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Abstract: This paper proposes a new optimized parameter model that enhances the pointing accuracy
of moving-platform electro-optical telescopes (MPEOTs). The study begins by comprehensively
analyzing the error sources, including the telescope and the platform navigation system. Next, a
linear pointing correction model is established based on the target positioning process. To eliminate
multicollinearity, stepwise regression is applied to obtain the optimized parameter model. The
experimental results show that the MPEOT corrected by this model outperforms the mount model,
with pointing errors of less than 50 arcsec for approximately 23 h. In the three tests conducted, the
modified azimuth error(s) (RMS) were 14.07′′, 12.71′′, and 28.93′′, and the elevation error(s) (RMS)
were 12.94′′, 12.73′′, and 28.30′′, respectively.

Keywords: moving-platform electro-optical telescope; pointing error; error correction; optimized
parameter model

1. Introduction

With the rapid advancement of photoelectric technology, electro-optical telescopes
are increasingly being integrated into vehicles, ships, aircraft, and spacecraft for diverse
missions, such as optical communication, aerial photography, astronomical observation,
and antenna stabilization [1–4]. Control systems of moving-platform electro-optical tele-
scopes (MPEOTs) require high-performance pointing directions to achieve accurate target
acquisition, tracking, and positioning [5]. Once given the position of a target, the control
system performs a series of coordinate transformations, which computes the angles neces-
sary to point the telescope at the object. However, the actual line-of-sight (LOS) of MPEOT
deviates inevitably from its desired pointing in practice [2], namely a pointing error, which
impairs the efficiency of the target acquisition and tracking as well as the imaging quality.
Therefore, to improve the MPEOT’s overall performance, error modeling and pointing
correction techniques should be investigated thoroughly.

Errors affecting pointing arise during the manufacture, assembly, installation, and
operation of the telescope, including machining errors in components, geometrical varia-
tions induced by misalignment and improper installation, inaccuracy of encoders, servo
errors, environmental errors, etc. [6]. In general, errors from a particular source have
two components: a deterministic part and a random part [7]. The paper contributes to
understanding the calibration of the repeatable systematic errors, while the remaining
nonlinear errors are not covered in this work.

Pointing error correction is generally classified into two types: hardware calibration
and software correction [8]. The former acquires the angular deviation and coordinate
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transformation matrix between the components using external devices, such as calibration
methods with the use of theodolites [9,10] and other measuring equipment [11], so as to
be compensated in the control system. However, the resources needed are significant and
not necessarily effective. Based on error analysis and modeling, the latter estimates the
systematic errors and deducts them from the current pointing value in real time, then it
updates position commands that control the telescope axes to compensate for pointing
errors. In contrast to hardware adjustment, software rectification significantly increases
pointing accuracy while reducing the development and cost; it is the research focus of
this article.

Considerable progress has been made in the field of error modeling by directly con-
sidering parameters that are highly related to performance. Tan et al. investigated the
relationship between pointing error and temperature distribution for inter-satellite com-
munication [12]. In some optical communication systems, pointing errors are avoided
or reduced by focusing on system-wide performance metrics, such as the received signal
power and Strehl ratio [13]. Lopez-Leyva et al. emulated the effects of pointing error
angles on the signal-to-noise ratio to optimize the pointing process [14]. For ground-based
telescopes, the pointing error model can be expressed traditionally as a nonlinear function
of azimuth and elevation [15], which can be further divided into two categories. One
approach relies solely on numerical analysis and adopts an empirical model to explain
the observed differences. A single function can be used to fit the error–correction surface
across the entire sky or the sky can be broken down into regions and different functions
used for each, such as the spherical harmonics function model and generalized extended
approximation model [16,17]. Analogously, Zhu [18] and Xu [19] proposed the use of the
backpropagation (BP) neural network model and radial basis function neural network
model, respectively, tested and applied in the mobile laser ranging station. Although this
strategy is simple to apply, the stability of the model is poor due to excessive parameters
and the high correlation between them. Another approach involves studying the physical
relationships underlying pointing errors and developing a model about them, including
the basic parameter model, mount model, and physical model with empirical terms [20–22].
Many telescopes calibrated by this method point to the arcsec level of precision [23–25].
Such models typically have fewer terms and correspond to physical errors within the
telescope. Additionally, this practice is more likely to provide reliable outcomes when used
to extrapolate outside of the scope of the sky that the model was initially fit [7].

