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Abstract: Both paper-based and computerized exams have a high level of cheating. It is, therefore, de-
sirable to be able to detect cheating accurately. Keeping the academic integrity of student evaluations
intact is one of the biggest issues in online education. There is a substantial possibility of academic
dishonesty during final exams since teachers are not directly monitoring students. We suggest a
novel method in this study for identifying possible exam-cheating incidents using Machine Learning
(ML) approaches. The 7WiseUp behavior dataset compiles data from surveys, sensor data, and
institutional records to improve student well-being and academic performance. It offers information
on academic achievement, student attendance, and behavior in general. In order to build models
for predicting academic accomplishment, identifying at-risk students, and detecting problematic
behavior, the dataset is designed for use in research on student behavior and performance. Our
model approach surpassed all prior three-reference efforts with an accuracy of 90% and used a long
short-term memory (LSTM) technique with a dropout layer, dense layers, and an optimizer called
Adam. Implementing a more intricate and optimized architecture and hyperparameters is credited
with increased accuracy. In addition, the increased accuracy could have been caused by how we
cleaned and prepared our data. More investigation and analysis are required to determine the precise
elements that led to our model’s superior performance.

Keywords: student cheating detection; machine-learning; exploratory data analysis; online examina-
tion; student assessment

1. Introduction

Exam monitoring and its techniques are gaining more and more attention. Universities
and academic institutions worldwide are vying for the newest technology to detect cheating
in exam rooms and provide a rigorous atmosphere [1–3]. Invigilators are typically hired to
oversee the whole test procedure to assure exam management and catch exam cheating.

The supervisor, the exam center director, or any other authorized individual imme-
diately steps in in case of confirmed or attempted cheating [2]. The applicant might be
removed immediately even if they utilized a cheat sheet, phone, or other objects. Super-
visors will frequently write a report outlining the scenario if they are confident in the
facts. We believe that additional staff is sufficient to oversee students remotely rather than
automatically in order to supervise more students [3]. Although this is theoretically con-
ceivable, it cannot be scaled for a course when more students are sitting their face-to-face
or distance test [4–6]. Complex logistics would be necessary for this. Creating a real-time
cheating detection system to replace human efforts is now feasible because of scientific and
technical breakthroughs, notably with various deep learning algorithms [7,8]. The numer-
ous movements made throughout the exam will be able to be detected by the automated
system [9–11]. In addition, it will be able to identify numerous illegal items throughout the
tests and record the timing of the sequence for a supervisory review at a later time. ML
techniques using several kinds of neural networks are used in the current study.

The uniqueness of cheating behavior in higher education exams compared to other
levels of tests can be attributed to several factors. Firstly, higher education exams are
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often more complex and challenging than tests in other levels. They require students
to have a deeper understanding of the material, apply critical thinking skills, and the
exams often have open-ended questions [12]. This complexity can increase the pressure on
students to perform well, which may lead some to resort to cheating to obtain good grades.
Additionally, the stakes are higher in higher education exams. These exams are often
worth a larger proportion of the overall grade, and their outcomes can have significant
implications for students’ academic and professional futures. This increased pressure
to perform well can lead some students to engage in cheating behavior to achieve good
grades, even if they have not adequately prepared for the exam [13]. Furthermore, in
higher education, students are expected to have developed a strong sense of academic
integrity and ethical conduct. However, some students may face significant challenges in
maintaining these standards, particularly in high-stress situations such as final exams. For
instance, students who feel overwhelmed or underprepared for an exam may be more likely
to cheat. Another factor that contributes to the uniqueness of cheating behavior in higher
education exams is the difficulty of detecting cheating. In higher education, courses often
require students to have a deep understanding of the material and demonstrate critical
thinking skills. As a result, it can be challenging for educators to distinguish between
genuine student work and cheating [14]. Additionally, in online exams, where students are
not directly monitored, there is a higher risk of academic dishonesty.

The deep learning algorithm employed in this study is called LSTM [15]. It is con-
sidered the most effective approach for dealing with object detection and recognition
challenges and may be used to resolve data categorization concerns accurately [12–15]. It
is a technique for deep learning designed to understand two-dimensional input, such as
audio or images [16]. The motivation came from how humans process and grow their visual
perception to recognize or differentiate an object in a digital image. To classify labeled
data, it employs supervised learning techniques. As well as detecting, segmenting, and
classifying pictures, it is commonly used to discriminate between objects or viewpoints [17].
This technique may also determine what people are doing [18]. Pooling, convolutional,
and fully connected layers—the three variations of the layer—are stacked to construct
it [19]. There are a variety of Convolution Neural Network (CNN) architectures, which are
also employed in many research articles as deep-learning techniques and are regarded as
such. As the convolution layer’s filter thickness matches the input’s thickness, the design
varies from previous CNN systems. Both depth-wise and point-wise convolutions are
recognized [20]. The bottleneck is where inputs and outputs between models occur, while
the inner layers represent the model’s ability to accept inputs from lower-level ideas. Faster
training and greater accuracy are possible via bypasses around bottlenecks [4].

The generalizability of these results is constrained despite the efficiency of the sug-
gested approach. Through diligent work and study, it is unquestionably realistic and
viable for a student to earn an extraordinarily high score [21]. Hence, a human expert
must do more research before a final judgment is made in any situation flagged as a poten-
tial infringement. Notwithstanding its shortcomings, this research intends to add to this
expanding field of study and provide insightful information on detecting final exam fraud.

Figure 1 displays the framework of the proposed model for detecting student cheating.
Initially, all datasets go through data preparation and cleansing. Following that, the image
pre-processing unit, feature extraction, and model selection activities are carried out. The
model evaluation metrics are given to the classifier, which is then used to train the model.
The optimization approach employs Support Vector Machine (SVM), LSTM, and Recurrent
Neural Network (RNN) classifiers. The system model is then applied to identify whether a
student is cheating or not.
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Figure 1. Framework of the proposed model diagram related to student cheating detection system.

