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Abstract: Xiong’an New Area is defined as the future city of China, and the regulation of water
resources is an important part of the scientific development of the city. Baiyang Lake, the main
supplying water for the city, is selected as the study area, and the water quality extraction of
four typical river sections is taken as the research objective. The GaiaSky-mini2-VN hyperspectral
imaging system was executed on the UAV to obtain the river hyperspectral data for four winter
periods. Synchronously, water samples of COD, PI, AN, TP, and TN were collected on the ground,
and the in situ data under the same coordinate were obtained. A total of 2 algorithms of band
difference and band ratio are established, and the relatively optimal model is obtained based on
18 spectral transformations. The conclusion of the strength of water quality parameters’ content
along the four regions is obtained. This study revealed four types of river self-purification, namely,
uniform type, enhanced type, jitter type, and weakened type, which provided the scientific basis for
water source traceability evaluation, water pollution source area analysis, and water environment
comprehensive treatment.

Keywords: hyperspectral imager; UAV remote sensing; water quality modeling; Xiong’an New Area;
hyperspectral remote sensing; GaiaSky-mini2-VN

1. Introduction

China set up Xiong’an New Area near the capital Beijing in April 2018, known as the
country’s millennium plan and national event [1,2]. This new city will play an exemplary
role in China’s modernization construction in the future [3]. Therefore, the planning
and construction of the Xiong’an New Area are of great significance and far-reaching
influence [2,4]. The starting area of the city is about 100 km2, the medium-term development
area is about 200 km2, and the long-term control area is about 2000 km2 [3]. Baiyang Lake,
located in Xiong’an New Area, is a national key tourist and open area, with a water area
of 366 km2, and it is the largest freshwater lake in the North China Plain [1]. This lake is
formed by the repeated evolution from sea to lake and from lake to land. Its water quality
is one of the main ecological and environmental factors for the construction of the new
area, and it is urgent to introduce advanced technology and methods. As an important
technical means of water environment monitoring, imaging spectrum technology has made
great progress in monitoring effects with the continuous promotion of economic and social
development since the invention of photography in the 19th century [5].

As an emerging urban construction project, Xiong’an New Area faces a series of chal-
lenges in its water quality monitoring [6]. On the one hand, located at the junction of
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Beijing, Tianjin, and Hebei, the surrounding industrial and agricultural activities have a
relatively large impact on the water environment, requiring a considerable investment
of manpower and resources for comprehensive protection and monitoring of water re-
sources. On the other hand, due to the relatively limited fiscal expenditures in the new
area, how to allocate and utilize monitoring and protection resources reasonably is also
a challenge [7]. Traditional water quality monitoring methods require on-site sampling
and laboratory testing, which is tedious and time consuming [8,9]. Additionally, given
the large scale and numerous water bodies in the new area, how to conduct rapid and
efficient monitoring is another challenge. The water quality monitoring data is relatively
large, and comprehensively analyzing water quality information through data modeling,
data fusion, and other technical means and providing scientifically effective strategies
and suggestions is another technical challenge [10,11]. As Xiong’an New Area is rapidly
developing and expanding, the extent to which residents and businesses attach importance
to environmental protection varies, and how to strengthen publicity and education and
increase public participation to guide everyone to actively participate in environmental
protection is an important challenge.

Firstly, traditional methods cannot meet the demand for efficient water quality mon-
itoring. Currently, traditional water quality monitoring methods in Xiong’an New Area
mainly include on-site sampling, sensor monitoring, GIS-based water quality evaluation,
and remote-sensing monitoring [12]. On-site sampling requires collecting water samples
and analyzing them in a laboratory, which is time consuming, requires a lot of manpower,
and has limited coverage [13]. Sensor monitoring involves installing a large number of
sensors in water bodies to monitor parameters such as dissolved oxygen, pH value, and
temperature in real time, but this method has high management and maintenance costs and
limited coverage [14–16]. GIS technology is used to divide water bodies in Xiong’an New
Area into zones, select appropriate water quality indicators based on their characteristics,
establish a data model, and conduct quantitative analysis to evaluate the water quality
of each zone [17,18]. Traditional remote-sensing technology can obtain surface spectral
data of water bodies and infer the chemical composition of water bodies by calculating
the absorption and scattering characteristics of chemicals. Although it can effectively im-
prove the accuracy of water quality monitoring by integrating spectral information from
countless bands, it still faces challenges such as high monitoring difficulty and complex
data processing.

Secondly, the emergence of unmanned aerial vehicle (UAV) remote-sensing technology
provides new opportunities for water quality monitoring. UAVs are highly maneuverable,
providing possibilities for further optimization of remote-sensing technology. The technical
process of water quality monitoring using UAV remote sensing generally includes the
following steps: selecting suitable UAVs, sensors, and remote-sensing software for data
collection based on factors such as water type, research purpose, and data accuracy [19];
planning the flight path of the UAV based on the shape and size of the study area; using
the spectral sensor to acquire water reflectance spectral data and record spatial coordinates
after UAV flight; and importing acquired spectral data into remote-sensing software for
data processing and analysis. In this process, the corresponding water quality parameters
are obtained by selecting the appropriate inversion model and using prior information or
field observation data for correction and validation [20,21]. The obtained water quality
parameters through remote-sensing technology can be used to evaluate and analyze the
pollution status and dynamic changes of the water body. In addition, it is necessary
to visualize and output the processing results in the form of graphs or charts. UAV
hyperspectral remote-sensing technology can analyze the reflectance spectra of water
surfaces to obtain water quality parameter information [22]. Chlorophyll-a is a chemical
substance used to determine the presence of blue-green algae and green plants, and its
concentration in the water can be determined by identifying the chlorophyll absorption
peaks in the spectrum [23]. Suspended solids refer to tiny particles or microorganisms
dissolved in water, and their concentration affects the transparency and chromaticity of the
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water, which can be determined by analyzing the scattering and absorption peaks in the
spectrum [24]. Dissolved organic matter refers to organic substances dissolved in water,
and its content can reflect the nutritional status and pollution level of the water, which can
be determined by analyzing specific absorption peaks in the spectrum [25]. PH value is a
characteristic parameter for measuring the acid-base property of water, and its value can
be determined by analyzing the pH-sensitive region in the spectrum [22].

