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Abstract: Covert communication techniques play a crucial role in military and commercial ap-
plications to maintain the privacy and security of wireless transmissions from prying eyes. These
techniques ensure that adversaries cannot detect or exploit the existence of such transmissions. Covert
communications, also known as low probability of detection (LPD) communication, are instrumental
in preventing attacks such as eavesdropping, jamming, or interference that could compromise the con-
fidentiality, integrity, and availability of wireless communication. Direct-sequence spread-spectrum
(DSSS) is a widely used covert communication scheme that expands the bandwidth to mitigate
interference and hostile detection effects, reducing the signal power spectral density (PSD) to a low
level. However, DSSS signals possess cyclostationary random properties that an adversary can exploit
using cyclic spectral analysis to extract useful features from the transmitted signal. These features
can then be used to detect and analyse the signal, making it more susceptible to electronic attacks
such as jamming. To overcome this problem, a method to randomise the transmitted signal and
reduce its cyclic features is proposed in this paper. This method produces a signal with a probability
density function (PDF) similar to thermal noise, which masks the signal constellation to appear as
thermal white noise to unintended receivers. This proposed scheme, called Gaussian distributed
spread-spectrum (GDSS), is designed such that the receiver does not need to know any information
about the thermal white noise used to mask the transmit signal to recover the message. The paper
presents the details of the proposed scheme and investigates its performance in comparison to the
standard DSSS system. This study used three detectors, namely, a high-order moments based detector,
a modulation stripping detector, and a spectral correlation detector, to evaluate the detectability of
the proposed scheme. The detectors were applied to noisy signals, and the results revealed that
the moment-based detector failed to detect the GDSS signal with a spreading factor, N = 256 at all
signal-to-noise ratios (SNRs), whereas it could detect the DSSS signals up to an SNR of −12 dB. The
results obtained using the modulation stripping detector showed no significant phase distribution
convergence for the GDSS signals, similar to the noise-only case, whereas the DSSS signals generated
a phase distribution with a distinct shape, indicating the presence of a valid signal. Additionally, the
spectral correlation detector applied to the GDSS signal at an SNR of −12 dB showed no identifiable
peaks on the spectrum, providing further evidence of the effectiveness of the GDSS scheme and
making it a favourable choice for covert communication applications. A semi-analytical calculation
of the bit error rate is also presented for the uncoded system. The investigation results show that the
GDSS scheme can generate a noise-like signal with reduced identifiable features, making it a superior
solution for covert communication. However, achieving this comes at a cost of approximately 2 dB
on the signal-to-noise ratio.

Keywords: covert communications; spread-spectrum schemes; communications signal processing;
low probability of detection; secure communications; signal constellations

1. Introduction

Secure communication schemes are essential for transmitting mission-critical information
securely and privately, especially in hostile environments. Traditional methods to achieve
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secure communication can be broadly categorised into three main groups [1]: cryptographic
methods, steganographic methods [2–4], and physical layer security techniques [5]. Cryp-
tographic methods use encryption and decryption algorithms to prevent unauthorised
access, disclosure, and alteration of data. Steganographic methods are primarily focused
on concealing confidential information within non-sensitive objects, such as images, audio,
and video files. On the other hand, physical layer security techniques aim to bolster the
security of wireless communication systems by leveraging the unique properties of wireless
channels. However, none of these methods can conceal the evidence of communication
or protect against detection of the transmission. Therefore, an adversary can potentially
intercept the transmission and take advantage of any vulnerabilities in the communication
protocol to gain access to the secure data or launch electronic attacks against the user [6].
The operational needs of secure communication in contested electromagnetic environments
go beyond just protecting the transmitted content; it also requires the concealment of the
transmission behaviour [7]. This paper presents a new signalling scheme for covert com-
munication. Covert communication, also known as communication with a low probability
of detection (LPD), is centered around hiding any evidence of communication to avoid
detection. This is achieved by reducing the received signal-to-noise ratio (SNR) at the
eavesdropper [8–10].

