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Abstract: This paper reports the architecture of a low-cost smart crutches system for mobile health
applications. The prototype is based on a set of sensorized crutches connected to a custom Android
application. Crutches were instrumented with a 6-axis inertial measurement unit, a uniaxial load cell,
WiFi connectivity, and a microcontroller for data collection and processing. Crutch orientation and
applied force were calibrated with a motion capture system and a force platform. Data are processed
and visualized in real-time on the Android smartphone and are stored on the local memory for further
offline analysis. The prototype’s architecture is reported along with the post-calibration accuracy for
estimating crutch orientation (5◦ RMSE in dynamic conditions) and applied force (10 N RMSE). The
system is a mobile-health platform enabling the design and development of real-time biofeedback
applications and continuity of care scenarios, such as telemonitoring and telerehabilitation.

Keywords: crutches; gait monitoring; telerehabilitation; mobile-health; instrumented walking aids;
wireless sensors

1. Introduction
1.1. Background

Gait, or the act of walking, is a fundamental human function. When an individual’s
ability to walk is compromised due to an impairment or injury, rehabilitation efforts often
prioritize the restoration of this ability [1]. Approximately 10% of adults experience limi-
tations in their mobility or balance as a result of conditions affecting the central nervous
system (CNS). Gait impairments are the result of a variety of medical conditions, includ-
ing lesions of the central and peripheral nervous systems. Walking aids are frequently
prescribed to enhance mobility and balance [2], and are also prescribed for neurological pa-
tients [3]. Other common medical conditions are osteoarthritis, multiple sclerosis, fractures,
muscle lesions, and stroke [4]. Gait impairments have a significant impact on patients’
quality of life [5], and walking aids play a major role in increasing their daily mobility
and independence [6]. Crutches are the most common assistive devices for individuals
with mobility impairments [7]. As the number of individuals with mobility impairments
increases with the longer life expectancy, it is likely that the use of assistive devices, such as
crutches, will also increase over time [8,9].

Whenever possible, the use of crutches in place of wheelchairs is often preferred by
clinicians because they promote a patient’s participation, allow them to keep an upright
posture with related physiological benefits, and improve their independence in daily living
activities. These factors can lead to better long-term recovery outcomes. In addition,
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crutches may be a more practical and convenient option for individuals who only require
short-term or intermittent mobility assistance [10,11].

From a biomechanical point of view, crutches increase an individual’s base of support
while walking. They also allow patients to transfer part of their body weight from their
lower to upper limbs while walking or standing [12].

There are three main types of crutches, as illustrated in Figure 1: axillary (or underarm),
forearm (or elbow/Canadian/Lofstrand), and gutter crutches. Each type has its own unique
characteristics and may be suitable for certain individuals depending on their specific needs.
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Figure 1. Main types of crutches.

Several different walking patterns can be adopted when using crutches. One common
pattern is the two-point crutch gait, where the crutches and the affected limb move forward
together while the weight-bearing limb follows when the crutches are on the ground.
Another pattern is the two-point gait, where the crutches and the non-affected limb move
forward in alternating steps. The four-point gait pattern is characterized by a coordinated
movement of the crutches and the non-affected limb. Finally, in the step-to-gait pattern, the
affected limb moves forward, followed by the non-affected limb, while the step-through
gait pattern shows the opposite sequence [7,13–16].

During rehabilitation sessions, therapists often do not have the tools for a quantitative
assessment of patients’ progress and usually rely on visual observation and clinical scales
that cannot capture relatively small changes [17,18]. This can lead to an incorrect share of
the weight between the crutches or incorrect crutch positioning while walking or standing,
especially in unsupervised settings. Sensorized crutches, embedding sensors, processing
capabilities, and connectivity options can address the need for real-time and long-term
monitoring of crutch usage, providing therapists with more accurate and quantitative
information on patients’ recovery [19].