However, the technique above-used for ground-based telescopes is not fully functional
for MPEOT due to platform vibration and environmental disturbance. Currently, the most
effective way to obtain pointing error models is by observing a group of stars in the sky
region to acquire the pointing error data of the telescope at each position, including selecting
stars, building mathematical models, and solving parameters [15–27]. The model only
validly works for a while. As time passes, the physical properties and environment of the
telescope change, requiring a new model to be built by re-observing the stars. It is worth
noting that MPEOTs require long exposures in target observations, during which residuals
revised by the above models tend to fluctuate widely. This phenomenon indicates that
the model parameters are time-limited, and a single correction cannot maintain the high
accuracy of the MPEOT pointing over time. As a countermeasure, this paper proposes a
new optimized parameter model based on the physical kinematic model and the correlation
characteristics of the parameters, which can significantly mitigate the pointing error during
a longer working period.

The remaining part of the essay proceeds as follows. Section 2 reinterprets some
operating procedures and correction guidelines. Section 3 summarizes the error sources
and extracts a linear pointing correction model directly from the target localization equation.
Section 4 describes the multicollinearity problem between parameters, using stepwise
regression to optimize the linear model. To verify the validity of the optimized model,
several experiments are conducted in Section 5. The relevant discussion and conclusions
on the experimental results are presented in Sections 6 and 7, respectively.
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2. Operation Principle
2.1. EOT Structure

The components of an electro-optical telescope (EOT) can be typically divided into
functional subsystems that contribute to understanding the errors that affect pointing [26,27].
The electro-mechanical gimbal, consisting of a base, bearings, motors, actuators, etc.,
provides physical support and allows the motion of the axes. This paper concentrates on
the alt-azimuth telescope [28], whose gimbal arrangement is depicted in Figure 1, including
the azimuth axis, elevation axis, and line of sight. The servo control system generates
and coordinates the motion, while the optical system collects and transmits information
about the targets.

Figure 1. Gimbal arrangement of the electro-optical telescope.

2.2. Correction Principle

In Figure 2, the procedure for calculating the desired pointing in the MPEOT system is
displayed. For further elaboration, several left-hand coordinate frames are defined first,
which are the geographic coordinates g, moving-platform coordinate m, telescope base
coordinate b, and target coordinate L. Based on the theoretical pointing angle (Ag, Eg) of
the target in the geographic coordinate, the control system can then calculate the expected
direction (Ab, Eb). Therefore, the target positioning equation of EOT can be formulated as

G = Rg
mRm

b = B (1)

where G = [Xg, Yg, Zg]T , B = [Xb, Yb, Zb]
T , R is the rotation transformation matrix between

the coordinate frames. In an ideal condition, the azimuth axis, the elevation axis, and the
line of sight are three perpendicular axes in zero-elevation positions [28]. In this case, the
pointing model of the telescope can be defined as

B = Rb
LL = Rot(Z, Ab)Rot(X, Eb)L (2)

Assuming that L = [0, 1, 0]T is the unit pointing direction referenced to the target
coordinate, the pointing angle of the telescope can be determined from Equation (2) and
expressed in the base coordinate as{

Ab = arctan Xb/Yb

Eb = arcsin Zb
(3)
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Figure 2. Target pointing process of EOT.

