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Abstract: Self-driving vehicles must be controlled by navigation algorithms that ensure safe driving
for passengers, pedestrians and other vehicle drivers. One of the key factors to achieve this goal is
the availability of effective multi-object detection and tracking algorithms, which allow to estimate
position, orientation and speed of pedestrians and other vehicles on the road. The experimental
analyses conducted so far have not thoroughly evaluated the effectiveness of these methods in
road driving scenarios. To this aim, we propose in this paper a benchmark of modern multi-object
detection and tracking methods applied to image sequences acquired by a camera installed on board
the vehicle, namely, on the videos available in the BDD100K dataset. The proposed experimental
framework allows to evaluate 22 different combinations of multi-object detection and tracking
methods using metrics that highlight the positive contribution and limitations of each module of
the considered algorithms. The analysis of the experimental results points out that the best method
currently available is the combination of ConvNext and QDTrack, but also that the multi-object
tracking methods applied on road images must be substantially improved. Thanks to our analysis,
we conclude that the evaluation metrics should be extended by considering specific aspects of the
autonomous driving scenarios, such as multi-class problem formulation and distance from the targets,
and that the effectiveness of the methods must be evaluated by simulating the impact of the errors on
driving safety.

Keywords: multiple object tracking (MOT); autonomous vehicle driving; deep learning; BDD100K

1. Introduction

The algorithms that allow a drive-by-wire electric vehicle to navigate autonomously on
the road are able to analyze in real-time the data collected from inertial navigation system
(INS), cameras, lidars, radars and sonars (perception), planning the trajectory according
to the destination to be reached, the rules of the road and the current traffic situation
(motion planning) and consequently control the speed and steering of the vehicle (vehicle
control). Ideally, the vehicle should move in a smart road, where all the objects on the road,
including other vehicles, are interconnected and exchange information with each other;
there are preliminary studies in the field of connected autonomous vehicles [1–3], but the
roads are not yet equipped to accommodate these technologies and, therefore, we focus on
autonomous driving vehicles that are not connected with the road and can perceive the
environment only relying on their exteroceptive sensors.

The design of the algorithms for autonomous vehicle driving (AVD) is anything but
simple and their typologies can be classified into two macro-categories: end-to-end or
modular systems [4]. The former is an emerging trend of recent years [5], which requires
the training of neural networks with the data collected by the sensors annotated with
the corresponding steering and acceleration or braking actions performed by the human
driver; according to this paradigm, end-to-end algorithms should learn to imitate the
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behavior of the human driver (imitation learning or behavior cloning) in presence of the
same perceptive stimuli. Recent works [6–8] have shown that the performance obtained by
these algorithms is far from ensuring safe driving and can be improved only by collecting
an enormous amount of data not currently available; moreover, the behavior of end-to-
end systems cannot be easily explained and it is difficult to intervene for improving their
performance, being monolithic. On the other hand, the modular systems are designed
to perform the tasks of perception, motion planning and vehicle control with different
modules [9]. These algorithms are preferred today because the outputs of the various
processing steps are more controllable and because the modules require less training data
than those that are necessary for an effective end-to-end system. Therefore, the focus of
this paper is on modular systems and, in particular, on the perception module.

Commercial systems, such as NVIDIA Drive, offer great support to modular systems,
providing tools for sensor calibration and data synchronization, ego-motion estimation,
and training and acceleration of neural networks for image processing. However, the
success of modular algorithms mainly depends on their accuracy in detecting and tracking
objects of interest (vehicles and pedestrians) [10–12]. In fact, although the motion planning
algorithms of self-driving vehicles are able to complete their mission with the use of the
inertial navigation system in the absence of obstacles (on a track or on an empty road),
they need to estimate position, speed and trajectory of pedestrians, bicycles, motorcycles
and vehicles (car, bus, truck) when they move on urban roads or highways. Without
this capability, the self-driving vehicle is not able, for example, to predict where and
how vehicles and pedestrians are going and, therefore, cannot stop so as not to run over
pedestrians, follow vehicles in the same lane keeping a safe distance or avoid accidents with
other vehicles [13]. Modular autonomous driving algorithms use multi-object detectors
to locate objects of interest in the current image, projecting them into the world reference
system with the help of distance information provided by lidars or radars. The tracking
step, i.e., the estimation of the trajectory of objects of interest over time, allows instead
to evaluate the orientation and speed of vehicles and pedestrians, so as to predict their
future position and adjust speed and steering of the vehicle accordingly. Starting from these
assumptions, it is clear that the accuracy of multi-object detection and tracking algorithms
becomes crucial to ensure safe and comfortable driving. For this reason, in this paper we
focus on benchmarking multi-object detection and tracking algorithms applied on images
acquired on the road with a camera installed on board the vehicle.