1.2. Related Work

Sensorized crutches, or instrumented crutches, are assistive devices developed to
support therapists and patients in rehabilitation programs. Crutches are equipped with
sensors that measure various quantities, such as load, acceleration, and orientation. The
data collected by the sensors are used to provide feedback to both the patient and the
therapist, enabling a more accurate assessment of the patient’s progress and supporting
clinical decisions. State-of-the-art, in the field of sensorized crutches, includes a range of
different designs and features.

Merrett et al. [20] designed an instrumented crutch for monitoring a patient’s weight
bearing during the recovery process in the field of orthopedic rehabilitation. The system
aimed to: (i) monitor the force applied in the direction of the crutch axis by means of a
FlexiForce® force sensitive resistor mounted inside the crutch; (ii) measure the tilt of the
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crutch using a tri-axial accelerometer; and (iii) determine the grip force applied to the
handle using a membrane potentiometer.

Sardini et al. [21] developed wireless instrumented crutches that utilize three strain-
gauge bridges to measure axial and shear forces and a tri-axial accelerometer to measure
anterior–posterior and medio–lateral angles. The crutch embeds a conditioning and trans-
mission circuit and a battery power management circuit. Data are transmitted wirelessly
via Bluetooth to a computer. Crutches were tested on one subject and later used in a study
conducted by Tamburella et al. [22], where it was found that subjects who received load
auditory feedback while using sensorized crutches had significantly higher usage time
compared to subjects who did not receive any feedback. The result of this study suggests
that auditory feedback may be an effective method for improving crutch usage in subjects
with central nervous system lesions.

The GCH System 2.0 is an updated version of the prototype developed by Chamorro-
Moriana et al. [23]. The device embeds a microcontroller that collects data from a cylindrical
load cell placed at the tip. Unlike the previous version, all of the electronics of the GCH
System 2.0 are contained inside the shaft of the crutch. The device also includes dedicated
software that runs on a computer and provides the user with weight-bearing information
and visual feedback [24]. The prototype was tested with a cohort of 10 patients to evaluate
the use of various feedback modalities, including visual, acoustic, concurrent, terminal,
and descriptive feedback, to improve load–balance distribution between crutches and gait
patterns in indoor applications, such as in clinics and laboratories [25].

Narváez et al. [26] presented a prototype of instrumented crutches to monitor patients’
gait patterns. The prototype utilizes strain gauges inside the handle, measuring the applied
force, and an IMU for estimating the orientation of the crutch. Data was collected and
transmitted via a Bluetooth module to a laptop. The authors segment the walking data into
the swing and stance phases and use the characteristics and distribution of such phases to
identify different gait patterns automatically.

Brull et al. [27] developed a sensorized tip for assistive devices, such as crutches or
walking sticks, for monitoring individuals with multiple sclerosis. The tip was equipped
with pressure sensors and a wireless module and could transmit the collected data to a
computer in real-time. Data was used to calculate various parameters, such as the weight-
bearing ratio and gait cycle. The sensorized tip was tested by patients with multiple
sclerosis. The continuous monitoring of gait characteristics allows an accurate assessment
of the patient’s state and disease progression. They also used their instrumented tip for
monitoring the patients’ activities of daily living (ADL) using a classifier based on neural
networks. The classifier was validated on a cohort of 13 volunteers performing four typical
ADLs (walking, standing still, and going up and down the stairs) with an overall accuracy
of 95% [27,28].

Sesar et al. [29] also developed an instrumented crutch tip for monitoring the force
and pitch angle during gait rehabilitation. The tip, which can be attached to any crutch,
embeds a two-axis inclinometer, a tri-axial gyroscope, and a force sensor to measure the
force applied to the crutch and the pitch angle. A novel algorithm for estimating the pitch
angle was also presented.

Another possible application of instrumented crutches is in combination with lower-
limb exoskeletons [30,31].