The current study uses an internet protocol network detector and a behavior detection
agent based on ML to solve the limits of online test cheating. The study was a case study,
and its findings present ways to enhance the intelligent tutoring system. These are this
study’s primary contributions:

• To identify online cheating using ML methods, we suggested a cheating intelligence
agent based on the 7wiseup behavior dataset. We use the LSTM network with a
densely linked idea, DenseLayer, and LSTM to construct behavior detectors. We
selected cutting-edge ML methods for the online tests since they have developed
quickly and have been extensively employed recently. They may offer helpful insights
that contribute to the research field of an intelligent teaching system.

• Records were gathered from online examinations taken throughout mock, midterm,
and final exam periods in highly uncontrolled settings. The database contained testing
and training programs to analyze and evaluate performance.

The following is how the paper is structured: The second section is the literature
review. Section 3 contains the dataset, followed by Section 4, which has the methodology
part. Sections 5 and 6 pertain to the results and discussion sections, respectively. Section 7
summarizes the concluding section.

2. Literature Review

Academic dishonesty is a challenging issue typically thought to happen when students
use unethical writing practices, such as copying, plagiarism, pasting, glancing at other
people’s work, and data falsification [2,3]. Due to faulty academic assessments and perhaps
misleading student grades, academic dishonesty threatens the credibility of educational
institutions [10,22]. Cheating on academic assignments is a significant ethical violation that
jeopardizes academic integrity. Academic dishonesty has a significant negative influence
on both the student’s ability to be trusted and the reputation of educational institutions.
Educational institutions may ensure that their students are held accountable for their
work by utilizing technology, such as digital essay scanning, turnitin.com, or software, to
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identify plagiarism [3,9,23]. Research in this area has advanced thanks to technological
development.

The authors of the study [1] introduce a brand-new paradigm for the understanding
and categorization of cheating video sequences. This sort of research assists in the early
detection of academic dishonesty. The authors also present a brand-new dataset called
“activities of student cheating in paper-based tests.” The dataset comprises suspicious
behaviors that occurred in a testing setting. Eight different actors represented the five
various types of cheating. Each pair of individuals engaged in five different types of
dishonest behavior. They ran studies on action detection tasks at the frame level using five
different kinds of well-known characteristics to gauge how well the suggested framework
performed. The results of the framework trials were spectacular and significant.

In earlier research [12], the authors used the fact that students create their writings on
electronic devices and used recorded keystrokes from assignments and exams to identify
authors. By calculating the Euclidean distance between them, typing profile vectors from
the students are compared. It is unrelated to what is written and functions in writing and
programming duties. This method has the drawback of requiring additional software on
the students’ devices to monitor their typing habits.

In order to identify cheating during an online test, the authors of [5] developed
a system for assessing the head position and time delay. A high statistical correlation
between cheating activity and a student’s head position change relative to a computer
screen was also discussed. Therefore, we can instantly spot dubious student activity in
online courses. Similarly, in [17], the authors suggested a novel technique for tracking a
student’s anomalous conduct during an online test that uses a camera to establish the link
between the examinee’s head and mouth. According to experiments, an irregular pattern
of conduct in the online course may be easily identified using the suggested strategy.

In addition, the methods used by students to spot plagiarism in online tests were
examined. To identify and discourage test cheating, the authors of [20] proposed an
electronic exam monitoring system. The eye tribe tracker and the fingerprint reader were
employed for continual authentication by the system. Due to this, the system used two
factors to determine whether an examinee was cheating: the amount of time they were on-
screen overall and how frequently they were off-screen. Keystroke dynamics’ importance
in preserving security in online tests was discussed by [4]. Using statistical verification, ML,
and logical comparison as its three stages, the suggested system employed authentication.
An applicant’s typing style is immediately detected when he signs in for the first time, and
a template is created for him. These templates are used as a reference to ensure the user is
always authenticated when taking an online test. They are based on some characteristics,
including dwell time (the time between pressing and releasing keys), flight time (the time
between key releases and the next keypress), and the user’s typing speed for improved
precision and responsiveness. The security risks related to online exams experienced in
the past are discussed in [16] in their article published in volume seven. Complicity, which
frequently entails the cooperation of a third party that helps the student by impersonating
him or her online, was identified as a threat that was becoming more difficult to deal
with. The probable mechanisms of security threats in online cheating were uncovered by a
subsequent investigation conducted by the same authors [17,18]. Using dynamic profile
questions from an online course, scientists evaluated the behavior of 31 individuals who
took the test while being observed online. The findings revealed that students who cheated
by impersonation exchanged most of the material through a mobile device. As a result,
their reaction times were considerably different from those of non-cheaters [4].

The authors of [24] employed a different strategy involving hardware. The gear for
the system comprises a camera, a wearable camera, and a microphone to keep track of the
testing site’s visual and auditory environment [24]. Their research describes a multimedia
analytics system that automatically gives out online tests. The system comprises six
core parts that constantly evaluate the most significant behavioral cues: user verification,
text detection, voice detection, active window detection, gaze estimation, and phone
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detection. In order to classify whether a test-taker is cheating at any point throughout the
exam, we combined the continuous estimating components and added a temporal sliding
window [25].

The authors of [26] used a case study to assess the incidence of possible e-cheating
and offer preventative strategies that may be used. The internet protocol (IP) detector and
the behavior detector are the two main components of the authors’ e-cheating intelligence
agent, which they used as a technique for identifying online cheating behaviors. The
intelligence agent keeps an eye on the students’ actions and is equipped to stop and identify
any dishonest behavior. It may be connected with online learning tools to track student
behavior and be used to assign randomized multiple-choice questions in a course test. This
approach’s usefulness has been verified through testing on numerous datasets.