Thirdly, there is an urgent need for fast-processing algorithms. Currently, there are
some UAV hyperspectral water quality monitoring algorithms available. The algorithm
based on partial least squares regression (PLSR) processes the hyperspectral data into a
data matrix and uses the PLSR model to fit the experimental data for rapid and accurate
prediction of parameters such as water color, blue-green algae, and turbidity [26,27]. The
algorithm based on principal component analysis (PCA) and support vector machine
(SVM) first uses the PCA algorithm to reduce the dimensionality of the hyperspectral
data and convert it into a 2D image [28,29]. Then, the SVM model is used to classify
the image and identify parameters such as blue-green algae, green algae, and yellow-
brown algae in the water. The algorithm based on multivariable linear regression (MLR)
processes the hyperspectral data into a feature matrix and uses the MLR model to predict
parameters such as total suspended solids and chlorophyll-a in the water [28]. These
algorithms cannot effectively search, extract, integrate, and organize information during
the information extraction process, which is an important factor affecting the efficiency of
information extraction. By using various band combination algorithms to find the required
information, selecting and extracting accurate information, and integrating multiple pieces
of information, the efficiency of information extraction can be improved.

To address the above issues, this article conducted a series of research work, this paper
selects four key river sections and establishes a water quality hyperspectral monitoring
model suitable for engineering application according to the actual needs of water qual-
ity monitoring in Xiong’an New Area in winter [30]. The algorithm design is divided
into four stages: analysis, synthesis, summary, and application. (1) The corresponding
relationship between 18 kinds of transformation data and the content of spectral data
is analyzed, and the best accuracy of band difference and band ratio model is obtained;
(2) The relative optimal model of each water quality indicator is obtained by integrating the
model precision, and the change law of water pollutants is obtained in the form of spatial
distribution mapping; (3) The pollutant content of different river sections is summarized,
and the potential pollution source types are obtained; (4) Relevant conclusions can be
applied to pollution source monitoring, water self-purification capacity assessment, water
quality assessment, and other fields. Relevant achievements can promote the progress of
water quality surveys from digital to intelligent and promote the development of digital
intelligent environmental protection.

2. Materials and Methods
2.1. The Study Area

Baiyang Lake is a natural lake in the middle of the Daqing River Basin and one of the
few lakes on the North China Plain (115◦45′~116◦07′ E, 38◦44′–38◦59′ N) (Figure 1) [31].
The lake has a circumference of 215 km, an east–west length of 39.5 km, south–north width
of 28.5 km, a water area of 108.8 km2, a water level of 7.09 m, a total area of 336 km2, and a
water storage capacity of 102.4 million m3, which located in the fan edge depression at the
intersection of Yongding River and Hutuo River alluvial fans in front of Taihang Mountains.
The lake receives nine large rivers from the north, west, and south into the lake, such as
Baohe River, Tanghe River, Caohe River, and Chulong River. It flows into the Daqing River
through the flood gate and overflow weir in the northeast of the lake and the Zhaowangxin
River [1].
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Figure 1. Location of Baiyang Lake. The study area is located 140 km southwest of Beijing, the capital 
of China. China decided to establish Xiong’an New Area in Xiongxian County, Anxin County, and 
Rongcheng County on 1 April 2017. Most of Baiyang Lake is under the jurisdiction of Xiong’an New 
Area and has become an important ecological water body for the development of Xiong’an New 
Area. 

Four channel segments, A, B, C, and D, were selected for data acquisition and analy-
sis in order to compare the water quality in the lake area (Figure 2) [32]. Channel segment 
A is the Xiaobai section in the project of diverting the Yellow River into Hebei to fill the 
lake, which supplies the Yellow River water to Baiyang Lake through the Xiaobai River. 
The water from the Yellow River Diversion Gate in Puyang City, Henan Province, is a self-
flowing water diversion, which flows through 23 counties in Henan and Hebei provinces 
and finally enters Baiyang Lake (Figure 3a). Channel segment B is the key monitoring 
section of Guangdian Zhangzhuang National Control Station and the traffic terminal from 
the water town to the county seat. There are freshwater aquaculture and natural fishing 
industry, reed and cattail processing industry, labor export industry, fishing tool produc-
tion, and other production enterprises around, which are at high risk of pollution [33]. 
The selection of this river section is of great significance for mastering the current situation 
of water quality in densely populated areas (Figure 3b). Channel segment C is the key 
monitoring section of Anzhou Automatic Station and is one of the important tributaries 
upstream of Baiyang Lake. It passes through a large number of agricultural lands, resi-
dential lands, and production lands, and its water quality is directly related to the water 
quality of Baiyang Lake (Figure 3c). Channel segment D is the key section of Nanliu-
zhuang National Control Station, where the upstream water flows into Baiyangdian Lake. 
The river section is divided into paddy fields. Due to the use of chemical fertilizers and 
pesticides, the potential pollution risk is high (Figure 3d). 

Figure 1. Location of Baiyang Lake. The study area is located 140 km southwest of Beijing, the capital
of China. China decided to establish Xiong’an New Area in Xiongxian County, Anxin County, and
Rongcheng County on 1 April 2017. Most of Baiyang Lake is under the jurisdiction of Xiong’an New
Area and has become an important ecological water body for the development of Xiong’an New Area.