1.3. Motivation

The growth of wearable technologies has led to a proliferation of smart devices
in various fields, including healthcare. The World Health Organization (WHO) defines
“mHealth” as “the use of mobile devices, such as mobile phones, patient monitoring devices,
Personal Digital Assistants (PDAs), and other wireless devices, for medical and public
health practice” [32]. To our knowledge, there are no applications of sensorized crutches
for the long-term monitoring of patients with motor impairments. We believe that a mobile
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health application based on a set of instrumented crutches could be a valid support to
continuity of care scenarios for multiple reasons:

1. Instrumented crutches can provide continuous, real-time monitoring of the patient’s
mobility and gait pattern, enabling the objectification of the rate of progression of the
rehabilitation for each individual patient.

2. Instrumented crutches can collect and transmit data to smartphones or other mobile
devices. The computational capacity of modern devices enables real-time applica-
tions/feedback and advanced reporting functions for both therapists and patients.

3. Instrumented crutches in an mHealth scenario can improve the communication be-
tween the patient and the therapist, enabling remote monitoring and teleconsultation.
Telerehabilitation applications can be important for patients living in underserved or
remote areas. They would improve access to rehabilitation services and reduce the
healthcare system’s burden.

4. Through smart biofeedback applications and personalized reporting functions, instru-
mented crutches can empower patients and allow them to take a more active role in
their rehabilitation program.

The COVID-19 pandemic highlighted the need for more efficient, accessible, and per-
vasive healthcare approaches, such as intelligent systems and mHealth technologies [33–39].
The use of sensorized crutches in an mHealth scenario supporting the continuity of care
may also help reduce healthcare costs [40]. However, despite the variety of applications
and prototypes reported in the literature, there is still the need to assess the potential impact
of instrumented crutches in the continuity of care applications, from real-time guidance in
rehabilitation facilities to long-term remote monitoring outdoors and at home.

The aims of our study are as follows:

1. To develop a set of instrumented crutches suitable for mobile health applications.
Expected outcomes are orientation angles and applied loads.

2. To develop a smartphone app, mCrutch, for the management of the instrumented
crutches and for enabling real-time applications.

3. To verify the accuracy of the estimate for the orientation angles and the applied loads.
4. To keep manufacturing costs in line with those of mass-market technologies.

2. Materials and Methods

A pair of Lofstrand (or Canadian) crutches was instrumented to measure the axial force
and orientation. A novel dedicated Android application, mCrutch, processes, visualizes,
and stores data collected by the instrumented crutches in real-time (Figure 2). All of the
electronics were contained inside the crutch’s original structure.
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Each crutch embeds an Arduino RP2040 equipped with a 6-axis inertial measurements
unit (IMU). The Arduino was also connected to a uniaxial load cell placed at the tip of the
crutch inside a custom mechanical structure.

Figure 3 shows the crutch prototype and lists the different components.
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Figure 3. mCrutch assembly: (a) mCrutch final prototype; (b) battery placement; (c) tip modified
mechanical structure embedding the miniaturized load cell; (d) plastic protective case containing the
electronics; and (e) handle’s front panel with the status LED, the power button, and the USB port for
battery charging.

2.1. Electronic Components

Most of the electronics were inserted in the crutch’s handle cavity, approximately
84 mm deep, with a 28 mm diameter. The handle cavity communicates with the crutch’s
vertical shaft and the forearm cuff (Figure 3), enabling the run of wires inside the crutch
structure. Figure 4 shows all the electronic components: the main boards (U2) and the
power management board (U3). U2, in Figure 4, is an Arduino Nano RP2040 Connect [41],
selected for its small form factor (18 × 45 mm) that can fit the housing in the crutch’s handle;
the Arduino board collects data from the embedded IMU, and the load cell and manages
the WiFi connection with the Android app. The main board hosts a Raspberry Pi RP2040
microcontroller unit (MCU), a U-blox Nina W102, an STMicroelectronics LSM6DSOX 6-axis
IMU with an on-chip temperature sensor, and an MP34DT05 microphone. U3, in Figure 4,
is the power management board. It features an MCP73832 single-cell charger, and it was
connected to a lithium-ion (Li-Ion) battery (U1).
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With reference to Figure 4, the full list of components is provided below:

• U1—Power supply: Li-Ion battery RS-ICR14500 [42], 3.7 V at 820 mAh.
• U2—Processing, data acquisition and wireless communication management: Rasp-

berry Pi RP2040 MCU [43], a dual-core 32-bit ARM Cortex operating at a frequency of
up to 133 MHz, 264 KB on-chip SRAM, up to 16 MB off-chip Flash and various digital
and analog peripherals (SPI, I2C, UART, ADC, etc.).