Research published in the field of LPD communications can be categorised into two
main areas: (i) information-theoretic aspects of LPD communications and (ii) designing
waveforms for LPD communications. Information-theoretic studies focus on determining
the fundamental limits of LPD communication in terms of the amount of information that
can be conveyed from a transmitter to a receiver subject to a constraint on adversary’s
detection error probability [11,12]. The authors in [13] present a square root law (SRL)
that defines the constraints and performance limits of LPD communication for the addi-
tive white Gaussian noise (AWGN) channel. The SRL law states that covert and reliable
communication can be achieved provided no more than O

√
n bits are transmitted in n

channel uses. This gives an information rate of O(1/
√

n), which approaches 0 as n goes
to infinity. Hence, recent studies have focused on developing LPD schemes to obtain a
positive information rate [14].

This paper focuses on designing waveforms for LPD communication. For LPD commu-
nications, it is desirable to transmit with minimal PSD to hide the transmitted signal under the
receiver’s noise floor [7] and have random like characteristics such as non-repetitive features [15],
making the signal indistinguishable from thermal white noise present at any receiver [16–18].
These properties are needed, as without them the waveform has the potential to be detected
using advanced signal processing techniques such as cyclostationary analysis, higher-order
moments analysis, energy detection methods, and time-frequency transforms [19–23].

Existing covert communication schemes use spread-spectrum, chaotic theory, or a
combination of both to achieve covert communication. The proposed schemes vary: utilis-
ing machine learning [18], using noise envelopes to mask the signal [24], chaotic spreading
and modulation [25,26], and using the message itself to spread the signal [27]. In addition
to different waveform design approaches, there are also other methods proposed in the
literature that exploit the uncertainties in the eavesdropping channel [28], noise power [29],
transmit time [30], and interference power from friendly jammers [31] to reduce signal
detectability and improve information rate [32]. Other non-conventional LPD techniques in-
clude methods based on (1) exploiting the multiplicity of users scattered across the wireless
network and the channel variations caused by their mobility [33], (2) directional transmis-
sion using multiple antennas [34], (3) opportunistic power control similar to conventional
power control with an on–off switch that turns off the transmitter when the channel gain
falls below a threshold [35], (4) artificial noise generation to disguise the existence of covert
channels [36], and (5) millimeter-wave communications that use feature steerable narrow
beams operating in the frequency band of 30–300 GHz [37].

The proposed scheme in this paper uses thermal white noise of the system to obscure
signals generated by a DSSS transmitter and produce a spread-spectrum waveform that
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follows a Gaussian distribution (GDSS). The design of the GDSS scheme ensures that the
receiver does not need any information about the sequences used to mask the signal to
retrieve the message. To the best of our knowledge, this study represents the first investiga-
tion into utilising naturally occurring thermal noise for spread-spectrum communication.
We conducted a performance evaluation of the proposed GDSS scheme and compared it to
the widely used DSSS technique, which has several weaknesses that make it vulnerable to
exploitation by adversaries. These vulnerabilities arise from the use of fixed modulation
and repeatable spreading sequences.

The paper is structured as follows. Section 2 describes the standard DSSS system,
and Section 3 presents the proposed GDSS waveform scheme. In Section 4, we evaluate
the LPD performance of the proposed scheme using higher-order moments, a modulation
stripping signal detector, and cyclostationary analysis. Section 5 investigates the error-rate
performance of both coded and uncoded systems and compares it with DSSS. Furthermore,
a numerical expression for the bit error rate performance of the GDSS system is derived
and presented in this section. Finally, we conclude the paper in Section 6 and provide
limitations of this research and suggestions for future work.

2. DSSS Modulation

DSSS, or direct-sequence spread-spectrum, is a method of modulation in which the
message bits are modulated by a pseudorandom bit sequence known as a spreading
sequence. This sequence has a much higher rate than the original information rate, and
a spreading factor N determines the number of spreading bits that map to a message bit.
After spreading, the symbols to be transmitted are commonly referred to as chips. When a
DSSS system maintains the same bit rate and energy per bit as before spreading, the signal
bandwidth will be spread by a factor of N, and the magnitude of the PSD of the signal will
be reduced by a factor of N. This reduction in PSD helps to mitigate interference from other
signals. To spread the signal, the data are multiplied by a pseudo-noise (PN) sequence.
This PN spreading sequence is unique to each transmitter and receiver pair and helps to
ensure secure communication. A binary phase shift keying (BPSK) DSSS spreading process
is illustrated in Figure 1.

