 1934 1934

Total 26,912 28,554

4.4. Behavior Prediction Model Learning
The Adam optimizer was applied as an optimization function for behavioral predic‑

tion, and the learning rate was set to 0.001. The batch size for learning was set to 4, and
overfitting was prevented using early stopping as a callback function. Learning was iter‑
ated 200 times. The leaky ReLU was the activation function in the CNN layer, and the
LSTM layer applied the hyperbolic tangent activation function. Performance indicators
were measured based on precision, F1‑score, and recall values. Table 6 presents the exper‑
imental results for behavioral prediction.

Table 6. Performance results for each dataset.

Dataset Precision Recall F1‑Score

Acc 0.78 0.80 0.79
Gyro 0.77 0.83 0.80
Mag 0.64 0.68 0.66

Acc + Gyro 0.91 0.93 0.92
Acc + Mag 0.91 0.91 0.91
Gyro + Mag 0.91 0.93 0.92

Acc + Gyro + Mag
(Before Augment) 0.94 0.95 0.95

Acc + Gyro + Mag
(After Augment) 0.95 0.97 0.96

The experimental results reveal that nine‑axis sensor data using the accelerometer,
gyroscope, and geomagnetic sensors performed the best. The augmented dataset using
the TN‑GAN model displayed the highest accuracy at 97%. All training models used a
CNN‑LSTM hybrid model, and the results indicated that the best performance was at‑
tained on the basis of hyperparameter tuning rather than using the same hyperparameters
for each dataset. The result of the behavioral prediction accuracy, attained based on the
CNN‑LSTM model and derived using the augmented nine‑axis sensor data, was 97%; the
recall and F1‑score values were the same. Table 7, Figures 11 and 12 provide the prediction
results for behavioral classification.

Table 7. Behavioral prediction model of the training results.

No. (Label) Behavior Precision Recall F1‑Score

0 Standing on two legs 0.98 0.99 0.98
1 Standing on four legs 0.94 1.00 0.97
2 Sitting on two legs 0.99 0.94 0.96
3 Sitting on four legs 1.00 1.00 1.00
4 Lying on the stomach 0.92 0.99 0.96
5 Lying on the back 0.99 0.97 0.98
6 Walking 0.93 0.82 0.87
7 Sniffing 0.81 0.97 0.89
8 Eating 0.97 0.99 0.98
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Figure 12. Behavior prediction confusion matrix using the nine‑axis sensor data.

High precision, recall, and F1‑score values were obtained for all behaviors. The be‑
haviors “sitting on four legs” and “standing on four legs” demonstrated high predictive
results. The behavior with the lowest predictive result was “walking.” This can be ex‑
plained by the fact that a dog, upon stands up onto its feet, jumps either toward its owner
or jumps towards a wall or object for support, confusing the behavioral prediction process.
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5. Conclusions
This paper proposes predicting the behavior of pets using nine‑axis sensor data (ac‑

celerator, gyroscope, and geomagnetic sensors). Nine behaviors (standing on two legs,
standing on four legs, sitting on four legs, sitting on two legs, lying on the stomach, lying
on the back, walking, sniffing, and eating) were assessed for prediction, and the standard
length of time for each was 3 s.

The experimental group in the dataset consisted of 10 animals. Wearable deviceswere
manufactured using a PCB and 3D printers, and data were stored and transmitted using
ODROID N2+. The data collection frequency was 50 Hz. We aimed to demonstrate the
high performance of the collected sensor data by using them as input values for the predic‑
tion model through preprocessing processes, such as in outlier processing, missing value
interpolation, and data normalization processes.

In the event of data bias, we aimed to augment the data through the TN‑GAN‑based
multidimensional time‑series data generation model proposed in this paper. The genera‑
tion model received text data as input values and embedded them to augment the behav‑
ioral data through the GAN. This was done on the basis of the experimental group most
similar to the data specified in the input values.

Based on the sensor dataset with the bias removed via augmentation, a sequence for
the learning model was constructed for use as an input value. The experiment was con‑
ducted with three‑, six‑, and nine‑axis sensor data. The behavioral prediction was con‑
ducted using the CNN‑LSTM hybrid model. The nine‑axis sensor data were compared
before and after augmentation.

The experimental results revealed that the augmentednine‑axis sensor data performed
best, with a score of 97%, displaying excellent performance in behaviors other than walk‑
ing. Moreover, when data bias occurred, numerous learning data could be used because
they were augmented without adjusting the class weight or removing high‑weight data.

In future research, we intend to recognize and predict more behaviors than in the
existing experiments by improving the recognition rate of dynamic behavior. In situations
when the existing daily behavioral prediction displays high levels of performance, we aim
to detect and predict abnormal behavior. Therefore, we aim to expand on previous studies
in order to assess more diverse companion animal monitoring systems.
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