The references from the past about the subject of utilizing ML to identify student
cheating are shown in Table 1.

Integrating computer vision using an ML technique is a crucial component of re-
search breakthroughs, in addition to the hardware. By utilizing developments in ML,
computer vision has become smore adept at processing pictures, identifying objects, and
tracking, making research more precise and trustworthy. Cheating on an exam is usually
thought of as an unusual event. Researcher identification is aided by peculiar postures or
movements [26–28]. The application of computer vision efficiently enables this detection.
Systems develop more intelligence through ML. Computer vision systems are now more
capable of spotting suspicious actions because of this improved intelligence. ML processing
technological developments also directly influence the results [29–32]. The use of this tech-
nique to identify suspicious behavior in both online and offline tests has been documented
in many studies. CNN [33–36] is where most strategies were taken from.

Table 1. List of Past References, including methodology, dataset, techniques, and results.

Ref. Dataset Methodology Results

[1]

Detail of the student cheating dataset:

- Number of video sequences: 38
- Each class has an average number of
images: 1660.
- Testing images for each class: 510.
- Unique subject recorded: Eight

Feature Extraction, ML, MSER
Features, SURF, HOG, Robust
Features.

SURF accuracy: 92%
MSER Accuracy: 89%
HOG Accuracy: 87%

[12] Total Images of the Dataset: 7600.
3D CNN, Deep-Learning, Cheating in
Exams, ML, Gesture Recognition
Model, Object Detection.

- Lstm Model Accuracy: 0.77
- RNN Model Accuracy: 0.73
- 3DCNN Model Accuracy: 0.94.

[16]

- Online Participants from 5 different
countries: 31 Participants.
- Where Twenty-one students answered
379 questions.

Usability Online Examination,
- Students’ answers were 99.3%
correct.

[24]

Students took part in the Exams: 104
students.

- For Lab exams: six groups of up to
twenty-two members were included.

Learning Management System,
Learning Analytics.
Python Tool

- Around twenty-three percent of
students failed the test.
- Whereas the previous result showed
that forty-five percent of students
failed.

[31] 7WiseUp dataset includes ninety-four
students

Deep Neural Network (DNN), LSTM,
DenseLSTM, RNN, Learning
Management System (LMS) System

- RNN accuracy: 85%.
- DenseLSTM accuracy: 96%
- DNN accuracy: 67%.
- LSTM accuracy: 93%.

The proposed approach overcomes these research gaps by utilizing a deep learning
model that uses LSTM layers with dropout and dense layers to identify exam cheating
among students. This approach is based on the use of ML technology and is more ad-
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vanced than previous approaches that mainly relied on computer vision systems to detect
cheating incidents.

The selection of LSTM as the technique for classifying cheating behavior of students
was based on several reasons. Firstly, LSTMs are designed to handle sequential data,
making them a natural choice for our time-series data consisting of sequential snapshots
of student activity during the test. Secondly, LSTMs are known for their ability to capture
long-term dependencies in sequential data, which is important in detecting cheating behav-
ior that may involve multiple actions occurring over an extended period of time. Thirdly,
LSTMs are capable of handling variable-length input sequences, which is necessary in a
scenario where the number of actions a student takes during a test may vary. Fourthly,
LSTMs are stateful models, which can be useful in detecting cheating behavior occurring
over multiple input sequences. However, the LSTM technique was selected for its ability to
handle sequential data, capture long-term dependencies, handle variable-length sequences,
and maintain an internal state, making it a suitable choice for our problem of classifying
cheating behavior of students. Additionally, our approach uses students’ grades in vari-
ous exam portions as features in the dataset and labels them as “normal” or “cheating,”
which improves anomaly identification methods. The detailed description of the proposed
methodology is presented in the subsequent sections.

3. Dataset
3.1. Data Collection

A dataset that is openly accessible and contains information about student behavior in
a university environment is called the 7WiseUp behavior dataset. The 7WiseUp initiative,
which seeks to enhance student performance in the classroom by identifying and addressing
issues that affect behavior, gathered the data.

The collection contains information from several sources, including surveys, sensor
data, and institutional records. Information on student attendance, academic performance,
and social conduct is included. The information may be used to create models for forecast-
ing academic achievement, locating kids who are at risk, and spotting problematic conduct.
It is intended for use in research on student behavior and performance. The dataset is made
available under a Creative Commons license, which permits reuse and redistribution, as
long as credit is given. However, the collection contains sensitive information about specific
persons, so adhering to ethical standards and ensuring the data are handled responsibly
is critical.

3.2. Data Description

The 7WiseUp behavior dataset is a publicly available dataset used for research in the
detection of cheating behavior among students during online exams. The dataset consists of
activity logs of 110 students who took an online exam. The logs record the actions taken by
the students during the exam, such as scrolling, clicking, typing, etc. The dataset includes a
total of 440 activity logs, with each log containing data from four different periods of the
exam: the first quarter (Q1), the second quarter (Q2), the third quarter (Q3), and the fourth
quarter (Q4). Each log also contains the students’ scores on the exam, as well as a label
indicating whether the student was cheating or not during the exam. The cheating behavior
in the dataset includes activities such as copying and pasting, using external resources, and
collaborating with others during the exam. The 7WiseUp behavior dataset is valuable for
researchers who want to develop and test algorithms for detecting cheating behavior in
online exams using machine learning techniques.