(a) With a short repeating PN sequence. (b) With a long PN sequence.
Figure 1. Spreading process of BPSK DSSS with repeating short PN sequence and with a long PN sequence.

DSSS is an important technology for covert communications because it enables the
system to operate under the thermal noise floor even at low SNR levels (i.e., much lower
than 0 dB SNR). This means that the communication signal can be hidden in the noise,
making it difficult for adversaries to detect and intercept the signal. The spreading process
in DSSS spreads the signal across a wide bandwidth, which reduces the PSD of the signal.
As a result, the signal is less susceptible to noise and interference, making it easier to detect
at low SNR levels. This is particularly important for covert communications, where it is
essential to maintain a low profile and avoid unfriendly detection.

The bit error rate (BER) performance of a DSSS system using quadrature phase shift
keying (QPSK) spreading is given by

BER = 0.5 erfc((
√

N(Es/N0)/2) (1)
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where erfc() is the complementary error function and Es/N0 is the energy per channel
symbol to noise power spectral density ratio. This measure will also be referred to as
signal-to-noise ratio (SNR) in this paper.

Examples for various spreading factors are shown in Figure 2. Figure 2 shows that the
non-spread system achieves a target BER of 10−5 at 12.5 dB, whereas the DSSS system with
a spreading factor of 256 achieves the same BER at −11.5 dB. It is further shown that as the
spreading length increases, so does the system’s ability to operate deeper in the noise floor.
However, an increase of the spreading factor also causes a reduction in the bit rate if the
system bandwidth is maintained fixed.

Figure 2. Theoretical BER performance of a DSSS-QPSK system with various spreading factors.

The standard DSSS system has several vulnerabilities and may not be ideal for covert
communication. This system normally uses repeating patterns and has deterministic
features that could be used for detection/interception. For example, Figure 3 shows the
constellation of a typical DSSS-PN system with QPSK spreading. The points are color
coded for future reference. As the amplitude and phase of the constellation points are
fixed, they present deterministic features to the signal, making it easier for an adversary
to detect the existence of the signal and possibly intercept the message using advanced
signal processing methods [21]. The autocorrelation function (ACF) can be used to measure
repeatable patterns of the PN sequences in a DSSS system. Some DSSS systems tackle
the issue of predictable PN sequences by using a shared secret key in order to randomly
generate the PN sequences [38]. However, implementation of such architectures for covert
communication is difficult [39].
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Figure 3. Signal constellation of the DSSS-PN QPSK noise-free transmit signal, colour coded for each
position in a quadrant.

3. Proposed GDSS Scheme

The block diagram of the proposed GDSS scheme is illustrated in Figure 4.

Figure 4. Proposed GDSS system.

The proposed scheme builds upon the standard QPSK DSSS-PN system by utilising
the naturally occurring thermal white noise from the transmitter’s circuity. The indepen-
dently obtained noise sequences are applied to the in-phase (I) and quadrature-phase (Q)
components of the signal after spreading to perform the Gaussian masking. The Gaussian
masking process for the scheme illustrated in Figure 4 can be expressed as follows. For
each QPSK spread complex chip S, a complex value U+jV is taken from a transmitter’s
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circuitry with amplified thermal white noise. Let I and Q be the result of element wise
multiplication such that I = R(S) ∗ ∣U∣ and Q = I(S) ∗ ∣V∣, where R(S) and I(S) are the
real and imaginary components of S, respectively. The resulting product to be transmitted
is then expressed as I+ jQ. The generated IQ values are upsampled, filtered, modulated
with a RF carrier wave, amplified with a high power amplifier (HPA), and transmitted
through the antenna. On the receiver side, the received signal is first amplified with a low
noise amplifier (LNA) and passed through the RF demodulation and despreading steps to
recover the transmitted message.

A snapshot of the varying constellation points generated by masking the fixed QPSK
points is shown in Figure 5, where each QPSK chip symbol (in a quadrant) is mapped to a
non-deterministic location within the same quadrant every time. The Gaussian masking
process moves the original symbol position in Figure 3 by the absolute values of the
measured I and Q thermal noise values. It means the noise masking process does not move
the symbol into a different quadrant, as illustrated in the colour matching scheme between
the two figures. However, the cost of this method is an increase in the system BER, or for
a same BER, an increase of the TX power. For a same average TX power, some symbols
would be more susceptible to noise than they originally were due to being moved closer to
the quadrant boundaries—a decreased Euclidean distance. The impacts to the BER will
be quantified later. However, the adversaries detectablility is not necessarily scarified,
depending on the detection method.