• U2—Wireless communication: U-blox Nina W102 [44], Bluetooth V4.2, and WiFi
802.11 b/g/n module.

• U2—IMU: LSM6DSOX [45], STMicroelectronics micro electro mechanical system
(MEMS) sensor, which embeds a three-axial accelerometer and three-axial gyroscope
(6-axis IMU) with a full-scale acceleration range up to ±16 g and a maximum angular
rate of ±2000 dps. It is used to measure linear acceleration and angular velocity of the
crutch for estimating its orientation.

• U3—Li-Ion on-board battery charger: MCP73832 [46], Microchip 500 mA linear charger
management controller for single cell Li-Ion/Li-Polymer battery.

• U4—Voltage converter: ANGEEK DC-DC Step-Up, 0.9–5 V to 5 V, operating frequency
150 KHz, conversion efficiency 85%. It boosts Arduino 3.3 V output to 5 V to power
the load cell (U5).

• U5—Load cell: uniaxial load cell FX293X-100A-0100-L [47], analog output (0.5–4.5 V)
by TE connectivity, with a full-scale range of 500 N, a precision of ±0.25% FS and a
round shape (diameter 19.7 mm, height 5.45 mm) used to measure axial force applied
on the crutch tip.

• SW1—Slide switch to power ON/OFF the device.
• LD1—RGB LED, signals the system status (green: power on, blue: connected to the

host device/smartphone).
• R1—Limits the current to LD1.
• R2, R3—Level shifter to adapt 0.5–4.5 V load cell output to RP2040 MCU ADC channel

0–3.3 V.

Table 1 the summarizes the features of the system.
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Table 1. mCrutch electronic characteristics summary.

Features Description

Computational power Dual-core 32-bit ARM up to 133 MHz, 264 KB SRAM
Connectivity Wi-Fi 802.11b/g/n

Orientation estimation 6-axis IMU (accelerometer + gyroscope)
Applied force Load cell full scale: 500 N

Power supply Li-Ion battery, 3.7 V at 820 mAh
(charger on-board, up to 500 mAh)

LED indicator Green: power on
Blue: connected to smartphone

Data collection from LSM6DSOX IMU was performed at 204 Hz with a ±4 g range for
the accelerometer and at 208 Hz with a ±2000 dps range for the gyroscope. The orientation
of the device was estimated with a sensor fusion approach based on Madgwick filter [48].
The choice of a high-performance MCU, such as the one on Arduino RP2040 Connect,
provided a smooth data fusion with a high data rate of up to 100 Hz. The same rate was
used to sample the output of the load cell, using one RP2040 ADC channel. Force signals
were digitally filtered with an 8-point window moving average filter. Orientation and force
data were transmitted to the smartphone via a WiFi protocol through the U-blox Nina
W102 module. Therefore, the system sends in real-time, every 10 milliseconds (100 Hz),
a frame consisting of the values of the triaxial accelerometer, the triaxial gyroscope, the
estimated orientation angles, the applied load, the battery charge level, and the times-
tamp. The manufacturing cost for the current prototype version was approximately EUR
100 per crutch.

2.2. Smart Tip and Mechanical Structures

A custom mechanical structure, named smart tip, was designed to house the uniaxial
load cell (Figure 4, U5 device) into the tip of the crutch. The smart tip ensures that:

• Only the component of force applied along the crutch shaft axis is measured. Other
components of force (perpendicular to the shaft) and moments are removed by dedi-
cated low-friction Teflon components mechanically insulating the miniaturized cell.

• When an external force is applied to the crutch, the measured force value reflects the
applied load.