The pointing error is defined as the angular displacement with which the pointing
control system positions the actual object relative to its telescope boresight location after
acquiring a suitable target for observation [29]. As illustrated in Figure 3, the angular
pointing errors of the azimuth and elevation axes of the telescope can be denoted as δA
and δE [27], respectively. They are given by{

δA = Â− Ab = f (·)
δE = Ê− Eb = g(·)

(4)

where Â and Ê are the actual azimuth and elevation angles in the base coordinate while Ab
and Eb are the theoretical pointing angles. f (·) and g(·) represent error models for azimuth
and elevation angles, respectively. In particular, both δA and δE contain the error mean
and standard deviation, hence the pointing error is normally characterized using the root
mean square (RMS) [30].

Thus far, the correction of EOT pointing errors entails the following steps. (1) De-
veloping a relatively accurate and complete pointing error correction model using error
source analysis. (2) Given a series of reference stars with known coordinates, the pointing
errors can be calculated from the above equations by the measured values of EOT. (3) Es-
timating the parameters in Formula (4) and optimizing the correction model in reverse
using the results. (4) Predicting and correcting the pointing error of the telescope using the
solved model.

Figure 3. Definition of pointing error.

3. Error Analysis and Pointing Model
3.1. Sources of Pointing Error

According to Figure 4, the pointing error sources of MPEOT can be categorized into
four main groups [31]. Firstly, equipment-related pointing errors include (1) errors of the
optical system, mainly caused by disturbance and inconsistency between the boresight of
various optical components, (2) errors of electro-mechanical gimbals, which refer to geo-
metric errors between axes, such as perpendicularity error, intersection error, misalignment
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error, and readout transducer error, and (3) errors of the servo control system, specifically
the tracking error and stability error. Secondly, misalignment between the telescope base
and the platform navigation system can be classified into two types: (1) orientation align-
ment error and horizontal leveling error during initial setup, and (2) angular vibration error
during the operation. Next, the inaccuracy of the platform navigation system, notably the
attitude measurement error of the inertial navigation system (INS), should be considered.
Meanwhile, factors such as temperature, gravity, wind, air pressure, vibration, and shock
can also have different effects on the above errors. To unify the coupling relationship
between the static and dynamic errors of the system, this dissertation delineates several
error coordinate frames in detail, derives their coordinate transformation matrices, and
then establishes a telescope-pointing model.

Figure 4. Error source analysis.

3.2. Coordinates Definition and Transformation

As shown in Figure 2, the error conversion matrix from the motion platform navigation
system coordinate m to the geographic coordinate g is

R̂m
g = Rot(Y, Rol + ∆r)Rot(X, Pit + ∆p)Rot(Z, Yaw + ∆y) (5)

where Rol, Pit, and Yaw are the roll, pitch, and azimuth angles respectively, serving as the
real attitudes of the platform, and ∆r, ∆p, ∆y are the corresponding measurement errors.
The orientation-sensitive axis of the INS and the zero position of the base can be normally
aligned by a right-angle prism mounted on the device, and the pitch and roll can be
obtained from a leveling instrument, so it is reasonable to assume that the initial installation
error matrix is known, here set to Rb1. Moreover, supposing that the transformation matrix
between the base coordinate and the platform coordinate is Rb2 when the platform is in
motion. Accordingly, the alignment error between b and m can be simply set as

R̂m
b = Rb1Rb2 = Rb1Rot(Y, ∆w)Rot(X, ∆x)Rot(Z, ∆z) (6)

where ∆w, ∆x, ∆z are angular vibration errors along each axis direction.
The shafting error of the azimuth axis relative to the base, demonstrated in Figure 5,

mainly comprises the geometric frame error, servo control system error, and encoder error.
Several coordinates are involved, defined as follows: (1) The base coordinate b, whose XB
and YB axes are in the mounting plane of the telescope and the moving platform, while the
ZB axis is perpendicular to that plane. (2) The azimuth base coordinate A0, whose YA0 axis
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is parallel to the zero direction of the azimuth encoder and the ZA0 axis is perpendicular to
the outer flange plane of the azimuth frame. (3) The azimuth gimbal coordinate A1, which
is attached to the azimuth frame and used to describe the azimuth axis movement. The
transformation matrix of the azimuth axis can be expressed as{