Figure 5. A collection of scattered constellation points of the proposed QPSK GDSS signal, with
matching colours of QPSK DSSS in Figure 3.

Gaussianity of GDSS Signals

This section compares the distribution of the GDSS signals with the theoretical Gaus-
sian distribution. The noise-free signal constellation of the GDSS scheme is shown in
Figure 6. The figure shows that the signal constellation is sufficiently masked to appear as
chaotic white noise to any adversary.

The probability density function of a random variable Z with Gaussian distribution is
given by

fZ(x) = 1√
2π

exp−x2
/2. (2)

Using Equation (2) its moments can be computed using

µk = ∫
−∞

∞

xk fZ(x)dx. (3)
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A closed-form expression of Equation (3) for even orders of moments of the zero-mean
unit-variance normal distribution can be expressed as [40]

µk =
k!

2k/2(k/2)!
(4)

Figure 6. A collection of signal constellations of noise-free transmitted GDSS signal.

The transmitted noise free signal is compared against a standard Gaussian distribu-
tion (SGD) in Figure 7 and in Table 1 using 1 × 106 bits with a spreading factor of 256.
The probability distribution shown in Figure 7 closely matches the theoretical Gaussian
distribution. The Gaussian distribution is further supported in Table 1 from the estimated
moments of the waveform depicting acceptable levels of commonality with the theoretical
moments (calculated using Equation (4)).

Figure 7. Distribution of the noise-free transmitted GDSS signal.

A random white noise signal would have an ACF of zero at all lags except a value of
unity at lag zero, to indicate that the signal is uncorrelated and does not exhibit repetitive
time-domain features. The repetitive features of the GDSS signals were analysed using
the ACF. The results obtained showed no identifiable features for either GDSS or DSSS
noise-free signals provided each uses non-repeating spreading sequences. However, for the
case when these systems use a fixed pair of spreading sequences, the ACF for DSSS shows
several very strong identifiable components across multiple lags. Compared to this, for the
GDSS, the correlation magnitudes are small and are overall at an insignificant level.
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Table 1. Moments of GDSS noise-free signal for N = 256.

Moment SGD (Theory) GDSS DSSS

2nd 1 1 1
4th 3 3 1
6th 15 15 1
8th 105 105 1
10th 945 947 1
12th 10,395 10,428 1
14th 135,135 135,524 1
16th 2,027,025 2,025,880 1
18th 34,459,425 34,102,797 1
20th 654,729,075 634,790,833 1

4. Detectability of GDSS Signals

This section investigates detectability of the GDSS waveform at low SNR using higher-
order moments and modulation stripping and compares the performance with DSSS signals.
Simulated noise is generated using a random number generator to create a sequence of
values that mimic the behaviour of real-world noise. The noise power is adjusted based on
the desired SNR value to create noisy signals at different SNR levels.

4.1. Detection Using High-Order Moments

Moments are statistical parameters that can be used to measure Gaussian distribution
as discussed in the previous section. In this section, the 20th-order moment is used to
assess the detectability of the GDSS and DSSS signals operating under the noise floor. The
20th-order moment of the zero-mean unit-variance Gaussian distribution is 654,729,075.
The moments of the GDSS and DSSS signal components are estimated at various SNR and
then compared with the theoretical moment value using the absolute deviation between
the estimated and theoretical values. The results are generated by averaging results from
five tests and expressing the average deviation as a percentage of the theoretical value.
Each test result is conducted using a spreading factor of 256 on 1 × 106 message bits. The
signal values are first standardised using Equation (5) to have a mean of 0 and a standard
deviation of 1 before estimating the moment:

zi =
ri − r

σ
(5)

where r and σ denote the mean and standard deviation of the signal values, respectively.
The average deviation measures are plotted in Figure 8.

This figure shows that the average deviation of the DSSS signals are significantly large
compared to GDSS values, indicating non-Gaussian features of the DSSS signal even in the
presence of high noise levels. Unlike DSSS signals, the measures obtained for the GDSS
signals show deviation values very close to zero across all SNR values.