Multi-object tracking (MOT) is one of the most challenging problems in the field of
computer vision, as the detection and association of objects is made complex, depending
on the scene, by appearance variations of the objects caused by sensor noise, pose (rotation,
translation, deformation), partial or total occlusions, variable weather or lighting conditions,
and so on [14]. The enormous recent advances in technologies based on deep learning have
made it possible to achieve such high performance that MOT algorithms can be successfully
used in real applications for surveillance, retail and human–robot interaction [15,16]. How-
ever, using images acquired in real-time from cameras installed on board the vehicle makes
the problem substantially more challenging, since the camera is not static but moving [17].
This aspect makes object association approaches based on intersection over union (IoU
overlap tracking) unusable, since the movement of the vehicle invalidates the concept of
spatial proximity between consecutive frames. Methods based on motion estimation, such
as the Kalman filter, may also have problems in predicting both the apparent motion of
stationary pedestrians and vehicles and their real motion on the road; moreover, object
association based on motion prediction becomes even more complex for missed detection
in some frames due to partial or total occlusions. Camera movement also complicates the
problem of object association through appearance-based re-identification [13,18]. In fact,
during the journey traveled by the vehicle, pedestrians or other vehicles are framed from
different points of view and are not always totally visible. Consider, for example, a vehicle
parked on the roadside, which is first fully visible from the rear, then becomes fully or
partially visible laterally and gradually disappears from the image [19]; the features learned
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for re-identification should be so effective to allow a frame-by-frame object association
of the same vehicle framed in totally different conditions. These methods of appearance-
based object association are also subject to an increase in occlusions due to the rather low
position of the camera and the varying conditions of weather and lighting compared to the
classic video-surveillance scenarios in which MOT algorithms are typically used. It is thus
necessary to analyze the performance of multi-object detection and tracking algorithms
in autonomous driving scenarios, so that the issues arising from these challenges can be
identified and solved in future research works.

To this aim, Waymo Open Dataset [20] and BDD100K [21] have recently been released
and various multi-object tracking methods have been evaluated in such scenarios [13,18,22–24].
However, scientific papers published so far have not taken into account all the most recent
and popular multi-object detection and tracking algorithms, as well as their combinations.
Furthermore, even for the methods already tested, the experimental results were computed
not considering all the evaluation metrics proposed in the literature. Moreover, the effect
of the detector on the overall performance has not been generally evaluated separately,
although it is particularly significant.

Based on these observations, the novel contributions of the paper can be summarized
as follows:

• The most promising modern methods for multi-object detection (RetinaNet [25],
EfficientDet [26], YOLOv5 [27], YOLOX [28], HRNet [29], Swin Transformer [30], Con-
vNext [31]) and tracking (DeepSORT [32], UniTrack [33], QDTrack [18]), together with
a multi-task approach (FairMOT [34]), have been adapted and fine-tuned for detecting
and tracking the objects of interest and evaluated in all their possible combinations,
obtaining 22 new MOT algorithms for the context of autonomous vehicle driving.

• The considered multi-object detectors are evaluated separately in terms of Precision,
Recall and F-Score, and mIoU by also analyzing Recall and classification accuracy
for each class of interest. This analysis, neglected in similar papers, is very useful to
determine the impact of this module on the overall performance of the multi-object
tracking methods.

• The considered multi-object tracking approaches are evaluated by computing not only
the standard CLEAR [35], IDF1 [36] and HOTA [37] metrics, but also considering the
recent TETA [23]. In this way, we can separately analyze the influence of the detector
and of the data association strategy on the overall performance of the multi-object
tracking methods, also with class-agnostic matching strategies.