Four channel segments, A, B, C, and D, were selected for data acquisition and analysis
in order to compare the water quality in the lake area (Figure 2) [32]. Channel segment A is
the Xiaobai section in the project of diverting the Yellow River into Hebei to fill the lake,
which supplies the Yellow River water to Baiyang Lake through the Xiaobai River. The water
from the Yellow River Diversion Gate in Puyang City, Henan Province, is a self-flowing
water diversion, which flows through 23 counties in Henan and Hebei provinces and
finally enters Baiyang Lake (Figure 3a). Channel segment B is the key monitoring section of
Guangdian Zhangzhuang National Control Station and the traffic terminal from the water
town to the county seat. There are freshwater aquaculture and natural fishing industry,
reed and cattail processing industry, labor export industry, fishing tool production, and
other production enterprises around, which are at high risk of pollution [33]. The selection
of this river section is of great significance for mastering the current situation of water
quality in densely populated areas (Figure 3b). Channel segment C is the key monitoring
section of Anzhou Automatic Station and is one of the important tributaries upstream of
Baiyang Lake. It passes through a large number of agricultural lands, residential lands,
and production lands, and its water quality is directly related to the water quality of
Baiyang Lake (Figure 3c). Channel segment D is the key section of Nanliuzhuang National
Control Station, where the upstream water flows into Baiyangdian Lake. The river section
is divided into paddy fields. Due to the use of chemical fertilizers and pesticides, the
potential pollution risk is high (Figure 3d).
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Company, which located at 58-1-108 Feihong Road, Nanhu Avenue, Liangxi District, Wuxi 
City, Jiangsu Province, was used to obtain winter hyperspectral data of four channel seg-
ments. The sensor is a high-performance airborne hyperspectral imaging system devel-
oped for small rotorcraft. The sensor adopts the built-in scanning system and stability 
enhancement system with independent intellectual property rights, which overcomes the 
problems of poor imaging quality caused by the vibration of the UAV system when the 
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Figure 2. Four channel segments, A, B, C, and D, were selected for data acquisition and analysis.

2.2. Sensor and Data Processing

The GaiaSky-mini2-VN hyperspectral imaging system of Dualix Spectral Imaging
Company, which located at 58-1-108 Feihong Road, Nanhu Avenue, Liangxi District, Wuxi
City, Jiangsu Province, was used to obtain winter hyperspectral data of four channel seg-
ments. The sensor is a high-performance airborne hyperspectral imaging system developed
for small rotorcraft. The sensor adopts the built-in scanning system and stability enhance-
ment system with independent intellectual property rights, which overcomes the problems
of poor imaging quality caused by the vibration of the UAV system when the small UAV
system is equipped with a push-scan hyperspectral camera [34].

GaiaSky-mini2-VN uses the built-in push-scan imaging method. The width can reach
234 m, and the spatial resolution can reach 0.27 m at a flight height of 500 m. The spectral
resolution is 2.50 nm, and 176 band data can be obtained between the range of 400~1000 nm.
The effective spectral resolution is 4 nm [35]. The M600 pro-UAV system produced by DJ
Company is adopted, which integrates high-stability image stabilization platform, data-
acquisition controller, and high-precision positioning device, and can realize real-time
acquisition and storage of high-quality spectral data, and data processing after returning
to the ground [36]. The hyperspectral data of four channel segments in the study area
were obtained in four periods. The data is processed according to the process of data
restoration, reflectance calculation, and geometric correction in order to obtain the true
reflectance of the water body. Data restoration is to restore the original data collected by the
hyperspectral camera to uncompressed 16-bit hyperspectral data, image fast-view image
and calculated reflectivity data [37]. Reflectivity calculation is mainly based on extracting
the reference spectral curve from the diffuse reflectance target cloth laid on the ground
during the same flight and then combining it with the known calibration file of the diffuse
reflectance target cloth, calculating the reflectance of the spectral data collected during the
flight to obtain the hyperspectral reflectance data [38]. Calibration correction mainly uses
the original hyperspectral data to carry out dark pixel removal, relative radiation correction,
and spectral calibration by using the calibration file. Geometric calibration is conducted
to extract the position and attitude data from the inertial navigation system, synchronize
the hyperspectral data, use the position and attitude parameters to perform geometric
correction on the hyperspectral data, and eliminate the geometric deformation caused by
camera tilt and attitude instability [30,39]. Moreover, it synchronizes the hyperspectral data,
sets the reference projection plane of the WGS84 coordinate system, uses the position and
attitude parameters to geometric correct the hyperspectral data, eliminates the geometric
deformation caused by camera tilt and attitude instability, and outputs the reflectivity
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data with GPS position information under the WGS84 coordinate system according to the
position and attitude data output by the inertial navigation system [25,35].
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Figure 3. Geographic location and water boundary of the four river sections. (a) A water area of
3.48 km in length and 0.21 km2 in area was obtained, and the perimeter of the water boundary was
15.08 km on 5 November 2022; (b) B water area with a length of 2.05 km and an area of 0.05 km2

was obtained, and the perimeter of the water boundary was 4.62 km on 20 December 2022; (c) C
water area with a length of 3.12 km and an area of 0.13 km2 was obtained, and the perimeter of the
water boundary was 9.08 km on 17 January 2023; (d) D water area with a length of 1.82 km and
an area of 0.19 km2 was obtained, and the perimeter of the water area boundary was 3.66 km on
24 February 2023.

On the day of hyperspectral data acquisition of UAVs, water samples are collected
synchronously (Table 1) [28]. Take water samples from each sampling point with a 400 mL
polyethylene bottle, seal, and store them in a box containing an ice bag. The COD, PI,
AN, TP, and TN were obtained within 6 h. A total of 184 points of laboratory data were
obtained. COD, TP, and TN are measured by the DR6000 spectrophotometer produced by
HACH [9]. The assay accuracy of TP can reach 0.01 mg/L, and the measurement accuracy
of TN and COD is 0.1 mg/L. The PI is measured by HACH’s COD-203A instrument and
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the oxidation reduction potentiometric titration method [32]. The principle of ammonia
nitrogen measurement is that the ammonia nitrogen in the form of free ammonia or
ammonium ion reacts with Nessler’s reagent to form a reddish-brown complex. The
absorbance of the complex is proportional to the content of AN [40]. The absorbance is
measured at 420 nm [41].