Assuming an average deviation threshold of 10% (to achieve detection with high
confidence), the moment-based detector will fail to detect the presence of a GDSS signal,
whereas the same detector can easily detect the DSSS signals for SNR > −12 dB. It should
be noted that the standard DSSS signal can be Gaussian distributed if the system operates
at a sufficiently low SNR. However, this would require an increase in the spreading factor,
resulting in a reduction of data rate.
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Figure 8. Average deviation of the estimated 20th-order moment from theory for N = 256.

4.2. Detection Using Modulation Stripping

In this section, a simple modulation stripping method is used to evaluate the detection
performance of the GDSS signals. A non-linearity can be applied to the signal to produce
discrete spectral spurs to aid detection. As an example, in the case of QPSK modulation, a
fourth power produces a discrete spur at four times the carrier frequency offset. Figure 9
shows the distribution plots obtained for both GDSS and DSSS signals at different SNRs.
The distribution plot generated from the detector for a set of Gaussian distributed complex
values (Gaussian noise) is presented as a reference in Figure 9a. It should be noted that
the developed GDSS scheme in Figure 9c,e also appear random with no significant phase
distribution convergence. However, Figures 9b,d show a bell shaped distribution for the
DSSS. This means that the phase distribution converges to a particular point, which gives
evidence for a set constellation scheme being used, as opposed to the GDSS scheme and
Gaussian noise.

(a) Gaussian Noise. (b) DSSS, SNR = 0 dB. (c) GDSS, SNR = 0 dB.

(d) DSSS, SNR = −5 dB. (e) GDSS, SNR = −5 dB.
Figure 9. Phase angle modulation stripping detector with QPSK, normalised intensity versus phase, N = 256.
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4.3. Energy Detector

Energy detection is another commonly used method for detecting communication
signals. The basic idea behind energy detection is to compare the energy of the received
signal to a pre-defined threshold. If the energy of the received signal exceeds this threshold,
the signal is assumed to be present. One of the advantages of the energy detection method
is its simplicity and low computational complexity. However, energy detection can suffer
from high false alarm rates in low SNR environments, where the noise can easily exceed
the detection threshold. Therefore, energy detectors are generally not effective for detecting
signals, such as DSSS and GDSS signals, operating under the noise floor. As the GDSS
system requires more power than the DSSS system to achieve the same BER performance, it
is expected that GDSS signals can be more likely detected compared to DSSS signals using
an energy detector in high SNR conditions.

4.4. Cyclostationary Analysis

Signal detectors based on cyclostationary analysis offer superior detection performance
compared to energy detectors in low SNR environments. However, they may require more
computational resources and expertise in signal properties. Cyclostationary analysis is a
powerful technique used for detecting and analysing communication signals by leveraging
their cyclostationary properties. These properties refer to repetitive characteristics of
the signal, such as a constant modulation and coding scheme or a fixed synchronisation
sequence embedded in the communication waveform. By exploiting these properties,
cyclostationary analysis can provide more reliable detection and analysis of signals in
challenging environments with low SNR.

Cyclostationary analysis normally involves estimating the spectral correlation function
(SCF) of a signal. The SCF is a measure of the correlation between different frequency
components of the signal, as a function of frequency offset and time lag. In a cyclostationary
signal, the SCF exhibits peaks at certain frequency offsets and time lags, known as cyclic
frequencies and cycle periods, respectively. These peaks correspond to the cyclostationary
properties of the signal and can be used to detect the presence of the signal operating under
the noise floor. By exploiting these peaks, cyclostationary analysis can offer a more robust
and reliable detection of weak signals.

This section aims to validate the effectiveness of GDSS signals in hiding under the
noise floor using the fast spectral correlation method proposed in [41]. We present a
comparison of the results obtained with the DSSS signal, as shown in Figure 10.

(a) Gaussian Noise. (b) DSSS, SNR = −12 dB. (c) GDSS, SNR = −12dB.

Figure 10. Spectral correlation spectrum for various signals, N = 256.

The DSSS signal is generated using a repetitive spreading sequence, and the Gaussian
masking process is applied to develop the GDSS signal. To ensure a fair comparison, we
keep the observation period and spreading factor constant for both the DSSS and GDSS
signals. By analysing the spectral correlation of the two signals, we demonstrate that the
GDSS signal provides superior hiding capabilities compared to the DSSS signal under
similar conditions. Our findings highlight the potential of GDSS signals for use in low-
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power and covert communication systems where signal detection and interception are
critical concerns.