The experimental assessment of our proposed technique uses four different synthetic
datasets and one real-world dataset. The purpose of the synthetic datasets is to resemble
real-world instances of test fraud. The dataset used in this study are

• Dataset 1: It includes 10 instances of cheating and 100 students with average grades.
Cheating incidents are regarded as blatant when there is a 35-point difference between
the final test score and the average of the regular assessment results. The dataset has
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regular grades that increase during the semester. Every exam, including the final, has
a 10-point scale, with the average score falling somewhere in the neighborhood of
80 percent. The cheating instances in Dataset 1 are rather simple to identify.

• Dataset 2: This dataset conceals cheating cases more effectively than Dataset 1, with
just a 20-point difference between the average score before the final and the score on
the final exam. A narrower gap between the final test and the prior results would
make it more difficult to spot cases of cheating.

• Dataset 3: It has similarities with Dataset 2 but includes regular grades that climb for
the semester. The red marks, however, unexpectedly increase by a large margin in the
final exam. The average score before the final and the outcome of the final test differ
very little in both circumstances.

• Dataset 4: This dataset simulates a straightforward final test where all the marks
increase compared to the baseline assessments. On the final exam, the typical grades
are simulated to increase by 10 points over the mean of the previous scores. The
cheating occurrences are meant to increase test results on the final exam by 25 points
compared to the preceding regular semester exams. Since all grades are improved for
the final test, detecting cheating is more difficult.

• Real-world dataset: The real-world dataset used in the experiment includes 3 positive
observations out of 52 total observations. Each observation includes the results of four
quizzes, a midterm exam, and the final exam.

Human judgment has traditionally made the distinction between the first and second
situations. However, we show that the recommended approach may automatically identify
cheating instances even in these challenging conditions. The final dataset from our experi-
ment illustrates the situation of a straightforward final test where all the marks increase
compared to the baseline assessments. On the final exam, the typical grades are simulated
to increase by 10 points over the mean of the previous scores. The cheating occurrences
are meant to increase test results on the final exam by 25 points compared to the preceding
regular semester exams. Since all grades are improved for the final test, detecting cheating
is more difficult. In addition to the synthetic data, one real-world dataset is used in our
experiments.

It would have been wonderful to have more real-world data, but it is not easy to
collect for several reasons. A total of 3 of the 52 observations in our sample are positive.
Each observation includes the results of four quizzes, a midterm exam, and the final exam.
Figure 2 shows the high cheating dataset of Student 1 with normal grades. In this dataset, a
normal score is considered to be within the range of 60–100.
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Figure 2. A high cheating dataset of student 1 with normal grades.

The high cheating dataset of students that committed cheating is shown in Figure 3.
According to the graph, 85% of students that take final examinations were found to cheat.
At around 50%, Q4 had the lowest percentage of cheating pupils.



Sensors 2023, 23, 4149 8 of 21

Sensors 2023, 23, 4149  8  of  22 
 

 

Figure 2. A high cheating dataset of student 1 with normal grades. 

The high cheating dataset of students that committed cheating is shown in Figure 3. 

According to the graph, 85% of students that take final examinations were found to cheat. 

At around 50%, Q4 had the lowest percentage of cheating pupils. 

 

Figure 3. A high cheating dataset of students with cheating found. 

For a student with average grades, Figure 4 shows a graph with a smaller dataset of 

cheating. In this dataset, a normal score is considered to be within the range of 60–100. 

Around 58% of students in Q3 achieved normal grades. In contrast, pupils achieved about 

50% in Q4. Nevertheless, pupils achieved 56% in their final exams. 

 

Figure 4. Less cheating dataset of a student with normal grades. 

A graph from the students who cheated in the less cheating dataset is shown in Fig-

ure 5. Another 60% of pupils were discovered to be cheating in Q4. At final exams, how-

ever, cheating was discovered in almost 85% of the pupils. 

 

Figure 3. A high cheating dataset of students with cheating found.

For a student with average grades, Figure 4 shows a graph with a smaller dataset of
cheating. In this dataset, a normal score is considered to be within the range of 60–100.
Around 58% of students in Q3 achieved normal grades. In contrast, pupils achieved about
50% in Q4. Nevertheless, pupils achieved 56% in their final exams.
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A graph from the students who cheated in the less cheating dataset is shown in
Figure 5. Another 60% of pupils were discovered to be cheating in Q4. At final exams,
however, cheating was discovered in almost 85% of the pupils.
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Figure 5. Less cheating dataset of students with cheating found.

The graph for the dataset of students who were discovered to be cheating that involved
less cheating and greater grades is shown in Figure 6. A total of 90% of the students who
attempted to cheat on the final examinations were detected, on average. On the other hand,
cheating is shown in Figure 7, which shows the graph of the decreasing cheating increasing
grades of dataset 2, and the same is true: almost 85% of students were discovered cheating.
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There are four distinct examples, each with two different courses where cheating was
found in the student’s final grades. After viewing each student with normal and cheating
grades, we notice that the abrupt surge in grades shows where the kid cheated. The dataset
needed to train this model will be created in the next phase.

3.3. Data Preparation and Cleaning

Finding any null entries in the dataset and determining our characteristics will help
with data preparation and cleaning. Ensuring the data are correct, comprehensive, and
available for analysis is accomplished through data preparation and cleaning. The following
are some typical procedures for cleaning and preparing data:

• Determine missing values: The following process was carried out on the dataset:
Firstly, a check was made for any blank or missing values. Results lacking the nec-
essary information may require greater precision. To locate any missing values, the
isnull() and info() methods in pandas were utilized. Fortunately, no null entries were
discovered in the dataset.