• The analysis carried out in the proposed experimental framework allows to identify
the limitations of the metrics and of the multi-object detection and tracking algorithms
applied in the context of self-driving vehicles, as well as the necessity to realize a
framework for simulating the impact of perception errors on autonomous navigation,
indicating useful future research directions.

The paper is organized as follows. In Section 2, we report a description of the related
works. Section 3 describes the proposed experimental framework, giving details on the
considered dataset, multi-object detectors, multi-object trackers, evaluation metrics and
experimental setup. In Section 4, we report the results in terms of detection, classification
and tracking, discussing the main findings and the insights inferred from the experiments
in Section 5. Finally, in Section 6 we draw conclusions and discuss the possible future
directions of research in this field.

2. Related Works

Multi-object tracking algorithms aim to follow the trajectories traveled by the objects
of interest (people, vehicles and so on) in different frames of a video sequence [38]. The
MOT trends have been recently described in a survey by Guo et al. [39]. The authors
classify the methods into three basic groups: tracking-by-detection, joint detection and
tracking, and transformer-based tracking. The most used strategy is multi-object tracking-
by-detection [40], whose architecture is depicted in Figure 1 and involves three basic steps:
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(i) multi-object detection [14], which aims to locate all the objects of interest in the scene in
each frame, representing them typically by means of bounding boxes (detected objects or
targets); (ii) data association [41], which requires the calculation of a similarity measure
to perform frame-by-frame re-identification based on information on position and/or
appearance and the use of a matching technique to associate the detected objects with those
tracked in the previous frames (matched pairs) [42]; track management, which allows to
update matched pairs and manage the new objects and the expired objects.

Figure 1. General architecture of a multi-object tracking method. The object detector analyzes the
frames localizing the objects. For each object, the feature extraction module extracts the descriptors
while the classifier predicts the class. The previously tracked objects are projected in the current
frame by the motion predictor. The data association module aims to match the detected objects with
the previously tracked ones in order to provide the matched pairs. The similarity function and the
assignment algorithm completely characterize the approaches. The former estimates the similarity
between tracked and detected objects by using appearance-based and position-based features, while
the latter defines a strategy to associate them. Finally, the track management module defines and
applies the rules for new and expired objects.

Most of the recent works introduce new algorithms to carry out the various processing
steps required for multi-object tracking. In particular, novel methods have been proposed to
extract representative descriptors of the objects [18,34] and to improve the re-identification
capability of similarity functions [32,33]. Other papers are more focused on the definition of
new architectural paradigms [43–45]. The methods are typically evaluated with the metrics
proposed to analyze their capability to track objects, namely, CLEAR metrics (especially
MOTA and MOTP) [35], IDF1 [36], HOTA [37] and TETA [23]. These metrics will be
thoroughly described in Section 3.4. However, in most cases, only a subset of the metrics is
considered, although they adopt different matching strategies; moreover, the methods are
almost always tested on images acquired by fixed cameras and not in road scenarios.

Wang et al. [33] propose UniTrack, which is a task-agnostic appearance-based model
learned in a supervised fashion. The model has been tested for multi-object tracking on
the MOT16 dataset [46], which only contains people samples acquired from static cam-
eras, in terms of MOTA, HOTA and IDF1. Pereira et al. [47] evaluate SORT [48] and
DeepSORT [32] methodologies with different similarity functions on the same dataset
by reporting the results in terms of MOTA. StrongSORT, designed by Du et al. [49], im-
proves the MOTA performance achieved by DeepSORT over MOT16 and KITTI [50].
Zhang et al. [34] propose FairMOT, which consists of a single network jointly trained for
detection and re-identification. The model is evaluated on MOT16 in terms of MOTA
and IDF1. Luiten et al. [37] carry out a comprehensive analysis of multi-object tracking
methods but it is limited to MOT20 [51], which is focused on people tracking with fixed
cameras. Bergmann et al. [52] adopt the same dataset for testing their Tracktor and Track-
tor++ methods; the analysis is limited to MOTA. TransMOT [44], and TrackFormer [45]
formulate the tracking problem end-to-end with a transformer-based approach and achieve
state-of-the-art performance on MOT16 and MOT20.
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A boost to the application of multi-object tracking methods on images acquired by
moving cameras installed on board vehicles has been given by the two recent challenges
proposed on Waymo Open Dataset [20] and on BDD100K [21]. In the former challenge,
the competing methods are evaluated in terms of MOTA and MOTP; in the latter, various
metrics inspired by MOTA, HOTA and IDF1 and adapted to a multi-class multi-object
tracking problem are adopted to draw up the ranking of the competition. In both cases, the
comparison of the methods is limited to the leaderboard and the organizers do not discuss
the results of the competing approaches. Therefore, the few experimental evaluations
available on these datasets are reported by the authors who decided to use Waymo Open
Dataset and BDD100K for their experiments.