The smart tip structure was made of aluminum with Teflon elements (see Figure 5).
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The plastic cases for the battery and the electronics in Figure 3 were made of thermo-
plastic polyurethane (TPU) and manufactured with a 3D printer.

2.3. The mCrutch App

The mCrutch system was designed to be connected to a host device running an
Android operating system (a Samsung Galaxy A50 in this study). The mCrutch app was
developed in Android Studio 2021.3.1 (Dolphin); its profiler was used for evaluating the
computational cost of the app. This application is responsible for collecting, storing, and
visualizing data. The current user interface was designed for researchers and software
developers and only acts as a data collector.

Android OS allows the creation of a WiFi hotspot, and the connection between the
instrumented crutches and the host device was established through a TCP socket com-
munication, where the mCrutch app acts as a server and the instrumented crutches act as
clients. A unique SSID and password, encrypted using WPA2 encryption, were used for
the data transfer.

The data stream includes orientation and applied force but also information, such as
the timestamp, the battery level (expressed as a percentage from 0% to 100%), battery status
(either charging or not charging), and the status of the crutches (e.g., error messages). The
estimate of the orientation through the Madgwick filter runs on the Arduino board [48].

The sampling frequency was set to 100 Hz, which is fast enough for most motion
analysis applications. To verify data loss, a function on the smartphone app compares the
current timestamp with the previous one. If there is any gap in the data, a message is sent
to the user through the display of a string on the user interface panel, and a 1 s vibration
is activated too. This allows the user to be aware of the data loss. The mCrutch system
architecture, along with flowcharts for each single layer, is reported in Figure 6.
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The interface of the mCrutch app includes a control panel (Figure 7A) with a “Connect”
button in the center, which allows the user to initiate the connection with the crutches.
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Once the connection is established, the indicators for the left and right crutch will turn
green, indicating that the connection has been successfully established. The user can start
the data stream by pressing the “Start” button, while a chronometer (Figure 7C) shows
the elapsed time (Figure 7B). Data are transmitted from the crutches and displayed in the
“Data Indicators” box (Figure 7D). The user has the option to activate a real-time chart by
switching on the “PlotData” flag (Figure 7E). The box displays the pitch angle in degrees
[◦] and the applied force in Newtons [N]. The user can stop the data stream by pressing the
“End” button. Collected data are stored in the internal memory of the smartphone and can
be accessed by the user for offline analysis.
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2.4. Calibration Procedure

Calibration is an essential step in analyzing kinematics and dynamics quantities. It is
crucial to calibrate custom devices that include transducers embedded within a mechanical
structure, as the structure itself may alter the physical characteristics or positioning of the
transducers in a way that deviates from the manufacturer’s recommendations. For example,
a 6-axis IMU embedded in an Arduino system refers to an internal local reference frame
that may not correspond to the reference frame of the device. The calibration converts the
measurements from the internal local reference frame of the sensor to the desired reference
frame on the device.

A movement analysis laboratory was used to calibrate the instrumented crutches.
The laboratory was equipped with four Kistler force platforms and a BTS motion capture
SMART-DX EVOs system [49], systems that can be considered the gold standard for
movement analysis. The crutches have a sampling frequency of 100 Hz, while the force
platforms and the motion capture system have a sampling frequency of 1000 Hz and
250 Hz, respectively.

Figure 8 illustrates the setup that was used during the calibration procedure. Cameras
were used to capture the movement of the instrumented crutches through four optical
reflective markers fixed on the crutch. During the calibration, a random sequence of
movements and applied loads were produced in order to capture a wide range of orientation
and force values.
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Data from the motion capture system and the instrumented crutches were imported in
MATLAB (R2022b) for offline analysis. Camera data were down-sampled and synchronized
with the IMU signals. As shown in Figure 8, a cluster of markers was used, where: marker
mk0 was placed on the tip, marker mk1 was placed on the shaft, marker mk2 was placed
at the intersection between the handle and shaft, and marker mk3 was placed at the end
of the handle. A cluster of four markers has been used for two reasons: (i) in future
validations with end-users, guidelines for full body kinematics would require a cluster
of four markers on each body segment and each crutch [50]; and (ii) the diameter of the
handle is approximately 2 cm wider than the diameter of the shaft; hence, two markers on
the shaft and two markers on the handle would provide a more accurate representation of
the vertical and anterior–posterior axis of the crutch. Markers’ trajectories were low-pass
filtered with a zero-phase 6th-order Butterworth filter with a cut-off frequency of 5 Hz. A
local reference frame was defined on the crutch aligning the axis with the shaft and the
handle of the crutch.