Table 1. Statistical values of water quality parameters of different dates consisting of 184 sampling
test data.

Channel
Segment

COD (mg/L) PI (mg/L) AN (mg/L) TP (mg/L) TN (mg/L)

Range Mean Range Mean Range Mean Range Mean Range Mean

A 11.20–23.00 17.54 4.20–6.00 4.85 0.03–0.19 0.07 0.07–0.13 0.10 0.04–0.12 0.11
B 2.99–11.89 5.40 1.60–10.21 3.76 0.03–0.12 0.05 0.02–0.05 0.03 0.10–0.67 0.44
C 13.79–20.03 14.34 1.21–11.52 4.03 0.05–2.36 0.12 0.01–0.17 0.05 0.54–8.56 3.51
D 3.94–6.22 4.95 2.65–11.01 4.92 0.12–0.32 0.04 0.02–0.19 0.06 0.61–4.47 1.24

2.3. Algorithms

Two core ideas of algorithm design are adopted in order to realize the fast application
of water quality hyperspectral algorithm. The first step is to carry out a series of trans-
formation processing on the spectral data, including six forms, exponential, multivariate
scattering correction, envelope removal, logarithm, homogenization, differentiation, etc.
The second step is to expand the scale to the first and second order on this basis and further
explore the relatively optimal inversion model (Table 2) [30,40,42].

Table 2. Spectral transformation methods and calculation formulas. The collected spectral data are
processed by a series of spectral transformations to highlight the effective information expression in
the spectral data.

Serial Number Transformation Method Process Formulas

1 Original spectrum Xi = Ri
2 Exponential Xi = eRi

3 Multiple scattering correction Xi = (Ri − bi)/ki
4 Envelope elimination Xi = Ri/Ci
5 Logarithm Xi = Ln (Ri)
6 Homogenization Xi = (Ri − Rmin)/(Rmax − Rmin)
7 First-order differential Xi = Ri

′

8 Second-order differential Xi = Ri
′′

9 Exponential after first-order differential Xi = eRi
′

10 Exponential after second-order differential Xi = eRi
′′

11 Logarithm after first-order differential Xi = Ln
(

Ri
′
)

12 Logarithm after second-order differential Xi = Ln
(

Ri
′′
)

13 Homogenization after first-order differential Xi =
(

Ri
′ − R

′

min

)
/
(

R
′
max − R

′

min

)
14 Homogenization after second-order differential Xi =

(
Ri
′′ − R

′′

min

)
/
(

R
′′
max − R

′′

min

)
15 Envelope elimination after first-order differential Xi = Ri

′
/Ci

16 Envelope elimination after second-order differential Xi = Ri
′′
/Ci

17 Multiple scattering correction after first-order differential Xi =
(

Ri
′ − bi

)
/ki

18 Multiple scattering correction after second-order differential Xi =
(

Ri
′′ − bi

)
/ki

Xi is the processed spectral reflectivity; Ri is the spectral reflectivity; i is the band variable; bi is the baseline offset;
ki is the baseline translation; Rmin is the minimum reflectivity; Rmax is the maximum reflectivity; Ci is the envelope
curve value.

After calculation, it is equivalent to 17 kinds of spectral extended data in addition
to the original spectral data. In Python program, the mathematical model of content and
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spectral characteristic value is established. In order to facilitate the realization of the
model and meet the application requirements of terabyte big data, two band combination
algorithms, band difference and band ratio, are selected to carry out the inversion and
accuracy evaluation of key water quality parameters [43]. The band difference model is
a classic model for selecting characteristic bands, which can obtain the bands that have
the closest relationship with water quality content and the bands that have the least close
relationship [31]. By removing interference information, a more accurate calculation model
can be obtained. The formula is

y = a(F1 − F2) + b, (1)

where y is the inverse value of water content; a and b are model coefficients, respectively;
F1 is the characteristic variable most relevant to the content; and F2 is the characteristic
variable most irrelevant to the content. In addition to the subtraction model, the accuracy
of the ratio model is higher for the low content level where the content is in the percentile
or even the thousandth [36]. In the case of poor atmospheric correction effect, the ratio
model can further remove the radiation correction error between bands and improve the
retrieval accuracy of the model. The formula is

y = a
(

F1

F2

)
+ b, (2)

where y is the inverse value of water content; a and b are model coefficients, respectively; F1
is the characteristic variable most relevant to the content; and F2 is an arbitrary combination
of two spectral characteristic variables.

2.4. Accuracy Evaluation

The R2 is the square value of the correlation coefficient, which is used to evaluate
the overall predictive ability of the model. The larger the value, the higher the degree
of explanation of the independent variable to the dependent variable and the higher the
percentage of the change caused by the independent variable in the total change [32]. If
the determination coefficient R2 calculated by the model is closer to 1, it means that the
accuracy of the model is higher. For example, if the correlation coefficient between the
content of COD and the reflectance data at 540 nm is 0.70, then R2 is 0.49, that is, 49% of
the content of COD can be determined by the reflectance at 540 nm [44]. The calculation
formula is as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (3)

where n is the sample size, yi is the assay value of the content of point i, ŷi is the content
prediction value of spectral method of point i, and y is the mean of the assay value of the
samples. The RMSE indicates the stability of the prediction performance of the model. It
represents the degree of dispersion of the model prediction results compared with the true
value of the dependent variable. The lower the value, the better the stability of the model
prediction results [32,45,46]. The calculation formula is as follows:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2, (4)

where n is the sample size, yi is the assay value of the content of point i, and ŷi is the content
prediction value of the spectral method of point i. In general, the closer the slope of R2 and
the fitting equation is to 1, the smaller the RMSE is, the higher the accuracy of the model
is, and the more similar the trend of the prediction result is to the real situation. In order
to avoid the overfitting of the training model to misjudge the results, this study screened
the best model in different models based on R2 and evaluated the stability of the model
through RMSE.
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3. Results
3.1. Calculation Results