R̂A0
B = Rot(Y,−∆γ0)Rot(X, ∆β0)

R̂A1
A0 = Rot(Y,−∆γ1)Rot(X, ∆β1)Rot(Z, Â)

(7)

R̂A0
B =

 cos(∆γ0) 0 sin(∆γ0)
0 1 0

− sin(∆γ0) 0 cos(∆γ0)

1 0 0
0 cos(∆β0) sin(β0)
0 − sin(β0) cos(β0)



Rot(Z, Â) =

cos(Â) − sin(Â) 0
sin(Â) cos(Â) 0

0 0 1


where (∆γ0, β0) denotes the perpendicularity error, ∆γ1, ∆β1 denotes the rotation error,
Â = Ab + ∆A = Ab + ∆As0 + ∆As1 + ∆As2, Ab denotes the desired azimuth, ∆As0 denotes
the zero position error, ∆As1 denotes the tracking error, and ∆As2 denotes the encoder
measurement error.

Figure 5. Shafting errors of the azimuth axis.

Similar to the azimuth axis, Figure 6 illustrates the elevation axis shafting errors.
The azimuth gimbal coordinate A1, elevation base coordinate E0, and elevation gimbal
coordinate E1 are involved. The transformation matrix from the azimuth gimbal A1 to the
elevation gimbal E1 can be expressed as{

R̂E0
A1 = Rot(Y, ∆γ2)Rot(Z, ∆α2)

R̂E1
E0 = Rot(Y,−∆γ3)Rot(X, Ê)Rot(Z, ∆α3)

(8)

where Ê = Eb + ∆E = Eb + ∆Es0 + ∆Es1 + ∆Es2.
Figure 7 portrays the optical axis perpendicularity error between the target coordinate

L and the elevation coordinate E. Due to the two-axis frame of the telescope, there is no
relative movement of the optical axis with respect to the elevation axis, implying no rotation
error. Therefore, the error transformation matrix is expressed as

R̂L
E1 = Rot(X,−∆β4)Rot(Z, ∆α4) (9)
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Figure 6. Shafting errors of the elevation axis.

Figure 7. Perpendicularity error of optical axis.

3.3. Linear Model Construction

In summary, the actual positioning equation of the observed target from the geographic
coordinate g to the target coordinate L can be obtained based on Formulas (5)–(9).

Ĝ = R̂g
mR̂m

B R̂B
A0R̂A0

A1R̂A1
E0 R̂E0

E1R̂E1
L L̂ (10)

Accordingly, in practice, the pointing error model of the MPEOT is{
B1 = ĜR̂g

mR̂m
b

B2 = R̂b
A0R̂A0

A1R̂A1
E0 R̂E0

E1R̂E1
L L̂

(11)

where Ĝ = [Xg, Yg, Zg]T , L̂ = [0, 1, 0]T , B1 = [Xb1, Yb1, Zb1]
T , B2 = [Xb2, Yb2, Zb2]

T . To
sequentially expand Equation (11), using the following simplification principle, each error
factor ∆ is a small quantity, i.e., cos ∆ = 1, sin ∆ = 0 while ignoring the higher order
error term. 

Xb1 = kx + my∆y + mp∆p + mr∆r + mz∆z + mw∆w
Yb1 = ky + ny∆y + np∆p + nz∆z + nx∆x
Zb1 = kz + hy∆y + hp∆p + hr∆r + hx∆x + hw∆w

(12)
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

Xb2 = ∆y0 sin(Eb)− (∆β4 + ∆E− ∆β1) sin(Ab) sin(Eb) + ∆α4 cos(Ab)

+ cos(Eb) sin(Ab) + (∆A + ∆α2 + ∆α3) cos(Ab) cos(Eb)

+ (∆γ1 − ∆γ2) sin(Ab) sin(Eb)

Yb2 = ∆β0 sin(Eb)− ∆α4 sin(Ab)− (∆β4 + ∆E− ∆β1) cos(Ab) sin(Eb)