The spectral correlation density plots shown in Figure 10 illustrate the significant
difference between the DSSS and GDSS signals. The DSSS signal exhibits prominent peaks
in its spectrum, indicating the presence of repetitive spreading sequences and modulation.
In contrast, the application of the Gaussian masking process to the DSSS signal has almost
entirely eliminated these peaks. As a result, the GDSS spectrum closely resembles the
spectral correlation spectrum generated for the noise-only case (i.e., without any signal).
GDSS signal exhibits a much flatter spectrum, with no noticeable peaks. These findings
provide strong evidence supporting the superiority of the GDSS method over the DSSS. By
eliminating the characteristic peaks of the DSSS signal, the GDSS signal is much harder to
detect and intercept, making it a better choice for covert communication systems.

5. BER Performance

This section investigates the BER performance of the uncoded and coded GDSS
systems and compares them with the corresponding DSSS systems.

5.1. Uncoded BER Performance

In this section we develop a semi-numerical calculation of the BER performance for the
uncoded GDSS system and compare it with the simulated results. The BER performance
can be analysed from the I or Q component. Assuming Gray coding is used, the two
components are equivalent to two independent BPSK GDSS schemes (Figure 11). The BER
performance of the QPSK GDSS is identical to the BPSK GDSS in terms of energy per bit to
noise power spectral density ratio (Eb/N0) or 3dB worse in terms of SNR.

(a) BPSK GDSS on I axis. (b) BPSK GDSS on Q axis.
Figure 11. Component BPSK GDSS scatters of the QPSK GDSS signal.

Our objective is to determine the probability density function (PDF) of the decision
variable z, which is the result of the de-spreading process using a binary spreading sequence
(rather than a Gaussian sequence). Here, z is the sum of N noisy chips during a bit period

z =
N
∑
i=1

ri (6)

where ri = si + ni is a received chip, si and ni are members of the signal sequence
s = (s1, s2,⋯, sN) and noise sequence n = (n1, n2,⋯, nN), respectively.

The BER is the probability the decision variable becoming negative due to noise
disturbance

BER = ∫
0

−∞

pz(z)dz (7)
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In order to find pz(z), we start at one chip’s PDF. The signal chip si follows a half-
normal distribution [42,43]

si ∼ psi(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√

2
σs
√

π
exp(−x2

2σ2
s
), x ≥ 0,

0, x < 0
(8)

The corresponding noise ni follows a Gaussian distribution

ni ∼ pni(x) = 1
σn

√
2π

exp(−x2

2σ2
n
) (9)

Since si and ni are mutually independent, the PDF of the sum ri is the convolution of
PDF’s of the summands

ri ∼ pri(x) = psi(x) ∗ pni(x) (10)

where ∗ denotes a convolution. Using Mathematica, we derive the PDF of one noisy chip

pri(x) =
exp( −x2

2(σ2
s +σ2

n)
)(1+ erf( σsx

σn

√

2(σ2
s +σ2

n)
))

√
2π(σ2

s + σ2
n)

(11)

It can be expressed as a function of SNR. For QPSK GDSS, the SNR in dB is

ξ = 10 log10(
σ2

s

σ2
n
) (12)

For BER calculations we can let σ2
s = 1 without loss of generality. We have

pri(x) =
exp ( −x2

1+10−ξ/10 )(1+ erf( x10ξ/20
√

1+10−ξ/10
))

√
π(1+ 10−ξ/10)

(13)

If we can find the characteristic function of pri(x) then pz(z) is the inverse Fourier
transform of the Nth power of the characteristic function. Regrettably, we are unable to
obtain an analytical expression for it. An alternative approach is to use self-convolution.
As z is the sum of N independent ri, its PDF is the N − 1 self-convolutions

pz(z) = pri(x) ∗ pri(x) ∗ pri(x) ∗⋯∗ pri(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