• Handling missing values: After locating missing values, there are several ways to deal
with them. One way is to delete rows or columns with missing values or impute the
missing values using the dataset’s mean, median, or mode. To impute missing values
in pandas, the fill() method can be used. Fortunately, all entries in our dataset contain
numerical characteristics and there are no missing entries.
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• Check for duplicates: We have performed the following process on our dataset: Firstly,
we checked for duplicates by ensuring that no rows or columns in the dataset are
repeated. Results that contain duplicates may be skewed or erroneous. To find and
eliminate duplicates, the pandas methods such as duplicated() and drop duplicates() is
used. However, since these student ratings can be similar, we will modify the dataset
later to remove any duplicates.

• Normalize the data: Normalizing the data will guarantee that all variables are scaled
equally. The data were normalized to ensure that all variables are scaled equally.
Normalizing the data is crucial, especially when using models that are sensitive to the
data’s size. To normalize the data, we used the sci-kit-learn’s StandardScaler() method.
For instance, exam scores are a collection of features in the dataset that are entirely
numerical and were converted using the standard scalar option.

• Feature selection: We have performed the following process on our dataset: Firstly,
feature selection was performed to choose the most relevant features for the investiga-
tion. This reduces the dimensionality of the dataset and increase the model’s accuracy.
To choose the most relevant features, sci-kit-learn routines such as SelectKBest() or
RFE() were used. Since the dataset is small, the four datasets were first concatenated
and the features from Q1, Q2, midterm, Q3, Q4, and final were selected.

Any category variables should be converted to numerical variables. Many ML models
use just numerical data. To convert categorical data to numerical variables, pandas provides
methods such as LabelEncoder() and get dummies(). The “detection” column, which
contains two classes—normal and cheating—is added to the label. These labels are first
transformed into categorical data using a label encoder and then category instructions.

4. Proposed Methodology

Developing a deep learning model for detecting cheating in students involves several
phases, which are outlined below, to ensure its success. To start, exploratory data analysis
(EDA) is conducted to identify any irregularities or patterns in the dataset. Through this,
information can be presented, statistical tests can be computed, and any missing or incorrect
numbers can be detected. After running EDA, data cleansing and preparation must be
performed to clean and prepare the dataset for analysis. This stage involves normalizing
the data, handling missing values, and transforming categorical variables into numerical
variables. Feature engineering is the next step; new characteristics are generated using
current data that may be more useful or predictive in identifying cheating. Feature selection
follows, where the most useful traits for spotting cheating are determined using statistical
analysis or machine learning methods. The selected features are then used to choose a
suitable machine learning method for identifying cheating. The choice of algorithm may
be influenced by the size and complexity of the dataset, as well as the specific aims of the
research. During model training, the chosen model is trained on a portion of the dataset,
and its parameters are tweaked to maximize its performance. Following model training,
model evaluation is done using a different validation set, and the model’s performance
is assessed using F1 score, accuracy, recall, precision, and other performance indicators.
Finally, hyperparameter tuning is conducted to improve the model’s performance on the
validation set by changing its regularization, learning rate, or other model parameters to
boost its performance.

The proposed methodology for the student cheating detection system is depicted in
Figure 8. It comprises the retrieved characteristics from the 7WiseUp datasets. The method
is separated into three levels, each with its own set of characteristics.
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4.1. Model Architecture

The model we used to use the deep learning LSTM model to identify student cheating
is listed below.

With the use of marks from several tests and quizzes, this sequential model architecture
in Keras for binary classification aims to determine whether a student has cheated. Below
is a thorough explanation of each layer:

• LSTM Layer 1: A layer called LSTM with two hidden units makes up the top layer.
This layer delivers a series of output values for each input sequence in the shape of
the training data it received as input. The output sequence, in this instance, is a set
of hidden states that identify patterns in the sequence of grades, whereas the input
sequence is a series of grades for a particular student.

• LSTM Layer 2: A LSTM layer with 1 hidden unit also makes up the second layer.
The output sequence from the first LSTM layer is passed on to this layer, producing
a final output value for the complete series. In order to create a single output value
that reflects the whole range of grades, the information from the previous layer is
combined in this layer.

• Dropout Layer: A dropout layer with a dropout rate of 0.8 makes up the third layer.
To avoid overfitting, 80% of the connections between the second LSTM layer and the
following layer are randomly dropped out in this layer.

• Dense Layer 1: The first dense layer is the fourth layer, with two hidden units and
a ReLU activation function. In this layer, the input is transformed linearly, and the
output is activated using a rectified linear unit (ReLU).

• Dropout Layer: At a dropout rate of 0.2, the fifth layer is also a dropout layer. This
layer randomly removes 20% of the connections between the previous dense layer and
the final output layer to prevent overfitting.

• Dense Layer 2: With one output unit and a sigmoid activation function, the second
dense layer is the sixth layer. The input is transformed linearly inside this layer, while
the output is activated sigmoidally. Based on a student’s grades, the sigmoid function
generates a probability value between 0 and 1, indicating how likely cheating is.
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In order to capture the sequential patterns in the grades data, our model architecture
consists of two LSTM layers, two dense layers with dropout to minimize overfitting, and a
final output layer with sigmoid activation to predict the likelihood of cheating. The model
is tested using a different validation set after being trained on the training data to improve
performance. As shown in the below Figure 9.
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4.1.1. LSTM

The RNN architecture known as LSTM, or long short-term memory, is used to model
sequential data. To better capture long-term relationships in the sequence, LSTM networks,
unlike conventional RNNs, utilize a memory cell to retain data about the prior inputs and
their dependencies. There are gates in the memory cell that manage the flow of information.
These gates, which include an input gate, an output gate, and a forget gate, govern how
information is added to, extracted from, and deleted from the cell.