Linear models have many advantages in the calculation of water quality high-spectral
analysis compared to complex models [47]. Firstly, they are relatively simple and easy
to understand, making them a good starting point for water quality statistical analysis.
Secondly, they are computationally efficient and can be analyzed without the need for itera-
tive algorithms, saving computing resources [48]. Thirdly, they can provide interpretable
results by estimating the effect size of each spectral data on water quality parameters.
Fourthly, they can handle both continuous and categorical predictors, making them a
versatile tool for many applications. Finally, they can be combined with other advanced
statistical methods, such as regularization and variable selection, to improve performance
and generalizability [29]. These advantages make linear models a popular and practical
technique in the application of water quality high-spectral assessment. The spectral data
and content data are modeled to obtain the spectral transformation, calculation model,
and accuracy evaluation results of the four river sections (Table 3). The results show
that the spectral transformation methods required for the same water quality index are
different [9]. For example, the conversion methods of COD in four river sections are log-
arithm, envelope determination, original spectrum, and multiple scaling correction after
second-order differential.

Table 3. Calculation model and precision evaluation results of water quality key indicators.

Segment Indicators Transformation Method Calculation Model R2 RMSE

A

COD Logarithm y = −459 b695
b590

+ 486.90 0.82 5.39
PI First-order differential y = −3.20 b432

b790
+ 27.00 0.87 5.63

AN Envelope elimination y = 577(b484 − b552) + 11.65 0.83 0.69
TP Exponential y = −23.09(b488 − b468) + 6.51 0.85 0.20
TN First-order differential y = −2.85(b853 − b649)− 0.47 0.82 0.60

B

COD Envelope elimination y = −7.32 b720
b552

+ 3.44 0.89 3.74

PI Logarithm after
first-order differential y = −9.32 b769

b873
+ 4.56 0.92 3.76

AN Homogenization after
second-order differential y = 594.31(b484 − b552)− 392.40 0.72 3.78

TP Envelope elimination y = 583.53(b623 − b462)− 947.41 0.90 0.42

TN Exponential after
first-order differential y = −873.40(b769 − b607)− 5.32 0.91 1.24

C

COD Original spectrum y = −9.32 b726
b532

+ 5.45 0.85 1.09

PI Multiple-scattering correction
after first-order differential y = −10.32 b765

b976
+ 3.12 0.79 2.74

AN Multiple-scattering correction
after first-order differential y = 398.64(b945 − b594)− 8.74 0.87 0.79

TP Multiple-scattering correction y = 384.13(b712 − b437)− 8.69 0.86 0.73
TN First-order differential y = −746.30(b732 − b614)− 6.62 0.89 1.49

D

COD Multiple-scattering correction
after second-order differential y = 2.36 b752

b521
+ 5.98 0.78 0.22

PI Logarithm after
second-order differential y = −2.66 b853

b524
+ 1.85 0.93 3.84

AN Multiple-scattering correction
after first-order differential y = 124.63(b563 − b851)− 23.32 0.76 0.31

TP Homogenization y = 263.21(b462 − b836)− 52.48 0.90 3.01
TN Homogenization y = 254.32(b752 − b589) + 0.26 0.84 1.32

bi is the processed or original spectral data, and i is the corresponding wavelength (nm).

The relatively optimal model is obtained from the original spectrum to the complex
transformation method. There is no uniform transformation method for the other three
indicators. It shows that due to the complexity of water quality and the complexity of the
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environment when data are obtained, there is no universal spectral transformation method
that can highlight the information on water quality parameters [9]. The research in this
field is still in its infancy, and it is possible to make a new breakthrough with the increase
in data volume and the deepening of the summary of spectral laws [47]. In terms of the
calculation model, the mode of COD and PI models is ratio type, while the mode of band
combination of AN, TP, and TN is difference type, with similar laws. However, the selected
wavelengths are not consistent [42]. For example, the characteristic wavelengths of COD
in 4 river segments are 590 nm and 695 nm; 552 nm and 720 nm; 532 nm and 726 nm; and
521 nm and 752 nm, respectively. The other four indicators also present a similar situation.
Therefore, this method selects the relatively optimal characteristic band from the statistical
law. In terms of model accuracy R2, the extraction accuracy of COD is between 0.78 and
0.89; the extraction accuracy of PI is between 0.79 and 0.93; the extraction accuracy of AN
is between 0.72 and 0.87; the extraction accuracy of TP is between 0.85 and 0.90; and the
extraction accuracy of TN is between 0.82 and 0.91. It can be proved that the most difficult
indicators to extract are COD and AN [49]. The characteristic band of the former is mainly
in the ultraviolet band. It is difficult to extract COD content using this sensor. The content
of the latter is mixed with various types of nitrogen elements, and the dispersion of the
content value is not large, so it is difficult to extract. TP and TN are extracted in four river
sections with good results [5]. The law of RMSE is mainly related to the distribution range
of sample point content value. The larger the data value range, the smaller the RMSE value
and the more accurate the model. When the accuracy of the quantitative evaluation results
is similar, it is advisable to choose a model with a simpler structure in order to achieve
higher computational efficiency. Research has shown that the designed ratio model and
interpolation model can achieve fast water quality parameter calculations.

3.2. Mapping

The spatial distribution map of five water quality parameters of four channel segments
is made on the basis of the model.