+ cos(Ab) cos(Eb)− (∆A + ∆α2 + ∆α3) cos(Eb) sin(Ab)

− (∆γ1 − ∆γ2) sin(Ab) sin(Eb)

Zb2 = (∆β1 − ∆E) cos(Eb)− sin(Eb)− ∆β4 cos(Eb)

+ ∆β0 cos(Ab) cos(Eb) + ∆γ0 cos(Eb) sin(Ab)

(13)

In addition, the conversion of Cartesian coordinates into pointing angles is given by{
tan(Ab + δA1) = X̂b1/Ŷb1

sin(Eb + δE1) = Ẑb1

{
tan(Ab + δA2) = X̂b2/Ŷb2

sin(Eb + δE2) = Ẑb2
(14)

Substituting Equations (12) and (13) into Equation (14) and expanding, a linear model
of the pointing error, named the full parameter model (FPM), is obtained as[

δA
δE

]
=

[
δA1 + δA2
δE1 + δE2

]
= HX +

[
εA
εE

]
(15)

HT =



∆β0 ∆β0

∆γ0 ∆γ0

(∆γ1 − ∆γ2) ∆γ

∆α4 ∆p
∆γ ∆r
∆p ∆x
∆r ∆w
∆z ∆β1 − ∆E− ∆β4 − 2 tan(Eb) + kE2

∆x 0
∆w 0

∆A + ∆α2 + ∆α3 + kA2 0



, X =



p1 q1

p2 q2

p3 q3

p4 q4

p5 q5

p6 q6

p7 q7

p8 1
p9 0
p10 0
1 0



.

p1 = − sin(Ab) tan(Eb), p2 = cos(Ab) tan(Eb), p3 = tan(Eb), p4 = sec(Eb),

p5 =
my cos(Ab)−ny sin(Ab)

k f m
, p6 =

mp cos(Ab)−np sin(Ab)
k f m

, p7 = mr cos(Ab)
k f m

, p8 = mz cos(Ab)−nz sin(Ab)
k f m

,

p9 = − nx sin(Ab)
k f m

, p10 = mw cos(Ab)
k f m

, kA2 =
kx cos(Ab)−ky sin(Ab)

k f m
, k f m = ky cos(Ab)+ kx sin(Ab),

q1 = cos(Ab), q2 = sin(Ab), q3 = hy sec(Eb), q4 = hp sec(Eb), q5 = hr sec(Eb),
q6 = hx sec(Eb), q7 = hw sec(Eb), kE2 = kz sec(Eb)− tan(Eb).

4. Model Optimization Based on Stepwise Regression
4.1. Multicollinearity

A multiple linear regression model y = β0 + β1x1 + β2x2 + . . . + βpxp has a basic
assumption that is rank (X) = p + 1, where X is known as the design matrix. If there
exist p numbers, making the following equation true, multicollinearity exists between the
independent variables (x1, x2, . . . , xp) [32].

c0 + c1xi1 + c2xi2 + . . . + cpxip ≈ 0, i = 1, 2, . . . , n (16)

Objectively speaking, when an event involves multiple factors, there is typically
a certain degree of correlation between them. When a group of variables is strongly
correlated with each other, it is considered to violate the basic assumption of the multiple
linear regression model. In Equation (15), the terms of the full parameter model are
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trigonometric functions of the angular positions of the axes, which are interrelated with
each other. Therefore, it is reasonable to infer that the explanatory variables of this model
have significant collinearity.

If the regression model has multicollinearity, the parameter estimates via OLSE are
particularly unstable, and the variance of the coefficients rises more rapidly as the mul-
ticollinearity obtains more. This effect can result in a situation where some independent
variable regression coefficients fail significance tests when the regression equation is highly
significant, and the structural relationships between variables become distorted. Although
multicollinearity has no influence on data fitting, it is worth noting that if the correlation
of independent variables cannot be guaranteed to remain static in the prediction period,
multicollinearity will have a significant negative effect on the regression prediction and
misrepresent the prediction results.