We have implemented an LSTM network for tasks that involve sequential data such
as time series analysis and voice recognition. LSTM networks are particularly useful for
input sequences with long-term dependencies as they can selectively retain and discard
information over time; this is unlike classic RNNs that suffer from the “vanishing gradient
problem” when the input sequence is long. We have utilized two LSTM layers in our model.
The first layer consists of two units and is initialized with the LSTM layer type. The input
shape parameter is defined to match the shape of a single sample from the training data.
Additionally, we have set the return sequences option to True, which allows the layer to
produce a sequence of hidden state values instead of a single output value. The second
layer in our model is also an LSTM layer but only contains one unit. By default, the return
sequences option for this layer is set to False, which means that it outputs a single value for
each sequence. By implementing these LSTM layers, we can effectively handle tasks that
involve sequential data and long-term dependencies.
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4.1.2. Dropout

We have implemented the dropout regularization approach in the proposed model to
address the issue of overfitting. Dropout is a technique that randomly removes a portion of
the input units during training to prevent the model from learning to match the training
data too closely, which can lead to poor generalization performance on new, unseen data.

We applied dropout to a layer’s input or hidden units with a predetermined dropout
rate, typically between 0.2 and 0.5. During training, a unit is likely to be dropped out in
any iteration if the dropout rate is high enough. The remaining units’ weights are scaled
by the inverse of the dropout rate to compensate for the discarded units during training.
During testing, the complete network is used without dropout.

The dropout technique allows the network to acquire more reliable and generalizable
input representations by randomly removing units during training. This technique helps to
prevent the network from relying too heavily on certain input properties, thereby increasing
the model’s ability to generalize to new data.

To implement the dropout technique in our DL model, we used a dropout layer with a
dropout rate of 0.8. During training, this dropout layer randomly drops out a portion of
the input units, introducing noise to the network, and reducing its dependence on specific
input qualities, thus helping to prevent overfitting. With a dropout rate of 0.8, training
would lose 80% of the input units, further aiding in generalization.

4.1.3. Dense Layers

We have utilized dense layers which are also known as “completely connected layers.”
Each neuron in a dense layer receives input from every neuron in the previous layer through
its output. A linear operation is first applied to the input by the dense layer, followed
by a nonlinear activation function. The output of the dense layer is a series of weighted
sums of the inputs, where each sum corresponds to a distinct neuron in the layer. We have
used backpropagation to train the weights and biases associated with each neuron in the
dense layer. Dense layers are commonly used in neural networks for applications such
as image classification, natural language processing, and speech recognition. They are
often combined with other layers such as convolutional or recurrent layers to build more
complex network topologies.

We have also used a fully connected (dense) layer with two units and a ReLU activation
function to incorporate non-linearity into the network and enhance its capacity to model
complicated relationships in the data. Additionally, we have added another dropout layer
with a lower dropout rate of 0.2 compared to the third layer. Finally, the network’s top layer
is a fully linked (dense) layer with a sigmoid activation function. The sigmoid activation
function translates the output into a probability value between 0 and 1, which represents
the likelihood that the input belongs to the positive class.

4.2. Model Hyperparameters

In the model.compile() method, the following hyperparameters are used for the
specified architecture:

• Loss: In binary classification issues, the loss function known as binary cross-entropy is
employed. It calculates the discrepancy between the actual labels for each sample in
the training set and the anticipated probabilities for each. The loss function assesses
the model’s performance during training.

• Optimizer: Adam is a well-known technique for optimizing the adaptive learning rate
in DL. It boosts the speed and stability of gradient descent by combining the benefits
of AdaGrad and RMSProp, two additional optimization techniques. The neural
network’s weights are adjusted during training by the optimizer’s specifications.

• Metrics: A performance indicator called accuracy counts how many instances in the
validation set out of all the examples were properly categorized. It tests how accurately
the model can discriminate between honest and dishonest groups through cheating.
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The decision made about the optimizer, loss function, and performance metric may
significantly impact the model’s performance. Binary cross-entropy is a logical option for
a binary classification task. The Adam optimizer is well recognized as suitable for many
deep-learning models. The accuracy metric gives a straightforward and understandable
indication of how well the model performs. However, alternative metrics such as precision,
recall, or F1 score could be more suitable depending on the application’s objectives. The
hyperparameters may be adjusted by performing several tests with various settings and
choosing the one that produces the best results.

5. Results

The process of evaluating a trained ML model on a dataset different from the data used
for training is known as model evaluation. Python is a popular programming language
that is widely used in data science and ML. In our research, we used Python version 3.8.5
for our implementation. To aid our implementation, we made use of several popular
libraries such as TensorFlow, Keras, Pandas, and Numpy. These libraries helped us to
carry out various tasks such as data preprocessing, building and training our deep learning
model, and evaluating our results. We specifically used TensorFlow version 2.4.0, which
is a popular open-source platform for machine learning and deep learning. We also used
Keras version 2.4.3, which is a high-level API built on top of TensorFlow that simplifies the
process of building and training deep learning models. Pandas version 1.1.3 was also used
to manipulate and analyze our dataset. Finally, we made use of Numpy version 1.19.2 to
perform numerical computations on our dataset.

We have followed several procedures to evaluate the performance of the LSTM model.
Firstly, we split the dataset into training and testing sets using the train–test split function
from the sci-kit-learn library. The testing set was used to evaluate the model’s performance
after it was trained on the training set. Next, we applied the LSTM model to the training
set using the fit() technique to train the algorithm to predict each student’s likelihood of
cheating based on their performance on the Q1, Q2, midterm, Q3, Q4, and final exams.
After training, we evaluated the model on the testing set to predict the probability of
cheating for each student. We calculated evaluation metrics such as accuracy, precision,
recall, F1-score, Receiver Operating Characteristic Area Under the Curve (ROC-AUC), etc.,
using the predicted probabilities and actual labels. The evaluation metrics indicated how
well the model distinguished between normal and detected cheating in the two groups.
To enhance the LSTM model’s performance, we adjusted hyperparameters such as the
number of LSTM layers, neurons in each layer, dropout rate, learning rate, and batch size.
The hyperparameters were chosen based on the model’s performance on the validation set.
Finally, we visualized the results using charts such as the ROC curve, confusion matrix,
and precision–recall curve. These plots helped to identify areas that needed improvement
and provided insights into the model’s strengths and weaknesses. By following these
procedures, we effectively assessed the performance of the LSTM model.