1. Spatial distribution of COD (Figure 4a) [50]. The range of content in channel segment
A is between 1.00 and 33.75 mg/L, with an average content of 16.55 mg/L. At the
east–west and south–north halves of the river course, the content of COD is relatively
low, ranging from 11.00 to 17.73 mg/L. The high content appears downstream near
Baiyang Lake and reaches the peak at the south–north half, then slowly decreases,
and the content at the north side of the sluice further decreases to the low level. The
content value range of channel segment B is between 1.58 and 13.00 mg/L, with an
average content of 4.77 mg/L. The closer to the bank, the higher the content of COD,
between 7.24 and 1.16 mg/L, and the lower the content in the middle of the river. An
obviously high-value area appears in the area where the river meets, and the north is
close to the powerhouse. It is speculated that it is caused by the adverse emission or
diffusion of certain pollutants. The content range of channel segment C is between
0.10 and 22.00 mg/L, with an average content of 8.23 mg/L. The closer to the bank,
the higher the content of COD, which is between 9.89 and 18.56 mg/L, and the lower
the content in the middle of the river. There is an obviously high-value area near the
living area of residents. It is speculated that it is caused by the adverse emission or
diffusion of certain pollutants. The content range of channel segment D is between
4.06 and 5.56 mg/L, with an average content of 4.38 mg/L. In the west of the channel,
the content of COD is relatively high, ranging from 4.79 to 5.10 mg/L, while in the
east of the channel, the content is relatively low. There is an obvious high-value area
near the residential and the riverside areas. The content in the south of the river is
significantly higher than that in the north.

2. Spatial distribution of PI (Figure 4b) [51]. The value range of channel segment A
content is between 1.08 and 8.00 mg/L, with an average content of 4.82 mg/L. The
content in the east–west direction of the river is stable between 3.40 and 4.99 mg/L,
and the high content appears in the upstream part of the north–south direction,
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reaching about 6.00 mg/L, and after entering the downstream, the content is stable
at 4.00 mg/L. It is worth noting that the PI of the dam annex before entering the
lake further increased. The value range of B content in the channel segment is
1.86~14.00 mg/L, with an average content of 4.17 mg/L. The overall distribution
in the river channel is relatively uniform and lower than 8.00 mg/L. In the river
channel near the village, in the south and the village in the north, there is a certain
high-value area, which is directly related to the diffusion of the river flow. The PI is
significantly lower in reach with good mobility. The range of C content in the reach is
between 1.200 and 12.00 mg/L, with an average content of 3.03 mg/L. The overall
distribution in the river channel is relatively uniform and lower than 6.00 mg/L. There
are certain high-value areas at the edge of the river channel and near the confluence
of tributaries, which are directly related to the diffusion of river flow. The PI is
significantly lower in reach with good liquidity. The range of D content in the reach is
between 3.70 and 5.19 mg/L, with an average content of 4.15 mg/L. The content in
the west section of the river is significantly higher than that in the east section, and
the PI is significantly higher as it is closer to the residential area. The content in the
south of the river is generally higher than that in the north.

3. Spatial distribution of AN (Figure 4c) [41]. The value range content of channel segment
A is between 0.02~0.42 mg/L, with an average content of 0.09 mg/L. The overall
content of the river channel is low, and the content of the north–south upstream is
slightly higher. In general, the content rate near the bank and at the river bend is
higher than that of other river sections. The value range of content in channel segment
B is 0.027~0.20 mg/L, with an average content of 0.04 mg/L. The overall content of the
river is low, with a slight increase in the narrow tributaries in the north and near the
bank in the south. In general, the content near the bank and at the confluence of the
river is slightly higher than that of other river sections, which is at a low value. The
content range of channel segment C is between 0.001 and 2.28 mg/L, with an average
content of 0.12 mg/L. The overall content of the river channel is low. In the west, the
content is higher than that in the east, but the overall content is in a lower range. In
general, the content near the bank and at the confluence of the river is slightly higher
than that of other river sections, which is at a low value. The content range of channel
segment D is 0.024~0.17 mg/L, with an average content of 0.079 mg/L. The overall
content of the river channel is low. In the west, the content is higher than that in the
east, but the overall content is in a lower range. In general, the content near the bank
and at the confluence of the river is slightly higher than that of other river sections,
which is at a low value as a whole.

4. Spatial distribution of TP (Figure 4d) [52]. The content range of channel segment A
is between 0.003 and 0.20 mg/L, with an average content of 0.05 mg/L. The overall
content of the river is low, and the content of the east–west and south–north rivers
upstream is slightly higher. Before entering the lake, with the self-cleaning of the river,
the content decreases to below 0.02 mg/L. The content range of channel segment B
is 0.0001~0.05 mg/L, with an average content of 0.02 mg/L. The overall content of
the river is low, and the high value appears at the confluence of the river and near
the north wharf, as well as at the two branches in the east. The total phosphorus
content of other rivers is lower than 0.015 mg/L, which is in a very low pollution
concentration range. The content range of channel segment C is between 0.01 and
0.17 mg/L, with an average content of 0.05 mg/L. The overall content of the river
channel is low, and the high value appears at the confluence of the river channel and
near the bank, as well as at the residential area in the east. The total phosphorus
content of other rivers is lower than 0.016 mg/L, which is in a very low pollution
concentration range. The content range of channel segment D is 0.017~1.10 mg/L,
with an average content of 0.052 mg/L. The overall content of the river channel is low,
and the high value appears at the confluence of the river channel and near the bank, as
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well as at the residential area in the east. The total phosphorus content of the east river
is lower than 0.064 mg/L, which is within a very low pollution concentration range.