With reference to Figure 9, we derived a rotation matrix gRl and a translation vector
gT between the laboratory reference frame, defined by means of the markers placed on
the crutch, and the mCrutch reference frame of the embedded IMU. Given the rotation
matrices Rg of the crutch in the laboratory reference frame and Rl the rotation matrix of the
mCrutch (embedded IMU) reference frame, we match the origins of the reference systems
to their centroids, and we calculate RT as reported in Equation (1).

RT= Rg Rl
T (1)

The singular value decomposition (SVD) method [51] is applied to RT as shown
in Equation (2).

[U, D, V]= svd (R T) (2)
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Outcomes of the SVD, namely U, S, and D, which are, respectively, the left singular
vectors, the singular values, and the right singular vectors of the homogeneous transfor-
mation matrix T, are used to calculate the rotation matrix gRl as shown in Equation (3).

gRl= U

1 0 0
0 1 0
0 0 det (U V T

)
 VT (3)

The latter was also used in Equation (4) for calculating the translation vector gT, where
Gm and Lm correspond to the centroids of Rg and Rl, respectively.

gT = Gm − gRl Lm (4)

Finally, in Equation (5), gRl and gT are applied to Rl, to obtain the calibrated rotation
matrix, Rc, which is then converted to Euler angles.

Rc =
gRl Rl +

gT (5)

The uniaxial load cell in the smart tip requires calibration too. Data obtained from
the force platform are used as the gold standard. The load cell calibration is expressed
in Equation (6).

F̂ = k · F + F0 (6)

where:
F̂ is the calibrated value of the force measurement;
F is the measured value from smart tip;
F0 is the offset compensation factor;
k is the gain factor.
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3. Results

Preliminary results indicate that the mCrutch system can provide accurate measure-
ments for both pitch and roll angles and applied force.

Figure 10 illustrates an example of force recorded for both the left and right crutch
during the calibration procedure. A random sequence of movements and applied loads, in
the range of ±50◦ and 0–400 N, respectively, were performed for approximately 120 s of
recording while the crutches were placed on the force platform (FP).
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In the example, after the calibration, the measured force F̂ shows, for the right crutch,
an RMSE (root mean square error) < 10 N and a median difference of 2.8 N with an applied
force range of approximately 400 N, while for the left crutch, it shows an RMSE < 5 N and
a median difference of 1.6 N with an applied force range of approximately 200 N.

Regarding the roll and pitch angles of the crutches, Figure 11 shows an example of
rotations around the anterior–posterior (AP) and medio–lateral (ML) axes of the crutch
after the calibration with the SVD method. The accuracy in dynamic conditions shows
an RMSE < 5◦ for rotations about the ML axis and an RMSE < 4◦ for rotations about the
AP axis.
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4. Discussion

This study aimed to describe the mCrutch prototype architecture and report on the
accuracy of orientation angles and applied force. From an aesthetic point of view, aside
from the status LED and the power button, the instrumented crutches are equivalent to
any simple pair of Lofstrand crutches. mCrutch can stream data at a sampling frequency of
100 Hz and the WiFi connectivity with TCP protocol ensures data retransmission. Under
normal usage, the mCrutch app requires only 5% of the total CPU usage and approximately
78 MB of memory, with light energy consumption as defined in Android Studio Profiler.
This ensures that the app runs smoothly without causing any significant drain on the
smartphone’s resources or battery life. Concerning Arduino’s computational time and
complexity, sensor reading is not computationally expensive, unlike onboard orientation
extraction. This feature requires a high-performance MCU, in particular for a data rate such
as 100 Hz. RP2040 has the required computational capacity, thanks to its computational
power enabled by a Dual-Core Arm Cortex-M0+ operating at a frequency up to 133 MHz.