By carrying out the processes listed above, the LSTM model’s performance may be
assessed and enhanced for better outcomes on the dataset for detecting student cheating.

After 50 iterations, the model achieved 90% training and 92% validation accuracy.
The performance of a DL model during training may be assessed using measures such

as training and validation accuracy. Whereas validation accuracy refers to the model’s
performance on a different validation set that is not used for training, training accuracy
refers to the model’s performance on the training set. Figure 10 demonstrates the model’s
training accuracy, with a blue graph for training and an orange graph for validation.
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The model should be neither overfitting nor underfitting the data if its training and
validation accuracies are good and near to one another. It may be a sign of overfitting,
where the model has learned the training data too well and cannot generalize to new data,
if the training accuracy is significantly greater than the validation accuracy. On the other
hand, if the accuracy of both training and validation is poor, it may be a sign that the model
is underfitting, which means it cannot capture the patterns in the data.

We can experiment with alternative model topologies, hyperparameters, and opti-
mization strategies to increase validation accuracy. To reduce overfitting and increase the
generalizability of the model, we may utilize strategies such as regularization, early halting,
and data augmentation. Moreover, we can expand the training dataset or utilize strategies
such as transfer learning to use previously learned models. Our training accuracy is over
90%, while our validation accuracy is around 92%.

A DL model’s performance during training may be assessed using metrics such as
training and validation loss. The difference between training loss and validation loss is that
the former refers to the model’s average loss on the training set. In contrast, the latter refers
to the model’s average loss on a unique validation set not used for training. The model
training loss is shown in Figure 11 as a blue and an orange graph, respectively, where the
blue graph represents the training loss.
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We want training and validation loss to be minimal and somewhat near to one another,
similar to how training and validation accuracy should be. High validation loss may signify
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overfitting or the inability of the model to generalize to new data, whereas high training
loss may suggest that the model is unable to adequately fit the training set of data.

Alternate model topologies, hyperparameters, optimization methods, regularization
approaches, early halting, and data augmentation are some techniques to reduce the
validation loss. These techniques were previously described as ways to reduce validation
accuracy. To improve the model’s generalization, we could also expand the size of the
training dataset or employ methods such as transfer learning. Furthermore, we can keep
track of the loss experienced during training and change the learning rate or batch size as
necessary.

Due to the short dataset size and use of a deep learning model for training, our dataset
has little overfitting. The accuracy would be lower but there would be no overfitting in the
model if we had used classifiers such as SVM.

5.1. Model Evaluation Metrics

Metrics for measuring the effectiveness of a DL model on a specific task are known as
model evaluation metrics. For binary classification tasks, the following assessment criteria
are frequently used:

• Recall: The fraction of genuine positives in the test set out of all real positive samples.
• Accuracy: The model’s percentage of correct predictions on the test set.
• F1 score: Precision and recall’s harmonic mean is the F1 score.
• Precision: The fraction of true positives (positive samples accurately detected) out of

all positive predictions produced by the model.
• ROC curve and AUC: The ROC curve represents the relationship between the true

positive rate (recall) and the false positive rate (1-specificity) at various categorization
thresholds. The ROC curve’s AUC measures how well the model can differentiate
between positive and negative data.

The proposed model for the test data’s ROC curve is shown in Figure 12, where the
ROC curve tracks the same path as the random guess graph. The false positive rate (FPR)
and true positive rate (TPR) are shown in the graph.
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5.2. Confusion Matrix

The confusion matrix summarizes the number of true positives, true negatives, false
positives, and false negatives in the test set. The confusion matrix of the suggested test data
model is displayed in Figure 13.
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Many Python libraries, including scikit-learn and TensorFlow, may be used to calculate
these metrics. It is critical to select the right assessment metrics depending on the particular
job at hand and the dataset’s class imbalance.

The accuracy and loss performance are shown in Table 2, where training accuracy has
a performance value of about 0.90, validation accuracy of about 0.92, training loss of about
0.39, and validation loss of about 0.35. Metrics for assessing the proposed model are shown
in Table 3. The average accuracy in this instance is 0.91.

Table 2. Accuracy and loss performance.

Evaluation Metric Performance Value

Training accuracy 0.90
Validation accuracy 0.92

Training loss 0.39
Validation loss 0.35

Table 3. Evaluation metrics of the proposed model.

Evaluation Metric Performance Value

Mean accuracy 0.91
accuracy 0.92
precision 0.62

recall 0.52
F1 score 0.78

5.3. Model Comparison

We examined our model with three more reference works in our investigation of the
student cheating detection dataset. With an accuracy of 84.52% on the 7WiseUp behavior
dataset, the initial reference study employed a CNN technique. With an accuracy of 81%
on the same dataset, the second reference study employed an LSTM technique. In the third
reference study, the 7WiseUp behavior dataset was employed using an RNN method that
had an accuracy of 86%.

In our examination of the student cheating detection dataset, we compared our model
to three existing reference works. With an accuracy of 84.52% on the 7WiseUp behavior
dataset, the initial reference study employed a CNN technique. The same dataset was
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utilized in the second reference work’s LSTM method, which had an accuracy rate of 81%.
For the 7WiseUp behavior dataset, the third reference study employed an RNN method
with an accuracy of 86%. The comparison is as shown in Table 4.