Lu et al. [13] evaluate RetinaTrack, a joint model for multi-object detection and tracking
based on RetinaNet, on the Waymo Open Dataset in terms of MOTA. The comparison is
limited to a few models, such as Tracktor and Tracktor++. A comparison between several
approaches on the BDD100K dataset can be found in QDTrack [18] and ByteTrack [22].
In both cases, the results are limited to the methods available in the leaderboard of the
challenge, which do not completely represent the state of art methodologies; furthermore,
the results are reported in terms of mMOTA and IDF1 without considering more recent
metrics, such as HOTA and TETA. In more detail, Pang et al. [18] propose a similarity
learning approach for the extraction of an appearance-based representation for object re-
identification along the frames; the approach demonstrates a remarkable accuracy in the
experiments performed on BDD100K. Zhang et al. [22] propose an association method,
named BYTE, for the association of high-score and low-score detection boxes. Their method,
namely ByteTrack, achieves state-of-the-art performance on different tracking benchmarks,
such as MOT20 and BDD100K. In addition, MOTR [43] has been compared only with
the methods submitted in the leaderboard of BDD100K challenge. Unicorn, proposed by
Yan et al. [24], is a single neural network for dealing with various tracking problems. It has
been evaluated on BDD100K but the experiments are limited to the metrics adopted in the
challenge. Finally, Li et al. [23] propose TETer, a new tracking methodology based on the
concept of class-agnostic association. The comparison is performed with a limited set of
methods (QDTrack [18] and DeepSORT [32]) and metrics (TETA, MOTA, IDF1).

From the analysis of the related works, a lack of comprehensive experimentation
of recent multi-object tracking methods on road scenarios, as well as a partial use of the
available metrics, emerges. Furthermore, few combinations of recent detectors and data
association methods have been tested in the field of autonomous driving. In addition,
the contribution of multi-object detectors is never evaluated separately with metrics fit
for the purpose (Precision, Recall, F1-Score, mIoU, Recall for each class); therefore, it is
difficult to infer which architectural element of the multi-object tracking method provides a
decisive boost to performance. The experimental analysis proposed in this paper aims to fill
these gaps, analyzing 22 different approaches in road scenarios to find out their strengths
and limitations.

3. Experimental Framework

The goal of this paper is the design of an experimental framework to evaluate the
performance of multi-object tracking methods applied to sequences of images acquired on
board the vehicle, using different types of modules that constitute the MOT approaches.
The methods always include a multi-object detector able to locate the objects in the scene
and, typically, to predict the class of the detected objects. The temporal analysis of the ob-
jects is performed by the data association module, which exploits appearance-based (object
descriptors) and position-based (track descriptors obtained through motion prediction)
information to compute similarity scores between detected and previously tracked objects.
The assignment algorithm optimizes someway the matched pairs by analyzing the similar-
ity scores. Finally, the track management module defines and applies the rules for new and
expired objects. We generalize the architecture of MOT approaches and realize a frame-
work in which we evaluate 22 different multi-object tracking approaches, by combining
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seven multi-object detectors with three tracking (data association and track management)
approaches plus a multi-task method. The 22 algorithms are trained and tested on the same
dataset and evaluated with the same metrics in order to draw fair conclusions.

In the next subsections, we describe the dataset adopted for our experiments (Section 3.1),
the considered multi-object detectors (Section 3.2) and multi-object tracking approaches
(Section 3.3), the adopted evaluation metrics (Section 3.4) and the experimental setup that
we implemented for carrying out the benchmark analysis (Section 3.5).

3.1. Dataset

A dataset suitable for training and evaluating multi-object tracking methods applied in
self-driving vehicles must contain several video sequences acquired by a camera installed
on board the vehicle in various weather and lighting conditions, as shown in Figure 2.