(14)

where * denotes a convolution. Once again, we were unable to derive an analytical solution
and had to resort to numerical convolution techniques. To avoid overflow issues when
dealing with large values of N, we created a normalized function

y1(x) = pri(x)∆x (15)

so that ∑x y1(x) = 1, where ∆x is the increment of the x vector. For the sum of N received
chips, the PDF is proportional to the N − 1 self numerical convolutions (also denoted by ∗ )

yN(x) = y1(x) ∗ y1(x) ∗ ⋅ ⋅ ⋅ ∗ y1(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

=
N−1©∗ y1(x) (16)

Performing N − 1 numerical convolutions using brute force computation is both expen-
sive and unnecessary for large values of N. Instead, a faster algorithm can be implemented,
as illustrated below.
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We calculate m = ⌊log2 N⌋ pairs of convolutions first:

y2(x) = y1(x) ∗ y1(x)
y4(x) = y2(x) ∗ y2(x)
y8(x) = y4(x) ∗ y4(x) (17)

. . .

y2m(x) = y2m/2(x) ∗ y2m/2(x)

If N is an integer that is a power of two, our objective has been achieved. However, if
N lies in the range 2m < N < 2m+1, further convolutions are necessary, using the m results
from Equation (17) as the foundational building blocks. Only those terms corresponding to
the ones of N in binary form Nbin are required. For example, N = 50 = 25 + 24 + 0+ 0+ 21 + 0,
in binary form it is Nbin = 110, 010. Only two more convolutions are required.

y50(x) = y25(x) ∗ y24(x) ∗ y21(x) = y32(x) ∗ y16(x) ∗ y2(x) (18)

We see that instead of 49 convolutions, we only need to conduct 7 of them. In general,
the required number of convolutions is

nc = ⌊log2 N⌋ +W(Nbin) − 1 (19)

where W(Nbin) is the binary weight function, producing the sum of ones in the binary
number Nbin. The nc is upper bounded by 2m. These are plotted in Figure 12.

Figure 12. Uncoded GDSS BER computation: number of numerical convolutions nc and its upper
bound, versus spreading factor N.

Finally, the PDF for the decision variable, the sum of N de-spread chips, is

pz(z) = yN(x)
∆x

=

N−1©∗ y1(x)
∆x

(20)

Note here we did not distinguish the variables z and x. Some computed pz(z) and his-
tograms are plotted in Figure 13. Calculations and simulations agree very well.
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Figure 13. A selection calculated PDFs of the decision variable pz(z) and Monte Carlo histograms.

In numerical calculations

BER =
0
∑

xi=xmin

pz(xi)∆x (21)

where xmin and ∆x need to be chosen carefully to ensure the calculation is valid. To check
it, we test if the total sum is one or near one. Practically, we use ∆x = 0.01 and satisfy

xmax

∑
xi=xmin

pz(xi)∆x ≥ 0.995 (22)

It is only difficult to satisfy this condition at very low SNRs, for example, ξ = −35 dB. For
medium low to high SNRs, most sums are equal to 1. It also depends on the spreading
factor N. The xmax = −xmin are pre-calculated by a trial-and-error method. For N = [16, 32,
64, 128, 256, 512, 1028, 2048], the xmax obtained are xmax = [7700, 9900, 14300, 10450, 9900,
8800, 5500, 5500]. The batch computation for the 8 BER curves in Figure 14 took about 12 h
on a desktop PC with an i7 CPU at 3 GHz.

The BER performance of the uncoded QPSK DSSS systems are also plotted in Figure 14.
The theoretic calculations and Monte Carlo simulations agree very well.

The figure shows that the Gaussian distributed scheme performs 2.5 dB worse than
DSSS for a spreading factor of N = 64 at a target BER of 10−5. This loss reduces to 2 dB
when N ≥ 512.

5.2. LDPC-Coded GDSS System

This section investigates the use of low density parity check (LDPC) coding to improve
the performance for the GDSS scheme. LDPC codes are a type of linear block error
correction codes with parity-check matrices (H) that contain a very small number of
non-zero entries. The sparseness of H guarantees the minimum Hamming distance and
decoding complexity to increase linearly with the code length. Some of the published
results show that these codes can perform close to 0.0045 dB away from the Shannon Limit,
making it one of the most powerful error-correction codes known today [44]. To reduce the
decoding latency a short half-rate LDPC code with number of message bits k = 324 and
codeword length n = 648 bits were used for both the GDSS and the traditional DSSS system.
The results obtained are presented in Figure 15.
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Figure 14. Uncoded BER performance: theoretical QPSK GDSS (solid lines) and QPSK DSSS (dashed
lines) with various spreading factor N, and corresponding simulation results (dots).