5. Spatial distribution of TN (Figure 4e) [53]. The content range of channel segment A is
0.04–0.80 mg/L, with an average content of 0.12 mg/L. The overall content of the river
is relatively low, and the content of the east–west and north–south rivers upstream is
relatively lower. Before entering the lake, the content shows a slight upward trend,
and the content rises to about 0.25 mg/L. The content range of channel segment B
is between 0.001 and 0.10 mg/L, with an average content of 0.04 mg/L. The overall
content of the river is low, and the distribution is very uniform. The north of the river
is close to the powerhouse, and there is a certain high value. It is speculated that the
flow velocity is slow at this place, resulting in the enrichment of total nitrogen, and
the content increases to more than 0.40 mg/L. The content range of channel segment
C is between 0.001 and 8.56 mg/L, with an average content of 3.50 mg/L. The overall
content of the river is low, and the distribution is very uniform. The north and south
sides of the river are close to the bank, and the east side of the river has entered the
residential area, showing a certain high value. It is speculated that the flow velocity is
slow at this place, resulting in the enrichment of total nitrogen, and the content of this
place increases to more than 0.20 mg/L. The content range of channel segment D is
0.52~2.01 mg/L, with an average content of 0.63 mg/L. The overall content of river
channels is low, and the content of river channels in the west is generally higher than
that in the east. There are certain high values on the north and south sides of the river,
near the bank, and at the residential area on the west side, but the overall content is
low, within 1.00 mg/L.
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Figure 4. Mapping results of five water quality indicators in four river segments. (a) The content of
COD indicates the rule of high value in the area where the river meets and is close to the residential
area; (b) PI is uniformly distributed in the river; (c) The AN content near the bank and at the river
bend is higher than that in other river sections; (d) The overall TP content of the river is low, and the
high value occurs at the confluence of the river and near the bank; (e) The TN content of the whole
river channel is low and evenly distributed.
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4. Discussion
4.1. The Relationship between Water Flow and Water Quality

The water quality indicators are extracted based on UAV hyperspectral data, which
provides technical support for the establishment of an intelligent water quality monitor-
ing platform in the Xiong’an New Area [25,34,54]. The self-purification of rivers mainly
includes dilution, sedimentation, microbial decay, and oxygen-consumption reoxygena-
tion [32,44]. On the one hand, the pollutants can be volatilized, neutralized, and degraded
due to the comprehensive effects of physical, chemical, and biological actions after the
water is polluted [55]. On the other hand, microorganisms in water can decompose pol-
lutants in water to purify water quality [56]. In general, pollutants in water bodies are
affected by the geographical environment, hydrological conditions, species and quantity
of microorganisms, water temperature, reoxygenation capacity, nature of pollutants, the
concentration of pollutants, etc. These processes occur simultaneously and affect each
other [9]. Therefore, the traditional dotting sampling method is difficult to achieve, and the
introduction of new technology is urgently needed in order to accurately grasp the water
quality change of the river [38,57].

The hyperspectral sensor is carried on the UAV, and the data is obtained along the river
channel. The assessment data of various pollutants in the river channel can be obtained
at one time in a short time [34,35,58]. Taking COD as an example, the calculation results
of each channel centerline are extracted from the inversion results (Figure 5). The water
quality distribution presents four laws:

• Uniform type. Water pollutants are evenly distributed throughout the river, indicating
that there are no obvious sewage outlets along the coast, or the pollutants in the whole
river are relatively high, and the self-purification effect is not significant, resulting in
the accumulation of pollutants (Figure 5a);

• Enhanced type. It is a common form of water pollutant enrichment, which often
occurs in rivers with many pollution discharge points along the coast. With the
gradual discharge of pollutants, the self-purification capacity of the river is exceeded,
resulting in serious pollution of the river water (Figure 5b);

• Jitter type. There are sporadic pollution sources along the river. New pollutants
will flow in but not exceed the self-purification capacity of the river after a period of
self-purification of the river. It shows a fluctuating distribution (Figure 5c);

• Weakened type. When the pollutants at the source of the river are high, or there are
clean tributaries flowing in along the way, the river will show a gradual decrease in
the content of pollutants. Under the influence of the self-purification capacity of the
river water, the downstream water quality is significantly improved (Figure 5d).

4.2. Frontiers of Hyperspectral Water Quality Algorithms

With the gradual development of the construction of the Xiong’an New Area and the
work of draining water into the lake, there is an urgent need for a technology that can
efficiently and quickly monitor the water quality and evaluate the health of the water envi-
ronment [2,3,44]. In terms of instrument principle, water-quality-monitoring technology
can be divided into contact technology and non-contact technology. The former includes
the water probe method, determination method, and biological method; The latter includes
remote-sensing spectroscopy, laser method, and transmission method. Each method has its
scope of application and shortcomings [28]. For example, the water inlet probe needs to
wipe the sensor regularly, the chemical method will produce secondary pollution, and the
biological method has no quantitative ability [56]. Therefore, non-contact optical methods
have gradually become the technical trend. Research shows that UAV hyperspectral tech-
nology can play a precise application effect in chlorophyll a, suspended particulate matter,
dissolved organic matter, transparency, total phosphorus, total nitrogen, ammonia nitrogen,
biochemical oxygen demand, water color, colored dissolved organic matter, dissolved
organic carbon, transparency, pH, turbidity, and water depth [41,46,57,59,60].
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Figure 5. Relationship between COD content and flow direction in different channel segments.
(a) The pollutant content in segment A has little to do with water flow; (b) The pollutant content
gradually increases as the water flows downstream; (c) The content of pollutants shows an alternating
pattern of increasing and decreasing; (d) Contrary to channel B, the pollutant content gradually
decreases as the water flows downstream.

The latest frontier of water quality spectral research includes the use of remote-sensing
technology for water quality monitoring and analysis. These cutting-edge technologies will
help to deepen our understanding of the causes and evolution of water pollution problems
and promote water quality protection and governance. High-resolution, multi-spectral
remote-sensing data can be obtained in large water areas using UAV hyperspectral remote-
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sensing technology, which reveals the presence and distribution of various organic and
inorganic substances in water bodies [22,24,27,61]. At the same time, related mathematical
models can be constructed to invert water quality parameters and discover new sources
of pollution from remote-sensing data for real-time monitoring and warning of the water
environment. In addition, chemical mapping analysis based on spectral analysis and
chemometrics theory has been widely applied in the field of water quality detection,
providing new ideas and methods for water quality evaluation [25,62]. Ultraviolet-spectral-
analysis-based water-quality-monitoring technology also has significant advantages such
as real-time detection, strong targeting, high accuracy, and low cost [27,63].