A vital technique for assessing the degree of multicollinearity and diagnosing is the
variance inflation factor (VIF) methodology [33]. Let X∗

′
X∗ = (rij) be the correlation matrix

of the independent variables after central standardization, and then the diagonal elements
of its inverse matrix are the variance inflation factors VIFj = cjj. The formula is as follows.

C = (cij) = (X∗
′
X∗)−1 (17)

It is proven that the cjj and the coefficient of multiple determination R2
j are related :

cjj =
1

1− R2
j

(18)

The stronger the linear correlation (measured by the R2
j ) of the independent variable

xj with the others, the more severe multicollinearity is. It is empirically shown that there is
serious multicollinearity between the independent variables when VIFj ≥ 10, which might
greatly affect the least-squares estimates [32].

4.2. Stepwise Regression

The most common approach to eliminate multicollinearity is to re-select the inde-
pendent variables, including the forward method, the backward method, and the most
commonly used stepwise regression [32]. As shown in Figure 8, variables are introduced
sequentially and required to be removed when the original variables no longer become
significant due to the later ones. Notably, only one variable can be introduced or excluded
at a time. Furthermore, to guarantee that only significant variables are incorporated into
the regression equation, an F-test is essential for each procedure. This operation continues
until no more variables are imported or deleted. That is, the idea of stepwise regression is
essentially in and out, making it possible to introduce the elements that strongly relate to
the dependent variable first and then eliminate those with overlapping contributions. In
short, the stepwise regression compensates for the defects of the forward and backward
methods, making the final regression subset optimal.
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Figure 8. Schematic diagram of the stepwise regression process.

4.3. Evaluation of Optimized Parameter Model

Properly dropping insignificant independent variables can considerably reduce or
even eliminate the multicollinearity of the regression model. Moreover, the following
common criteria can be used to measure the merit of the subset selection [32]. (1) Maximize
the freedom-adjusted multiple determination coefficients R2

a. This principle only pursues
the goodness of fit of the data. Assuming that n and p are the numbers of samples and
independent variables, respectively, with the following specific expression.

R2
a = 1− n− 1

n− p− 1
(1− R2) (19)

(2) Akaike information criterion (AIC). The model that matches this criterion provides
the best explanation for the data but has the least free parameters. Given that the random
error term of the regression model obeys a normal distribution, the likelihood function
leads to the equation.

AIC = nln(SSE) + 2p (20)

(3) Minimize statistics Cp. Mallows (1964) proposed a statistic that can be used for
selecting independent variables in terms of prediction.

Cp = (n−m− 1)
SSEp

SSEm
− n + 2p (21)

In particular, m and n refer to the number of independent variables of the whole model
and the selected model, respectively.

The priority of the criteria selection is different depending on the purpose of the
research. If the regression equation is intended for forecasting, the Cp-statistic criterion is
first considered, which minimizes the mean square error of the predicted values. In reality,
the criteria should be considered comprehensively.

5. Experiment and Results

Having discussed how to construct the optimized parameter model (OPM) of the
pointing error based on stepwise regression, this section conducts star-gazing experiments
and evaluates the effectiveness of the model proposed in this paper compared to the
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full parameter model (FPM) and the traditional mount model (MM). An electro-optical
telescope carried out 4 observations of stars randomly distributed throughout the sky
within 2 days, in which researchers collected a total of 54 valid data sets. Moreover, during
each observation, the telescope mounted on a sailing ship pointed intermittently to a star
and made 10 samples per ‘pointing’.

5.1. Data Preparation

In order to assess the fitting effect of the error model and the temporal validity of the
parameters, the 18 sets of data collected from the first observation were used as training
samples and the data gathered from the remaining 3 observations were used as test samples
in this work. The distribution of the theoretical positions of the satellites in geographic
coordinates during the observation period is shown in Figure 9, where the test samples
cover an area partially beyond that of the training samples.