Figure 15 compares SNR for fixed bandwidth, i.e., the same chip rate in each case. The
1/2-rate coded-GDSS [N = 128] scheme has a power advantage of approximately 5 dB against the
uncoded DSSS [N = 256] on the basis of identical information bit rate. However, a comparison of
both coded systems (coded-GDSS with coded-DSSS) showed similar performance reduction that
was observed for the uncoded system comparison in Section 5.1.

Figure 15. Comparison of LDPC encoded GDSS QPSK system with varying spreading factors against
the theoretical DSSS QPSK system’s upper performance bound.
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6. Conclusions

In this paper, we propose a novel signalling scheme called GDSS for covert (LPD) com-
munications, which aims to conceal the existence of wireless transmissions for enhanced
security compared to cryptography and steganography-based schemes. We evaluate the
performance of GDSS and compare it with the commonly used DSSS technique, which, de-
spite its popularity, is susceptible to exploitation by adversaries due to various weaknesses.
These vulnerabilities stem from the use of fixed modulation and repeatable spreading
sequences. In contrast, the proposed GDSS scheme takes advantage of naturally occurring
thermal noise at the transmitter to create non-repetitive, featureless signals for communica-
tion, which eliminates many of the shortcomings associated with DSSS. In this paper, the
proposed GDSS scheme is compared with the DSSS system. The findings indicated that the
signals produced by the GDSS approach have fewer distinctive characteristics compared
to the DSSS signals, resulting in a reduced likelihood of detection for anyone attempting
to intercept the transmission. The Gaussianity test demonstrated that the distribution of
the noise-free GDSS signals closely resembled that of the naturally occurring noise in the
receiver. To assess the detectability of the signals generated by the proposed scheme by
an adversary, this study utilised three detectors: a high-order moments based detector, a
modulation stripping detector, and a detector based on cyclostationary analysis. These
detectors are applied to signals corrupted with noise. The results showed that the moment-
based detector failed to detect the GDSS signal with N = 256 at all SNRs, whereas it could
easily detect the DSSS signals as low as −12 dB. We applied the modulation stripping
detector to both the GDSS and DSSS signals at an SNR of 0 dB and −5 dB, respectively.
Our analysis revealed that the GDSS signals exhibited no significant phase distribution
convergence, similar to the noise-only case (i.e., without any signal). In contrast, the DSSS
signals generated a phase distribution with a distinct shape, indicating the presence of a
valid signal. Moreover, we applied the spectral correlation detector to the GDSS signal at
an SNR of −12 dB. Our analysis showed no identifiable peaks on the spectral correlation
spectrum, providing additional evidence of the effectiveness of the GDSS scheme and the
lack of distinguishable peaks in the spectrum suggests that the GDSS signal is difficult to
detect and intercept, making it an ideal choice for covert communication applications.

A quasi-analytical expression is also used to derive the BER for the uncoded GDSS,
and the results were consistent with the simulation. The comparison of BER between the
uncoded GDSS and DSSS systems showed a penalty of 2 to 3 dB for GDSS. However, LDPC
coding helped recover this loss and significantly improved the overall BER performance.
As expected, the LDPC-coded GDSS performed about 2 dB worse than the corresponding
LDPC-coded DSSS system.

This paper did not investigate the effects of high power amplifiers on the generated
GDSS signals. The GDSS scheme is capable of generating signals with a high peak-to-
average power ratio (PAPR), which is a measure of the dynamic range of a signal. Conse-
quently, amplifying GDSS signals can cause distortion or clipping, as the amplifier may not
be able to handle the high instantaneous power levels (albeit rarely happen), which can
result in reduced signal quality and performance degradation.

In future work, we plan to analyse the information-theoretic optimality of the proposed
GDSS scheme and its variants. We would also like to investigate the impact of real-world
factors such as radio impairments, channel effects, and receiver synchronisation on the
performance of the GDSS system. These factors can significantly affect the quality and
reliability of the communication channel, and thus it is crucial to study their effects on the
proposed scheme. Additionally, we plan to explore ways to mitigate the high PAPR issue
of the GDSS signals, which can lead to performance degradation.
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