Table 4. Proposed model comparison with related work.

Ref Approach Accuracy Dataset

[4] CNN 86.07% 7WiseUp behavior dataset
[37] LSTM 81% 7WiseUp behavior dataset
[31] RNN 86% 7WiseUp behavior dataset

Our approach LSTM 90% 7WiseUp behavior dataset

Our model design, which utilized an LSTM strategy with a dropout layer, thick layers,
and an Adam optimizer, produced results that were 90% more accurate than those of all
three-reference works. We credit our usage of more complex and optimized architecture
and hyperparameters for greater accuracy. The greater accuracy is likely attributable to the
data processing and cleaning we performed. More investigation and analysis are needed to
pinpoint precisely what contributed to our model’s enhanced performance.

6. Discussion

Keeping the academic integrity of student evaluations intact is one of the biggest
issues in online education. The absence of direct teacher monitoring significantly increases
academic dishonesty during final exams. The 7WiseUp behavior dataset, which anybody
can access, is used in this project to offer details on student conduct in a university environ-
ment. The 7WiseUp program gathered the data, which aim to improve student success by
identifying and resolving issues that impact behavior.

A variety of sources, including surveys, sensor data, and institutional records, are
included in the collection. It includes information on student attendance, academic progress,
and social behavior. The information may be used to build models for predicting academic
success, locating at-risk students, and spotting problematic behavior. It is designed for use
in research on student behavior and performance [38–49].

The term’s dataset, final exam, suggested technique, final test, and average score
all use four different synthetic datasets and one real-world dataset for the experimental
evaluation of a suggested strategy. The final test score and the average of the regular
assessment scores differ by 35 points, making datasets 1 and 2 equal. The last 20 regular
grades improve during the semester; the final test result is within a 10-point range for
around 80% of the average marks. A new label column with two classes—normal and
cheating—has been added, improving anomaly identification methods. Our experiment’s
final dataset demonstrates that cheating incidents can be automatically identified even
in challenging situations. The cheating occurrences are designed to raise exam scores by
25 points and mimic a jump in average grades of 10 points over the mean of the preceding
grades. Together with the synthetic data, we also employ one real-world dataset. For each
observation, we include 1 of the 52 observations in our collection.

A CNN technique (84.52%), an LSTM approach (84.52%), and an RNN approach
(86%), along with three additional reference works, were compared to the student cheating
detection dataset. The first reference work used a CNN approach with 84.52% accuracy, the
second used an LSTM approach with an error rate of 81%, and the third used one with an
objective accuracy of 86%. All three-reference works were tested on the 7WiseUp behavior
dataset. In contrast, the accuracy of our model architecture, which used an LSTM approach
with a dropout layer, thick layers, and an optimizer called Adam, was 91%, which was
higher than the accuracy of all three reference studies. Implementing more intricate and
sophisticated architectures and hyperparameters is responsible for the increased accuracy.
Additionally, our data preparation and cleaning process may be responsible for improved
accuracy. More investigation and analysis are required to identify the specific factors that
were responsible for our model’s superior performance.
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One limitation of this research is that it relied on a single dataset, the 7WiseUp behavior
dataset, which may not be representative of all online education environments. Further-
more, the dataset was not specifically designed for cheating detection, which may limit the
accuracy of the models developed in this research. Additionally, the synthetic datasets used
in the experiments may not fully capture the complexity of real-world cheating incidents.
Further research could benefit from using multiple datasets, including those specifically
designed for cheating detection, to ensure the generalizability of the findings. Another
limitation is that the specific factors responsible for the superior performance of the model
are not identified, highlighting the need for further analysis and investigation.

In addition, another limitation is low performance metric values for imbalanced
data; the proposed model also has low values of recall and F1 score. Recall, also known as
sensitivity or true positive rate, measures the proportion of actual positives that are correctly
identified by the model. F1 score is a combination of precision and recall, and it takes into
account both false positives and false negatives. These metrics are particularly important
for imbalanced datasets, where the proportion of positive cases is much lower than that of
negative cases. In such cases, a model that simply predicts all cases as negative may achieve
high accuracy but perform poorly in terms of identifying positive cases. Therefore, low
values of recall and F1 score indicate that the proposed model is not effective at identifying
positive cases, which is a significant limitation for its applicability in real-world scenarios.

7. Conclusions

The rise of online education has presented many benefits for students and educational
institutions, but it has also brought forth numerous challenges, including academic dishon-
esty in the form of cheating, during online assessments. To address this issue, educational
institutions must implement better detection techniques to ensure academic integrity. This
research uses ML technology to investigate the problem of online cheating and provides
practical solutions for monitoring and eliminating such incidents. The goal of this research
was to create a deep learning model using LSTM layers with dropout and dense layers to
identify exam cheating among students. We used the students’ grades in various exam por-
tions as features in our dataset and labeled them as “normal” or “cheating.” Despite having
a smaller dataset than previous research, our model architecture resulted in a 90% training
and 92% validation accuracy, outperforming models that used CNN and RNN layers. Our
approach accurately and successfully identified student exam cheating, showcasing the
potential of deep learning approaches in identifying academic dishonesty. By utilizing
such models, educational institutions can create more efficient strategies for guaranteeing
academic integrity. Ultimately, this research emphasizes the importance of using advanced
technologies in addressing contemporary challenges in online education.

Future research should focus on further refining and optimizing deep learning models
for detecting academic dishonesty in online assessments. This can include exploring the
use of other machine learning algorithms and techniques, such as ensemble learning and
transfer learning, to improve model performance and accuracy. Additionally, research can
investigate fthe feasibility of implementing real-time monitoring systems that can detect
and prevent cheating during online exams.
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