Figure 10 depicts the attitude of the moving platform during the observations; aside
from the first 18 pointing tests, the rest only contain 12 sets of data per test. It is obvious
that the attitude of the platform in the last test is different from the previous ones. This
difference is logical given that the first three observations begin at 20:00, 22:13, and 22:19 of
the same day, while the last observation starts at 19:23 of the next day.

Figure 9. Star map distribution of the experiment.

(a) (b) (c)

Figure 10. Attitude of moving-platform (a) in Yaw (b) in Pitch (c) in Roll.

The original pointing errors for the three subsequent tests of MPEOT can be acquired
based on the theoretical positions of the target and the measured values of the encoder,
as shown in Figure 11, with the errors in azimuth and elevation expressed by RMS, being
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153.09′′, 163.61′′, 136.38′′, and 813.10′′, 781.03′′, 789.28′′, respectively. These errors are much
more than 60 arc seconds while presenting certain rules.

(a) (b)

Figure 11. Original pointing error of the EOT (a) in azimuth and (b) in elevation.

5.2. Model Determination

To rectify the pointing errors, we substituted the above data into Equation (15) and
solved the parameters by OLSE. The statistical analysis was then performed using SPSS
Statistics, IBM, New York, USA where the VIFs of all variables exceeded 100 and some
even surpassed 1000. The results indicated that the full parameter model (FPM) had severe
multicollinearity that needed to be removed. Next, the stepwise regression technique was
adopted to obtain the optimized parameter model (OPM) as follows, where the significance
levels of entry and exclusion were set at 5% and 10%, respectively, using the F-test.{

δA = ∆β0 p1 + ∆γ0 p2 + ∆α4 p4 + (∆A + ∆α2 + ∆α3 + kA2) + εA

δE = ∆rq5 + ∆xq6 + (β1 − ∆E− ∆β4 − 2 tan(Eb) + kE2) + εE
(22)


δA =− ∆β0 sin(Ab) tan(Eb)− ∆γ0 cos(Ab) tan(Eb) + ∆α4 sec(Eb)

+ (∆A + ∆α2 + ∆α3 + kA2) + εA

δE =∆rhr sec(Eb) + ∆xhx sec(Eb) + (∆β1 − ∆E− ∆β4 − 2 tan(Eb) + kE2) + εE

Based on the hypothesis of normality, the model has passed the F-test and t-test,
indicating that the regression equation and coefficients are significant. Meanwhile, there is
no multicollinearity between the independent variables as VIF ≤ 2, which results in better
robustness of the parameters estimated by OLSE. In addition, the model works well with
all three criteria mentioned above, where the Cp-statistic criterion is prioritized due to the
prediction purpose.

From Equation (22) we can see that the azimuth error relates closely to the angular
positions of the axes. By contrast, the elevation error involves more, since hr and hx are
calculated from the target position and platform attitude.

5.3. Experiment Results

Figure 12 shows the results of the full parameter model (FPM) corrected for pointing
errors. It is clear that the model works in a limited time, and the correction for azimuth
and elevation in the third test is not effective. In contrast, the correction of the optimized
parameter model (OPM) works as expected, as displayed in Figure 13, and the maximum
residuals are less than 50 arc seconds in all three tests. Here are the details. The corrected
azimuth (RMS) is 14.07′′, 12.71′′, and 28.93′′, and the pointing accuracy is improved accord-
ingly, i.e., 90.81%, 92.23%, and 78.79%. Similarly, The corrected elevation (RMS) is 12.94′′,
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12.73′′, and 28.30′′, and the accuracy is improved accordingly, i.e., 98.41%, 98.37%, and
96.41%. As seen in Figure 14, the results of the mount model are similar to those of the
optimized parameter model. However, the partial residuals of azimuth fluctuate widely in
all three tests.

(a) (b)

Figure 12. Residual errors of FPM (a) in azimuth and (b) in elevation.

(a) (b)

Figure 13. Residual errors of OPM (a) in azimuth and (b) in elevation.

(a) (b)

Figure 14. Residual errors of MM (a) in azimuth and (b) in elevation.