With reference to Section 1.2, different technologies and mounting options have been
proposed in the literature. Crutches instrumented with: (i) strain-gauge bridges and a
tri-axial accelerometer attached to the external frame and streaming data to a workstation
equipped with LabVIEW [21,22]; (ii) hand grip and tilt sensors with data streaming to a
workstation equipped with LabVIEW [20] strain gauges mounted on the handle, and an
IMU in an external case attached to the frame and streaming data on a laptop [26]; and
different types of sensorized tips to measure the applied force for rehabilitation purposes
always streaming data to a PC [23–25,27,28]. Applications were always limited to an indoor
supervised setting.

mCrutch is an mHealth system prototype, it embeds all electronics inside the frame
of the crutch, and it is ready to be scaled up for mass production. It enables both indoor
and outdoor scenarios and real-time biofeedback applications implemented as mobile
apps. Enabling outdoor applications, especially in unsupervised settings, can open many
new lines of research since, as for gait without walking aids, gait patterns observed in a
controlled environment may differ from those observed in a real-life setting [52].

The possibility to monitor crutch usage, also in terms of applied force and correct
positioning, in real-life scenarios is a first step toward offering new telemonitoring and
telerehabilitation services for supporting continuity of care approaches. mCrutch can be
connected to personal health systems for personalized interventions and to enhance patient
adherence to rehabilitation protocols.

Results show that the calibrated data for both orientation angles and applied force
are in line with the results reported in the literature for similar applications [23,25,29].
Regarding the applied force, we decided not to include any information on the crutch
orientation in the force estimate to avoid introducing an additional source of error due
to the accuracy of the orientation estimate itself. Since partial weight bearing is between
30% to 50% of a patient’s body weight [53], mCrutch shows an error of about 2.5% of the
measurement range. As an example, assuming a male person weighing 90 kg, the applied
weight on the crutches may range from 27 kg to 45 kg, (approximately 270 N to 450 N).
With a 2.5% error, we obtain an error in the force estimate that is in the range of 7 to 11.5 N.

The position of the crutches while standing and walking plays an essential role in
rehabilitation; the monitoring and correction of incorrect usage/positioning of the crutches
can lead to more personalized and efficient rehabilitation protocols [54,55]. The calibrated
pitch and roll angles show an RMSE < 5◦. With reference to Figure 11, it is possible to notice
relatively large local errors between mocap and mCrutch, e.g., at 20 s and 35 s for both AP
and ML planes in the figure. These local errors have a significant impact on the overall
RMSE. Possible explanations for these local differences can be the quality of the IMU raw
signals that are input to the Madgwick filter and the poor reliability of the Arduino board
when it comes to relatively high performance and high accuracy applications. The choice
for the Arduino RP2040 board was only due to the very limited volume available inside the
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crutch handle; to the best of our knowledge, that board was the only one on the market
with a width of <2 cm.

One of our aims was to keep manufacturing costs as low as possible to target mass-
market applications. While it would have been possible to enhance the accuracy of the
mCrutch sensing components quite easily by employing high-performance load cell [56]
and 6-axis IMUs [57,58], this would have increased costs by 5 to 10 factors. The typical
cost of a set of crutches is approximately EUR 50, and usage time varies a lot depending
on the target group, from a few months for an orthopedic patient to many years for some
neurological conditions. Since the cost of the crutches in Italy, and in many other healthcare
services, is borne by the patient themselves, the aim is to keep costs as low as possible. To
the best of our knowledge, no instrumented crutches are currently available on the market,
and the prototypes reported in the literature (Section 1.2) do not report the manufacturing
costs and do not address the scaling up of the system in general. We assume that by keeping
the final cost for the end-users well below a factor 10 with respect to the typical Lofstrand
crutches we can make the system accessible to most patients.