In UAV remote-sensing modeling, commonly used modeling algorithms include SVM,
random forest, KNN, and ANN [29,45,64–66]. Each algorithm has its own advantages and
disadvantages, and suitable algorithms need to be selected according to specific problems
and data features. This study improves the generalization ability and accuracy of the model
by transforming the original spectral data, which can handle nonlinear problems and high-
dimensional data, save a lot of computing time and computing resources, and reduce the
interference of noisy data [17,29]. Differential and ratio models were designed to classify
water quality due to factors such as insufficient sampling samples on the water surface
and atmospheric interference, enabling the algorithm to train models quickly and perform
classification. UAV hyperspectral water-quality-monitoring technology is a new method for
water quality monitoring. Its advantage lies in the ability to efficiently and quickly obtain
spectral data on large areas of water bodies, thereby accurately predicting and monitoring
the pollution status and dynamic changes of the water. This article conducted research
on UAV hyperspectral water quality monitoring in terms of research area design, data
acquisition, model building, and data application [26,27]. Compared with existing UAV
hyperspectral water-quality-monitoring algorithms based on PLSR, PCA, SVM, and MLR,
the computational efficiency has been significantly improved, and the monitoring accuracy
for specific water quality parameters has been improved.

Xiong’an New Area is a state-level new area under the jurisdiction of Hebei Province.
The importance of water resources is self-evident in maintaining the construction of the future
city [2]. Baiyang Lake, the key water body for future urban water use, was selected as the
research area, and the water quality of four typical river sections was mainly studied [47,67].
The water quality information extraction was carried out according to five steps, including
hyperspectral image data acquisition of UAV, hyperspectral data preprocessing, water spatial
information extraction, water quality key index calculation, and water quality mapping
and evaluation [54,68,69]. Among them, the extracted indexes include chemical oxygen
demand, permanganate index, ammonia nitrogen, total phosphorus, and total nitrogen.
This technology breaks through the key technology of UAV hyperspectral water-quality-
monitoring, promotes the development of water quality surveys from digital to intelligent,
and promotes the progress of digital intelligent environmental protection [38,58]. With the
maturity of technology, new technology in the field of water quality surveys will develop in
the direction of informatization, objectivity and intelligence [51,61,70]. The research results
provide a scientific basis for water source traceability assessment, water pollution source
area analysis and water environment comprehensive treatment.

5. Conclusions

UAV hyperspectral remote sensing for water quality monitoring is one of the current
hot research topics in the field of water quality monitoring. In response to the shortcom-
ings of traditional water-quality-monitoring methods, UAV hyperspectral remote-sensing
technology can effectively obtain remote-sensing data on large-area water bodies, improv-
ing monitoring efficiency and accuracy. With the continuous development of UAV and
hyperspectral technologies, more and more new algorithms have been proposed, such as
deep learning models, including CNN and RNN, as well as optimization models based on
machine learning and genetic algorithms [17,23]. These new algorithms can comprehen-
sively utilize remote-sensing data from different bands to improve monitoring accuracy
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and classification accuracy and achieve more comprehensive and multi-angle water quality
parameter monitoring and identification. In addition, some cutting-edge issues need to
be further explored in the field of UAV hyperspectral remote sensing for water quality
monitoring, such as how to establish appropriate mathematical models to retrieve water
quality parameters and address the challenges faced by water quality parameter retrieval in
different regions, how to use remote-sensing data to discover newly discovered pollutants
in water environments, and how to integrate artificial intelligence and remote-sensing tech-
nology in practical applications [27,71,72]. Solving these problems will help promote the
application and development of UAV hyperspectral remote-sensing technology for water
quality monitoring in different fields, such as environmental protection, water resources
management, and water ecological protection.

As far as we know, this current research has improved our understanding of the
relationship between key components in the process of river water transportation from
the perspectives of hyperspectral data acquisition, water quality model establishment,
chemical element extraction, etc. This research indicates that the GaiaSky-mini2-VN sensor
can quickly calculate the water quality evaluation results of the basin under the support of
limited water surface sampling data [25]. The band difference and band ratio model can
play a very good role in the corresponding water quality parameters. UAV hyperspectral
water quality monitoring has the advantages of areal imaging, real-time monitoring, low
cost, and no secondary pollution [55]. The spatial distribution of pollutants can be obtained
based on the model [73]. In general, the overall water quality of the river section in the
study area is Grade III, with good water quality according to the classification method of
surface water quality in the Chinese Environmental Quality Standards for Surface Water
(GB3838-2002), and the potential risk pollutants are COD and PI. The impact of land
use data on water quality assessment is significant. Land use type and intensity affect
the characteristics of land surface runoff and hydrological cycles, thereby affecting water
quality and the health of ecosystems. For example, urbanization and agricultural expansion
increase the level of pollution in water bodies and also increase the input of non-point
source pollutants. Therefore, in the process of water quality assessment, the indicator
system and threshold of water quality assessment can be adjusted according to the different
types and intensities of land use, to fully consider the impact of land use on water quality.
However, further research is needed in terms of winter conditions where land data is
covered by snow and ice.
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Abbreviations

UAV Unmanned Aerial Vehicle
POS Position and Orientation System
WGS84 World Geodetic System 1984
GPS Global Positioning System
COD Chemical Oxygen Demand
PI Permanganate Index
AN Ammonia Nitrogen
TN Total Nitrogen
TP Total Phosphorus
R2 Coefficient of Determination
SVM Support Vector Machine
KNN K-Nearest Neighbor
ANN Artificial Neural Network
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
PLSR Partial Least Squares Regression
PCA Principal Component Analysis
MLR Multivariable Linear Regression
RMSE Root Mean Square Error
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