Table 1 compares the RMS and maximum values of pointing errors corrected by
the three models. Note that the results of azimuth and elevation are similar in tendency
between the three experiments. In contrast, the residual curves of the azimuth and elevation
are completely different in each test. What stands out in the graphs above is that there is a
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marked and steady trend between the revised elevation and the real azimuth of the target
in the geographic coordinate, decreasing and then rising in all three trials.

Figure 15 arranges these residuals in the temporal sequence of observations, divided
into three groups based on the model used; each group contains twelve revised pointing
errors. What can be clearly seen in this graph is that during the entire pointing correction
test, a few errors from the mount model vary greatly. Importantly, the errors from the
optimized parameter model have slower growing trends compared to the full parameter
model, both in azimuth and elevation. Therefore, the optimized parameter model proposed
in this paper can allow the MPEOT pointing to maintain a certain accuracy over a longer
observation period.

Table 1. Pointing precision of the EOT after correction.

Pointing
Model

Experiment
Number

Azimuth Elevation
RMS Maximum RMS Maximum

FPM
Test 1 19.67′′ 52.32′′ 12.10′′ 27.47′′

Test 2 17.74′′ 28.21′′ 10.12′′ 19.64′′

Test 3 62.18′′ 128.95′′ 79.49′′ 128.15′′

OPM
Test 1 14.07′′ 30.59′′ 12.94′′ 20.02′′

Test 2 12.71′′ 23.02′′ 12.73′′ 16.73′′

Test 3 28.93′′ 42.08′′ 28.30′′ 40.42′′

MM
Test 1 38.43′′ 81.77′′ 12.45′′ 18.23′′

Test 2 30.18′′ 91.25′′ 11.89′′ 17.50′′

Test 3 43.09′′ 106.14′′ 28.31′′ 40.15′′

(a) (b)

Figure 15. Residuals of FPM, OPM, and MM (a) in azimuth and (b) in elevation.

6. Discussion

The following is a discussion of the test results. Firstly, the mount model, a critical
component of modern large telescopes, was found to be ineffective for azimuth correction
at certain locations in this study, while the correction effect of the two-parameter models
mentioned above was better in the first two tests, especially the optimized parameter
model, which performed better over a longer period. There are two possible explanations
for this phenomenon: (1) The mount model only deals with mechanical errors in the
device itself and not with the alignment and measurement of the platform navigation
system. (2) The training samples were small and unevenly distributed, resulting in lower
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prediction accuracy over the range of independent variables when the model contains
more relevant parameters. Secondly, although the optimized parameter model is based
on kinematic analysis, the errors contained in the parameters of the model are difficult to
separate, leading to reduced reliability in the identification of relevant physical parameters.
This is an important issue for future research. Thirdly, the optimized parameter model
performs as well as the mount model, despite having two correction terms for the elevation
error. A probable explanation is that it contains multiple sources of information and no
multicollinearity. Finally, the elevation residual curves in the three tests generally showed
a regular trend, suggesting that a certain factor, i.e., astronomical refraction, was missed
during modeling. Therefore, choosing the appropriate empirical term to compensate for
this trend is another area of research interest.

7. Conclusions

In order to improve the pointing accuracy of MPEOT, a new optimized parameter
model was proposed in this paper to compensate for the systematic errors, based on a
comprehensive analysis of geometric error sources and correlation among parameters.
Several star-gazing experiments with a shipboard electro-optical telescope have verified
the effectiveness of the proposal.

This study has found that pointing errors involve equipment and platform navigation
systems, such as manufacturing errors, misalignment, and environmental disturbance,
among others. Moreover, the study found that these factors have mutually coupled effects
on pointing. The second major finding was that the optimized parameter model established
in this paper through stepwise regression outperformed the mount model in terms of
accuracy and valid duration. Concretely, the corrected pointing accuracy was better than
50 arcsec for approximately 23 h. The presented method is also applicable to analogous
two-degrees-of-freedom equipment.
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