The absence of a magnetometer in the 6-axis IMU used for the current mCrutch proto-
type does not allow a robust estimation of the angles about the vertical axis (yaw) [59,60];
hence, the focus was to establish the accuracy of the estimate for the pitch and roll angles.
Another possible issue in the estimate of the yaw angle is the crutch’s metallic structure,
which can impact the magnetometer’s reliability. The reliability and the added value of the
yaw estimate will be addressed in future prototype releases.

As the introduction outlines, crutches are assistive devices used in various neurode-
generative and orthopedic pathologies that may impact walking ability and mobility in
general. More specifically, crutches allow patients to rely on a larger support base or
better distribute the load between impaired and non-impaired limbs and decrease the load
applied to the lower limbs. The accuracy of the current prototype allows bio-feedback and
telemonitoring applications with relatively low resolution, but clinically useful thresholds
must be established for biofeedback design and for the monitoring of patients’ progress in
rehabilitation programs. The suitability or the need to improve the system’s accuracy will
be investigated in future studies for specific clinical use cases and patient populations.

Further studies will also be needed to establish the usability and clinical validity of
this mobile health approach. Aside from the need for reliable and accurate measurements,
in both supervised and unsupervised settings, battery lifetime is often a critical factor. To
maximize system performance and reliability, we opted for TCP WiFi connectivity that
requires a much higher battery capacity with respect to Bluetooth low-energy connectivity
but provides a much higher performance and reliability. One of the major limitations of the
current prototype is the battery life which is now limited to approximately 4 h of continuous
data streaming and the real-time processing mode. This battery life would be suitable
for rehabilitation sessions but not long-term monitoring applications; hence, the current
version does not meet this objective. In order to address this limitation and to improve the
accuracy and usability of the system in general, we will design a custom electronic board
to replace the Arduino board. This would, in any case, be a necessary step for the scaling
up of the system and for ensuring full control over the manufacturing process. We plan to
introduce a tilt sensor and relatively large local storage on the new board to enable/disable
the sampling of the sensors and to enable/disable the data streaming when real-time
feedback is not required. These enhancements would enable both training and long-term
monitoring applications with a battery life of a whole day or longer. Another planned
improvement of the prototype is adding a third sensing unit placed on the patient’s trunk
to monitor his/her posture and the relative orientation of the trunk and the crutches while
walking and during other daily activities. Further development of the mCrutch app will
support real-time biofeedback modalities and options as well as dedicated user interfaces
for both therapists and patients. As stated before, the current version was designed and is
only suitable for researchers and developers. The current version of the app allows users to
start and stop the data collection, verify the data streams while holding the smartphone and
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looking at the interface, and test the crutches while keeping the smartphone in their pocket.
An app designed for the patient would require automatic pairing with the instrumented
crutches, automatic connection of the crutches to the smartphones, and user-friendly
configuration panels.

5. Conclusions

This study aimed to present mCrutch, a low-cost smart device suitable for mobile
health applications in the continuity of care scenarios. The system is composed of a set of
instrumented crutches and a smartphone app and allows the collecting and processing in
real-time orientation angles and applied loads. The current prototype shows an accuracy
of approximately 10 N RMSE for the applied force and 5◦ for pitch and roll angles which
allows bio-feedback and telemonitoring applications that require relatively low resolution,
although clinically useful thresholds are yet to be established. Current and expected
manufacturing costs for mCrutch are reasonable for a personal device, such as a walking
aid. The suitability and clinical validity of mCrutch will be investigated in future studies
for specific target populations and settings.
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The following abbreviations are used in this manuscript:

IMU Inertial measurement unit
Mocap Motion capture
AP Antero–posterior
ML Medio–lateral
RMSE Root mean square error
IDE Integrated development environment
CNS Central nervous system
MCU Microcontroller unit
FP Force platform
SVD Singular value decomposition
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