(a) (b) (c)

Figure 2. Samples from the BDD100K validation set. The dataset has been collected with different
illumination and weather conditions. (a) Daylight cloudy. & (b) Daylight rainy. & (c) Night.

In addition, this dataset should be annotated frame by frame with the bounding boxes
of all the objects with class and identifier labels; with this information, it is possible to
train a multi-object detector able to recognize the classes of interest and a feature extraction
method for appearance-based data association, as well as to evaluate the performance of a
multi-object tracking algorithm. For this reason, our choice fell on BDD100K [21], which
is the largest publicly available dataset for multi-object tracking applied to autonomous
driving scenarios. It consists of 100,000 videos acquired in several scenarios, covering a
large set of weather and lighting conditions, with a camera installed on board a vehicle.
Among them, 2000 videos 40 s long each, are annotated for multi-object tracking at 5 fps,
so the frames annotated are approximately 200 for each video (around 398,000 frames are
labelled). The bounding boxes in the video are around 3.3 million and the total number of
subjects is around 130,600. The available classes for each bounding box are pedestrian, rider,
car, truck, bus, train, motorcycle, bicycle, traffic light and traffic sign; as was done in the
BDD100K challenge, we consider only moving objects, so we exclude from our experiments
the last two categories. In addition, we do not consider trains, since there are only dozens
of instances of this class, often wrongly annotated. Thus, we take into account seven classes
of interest. As shown in Figure 3, bicycle and motorcycle represent only the conveyance
without the person, while the driver is categorized as rider.

The dataset is already partitioned into training, validation and test sets with the
following percentages: 70% training (1400 videos), 10% validation (200 videos) and 20% test
(400 videos). For our experiments, we used the training set for the fine-tuning of the object
detectors described in Section 3.2, while we adopted the validation set for the experimental
evaluation of the various components of the multi-object tracking algorithms; the test set is
excluded because its annotations are not publicly available.

We preferred BDD100K to Waymo Open Dataset [20], which is also acquired in au-
tonomous driving scenarios, for the following reasons. First of all, BDD100K contains
almost double the annotated video sequences and frames available in Waymo Open Dataset.
The latter includes more object bounding boxes, being often recorded in crowded scenarios,
but BDD100K is acquired in a wider range of environments, weather and lighting condi-
tions. In addition, Waymo Open Dataset provides only four object categories (pedestrian,
vehicle, cyclist, sign), definitely fewer than the seven classes we can consider in BDD100K.
Since the focus of this paper is to evaluate the robustness of multi-object tracking methods
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in road driving scenarios, BDD100K is the most suitable choice; Waymo Open Dataset
would be a better choice for testing autonomous driving algorithms, since it provides
high-quality multi-sensor data useful for autonomous navigation.

(a) (b)

Figure 3. Examples of a bicycle and a motorcycle and their riders from the BDD100K dataset. (a) Bicycle
and Rider. (b) Motorcycle and Rider.

3.2. Object Detectors

Although this module is rather underestimated in multi-object tracking methods,
multi-object detectors have a fundamental impact on the performance of MOT algorithms,
as we will experimentally demonstrate in Section 4.1. The choice of multi-object detector is
often made superficially, paying more attention to appearance descriptors and data associa-
tion strategies. The performance of this module is not evaluated separately from the other
components of a MOT algorithm, despite the fact that experiments with an oracle multi-
object detector (groundtruth bounding boxes used as detector output) demonstrated that
the impact of detection errors on the overall performance is significant [18]; consequently,
the experiments are carried out by fixing an object detector, which becomes an integral
part of the multi-object tracking method. This approach is not optimal, since modern
multi-object detectors contain various architectural elements that can be suited to mitigate
some of the typical problems of the road driving scenarios (occlusions, objects of different
sizes at different distances, multi-class classification, efficiency) and their peculiarities may
not be equally suited for all the data association strategies. In our experimental analysis, we
want to pay attention to this aspect; thus, we selected some modern multi-object detectors
based on the characteristics that could be suitable for road driving scenarios.

The chosen multi-object detectors cover a large set of approaches from the standard
convolutional neural networks to the recent vision transformers, considering anchor-based
and anchor-free methods and loss functions designed to deal with unbalanced datasets. In
particular, we selected and fine-tuned with the BDD100K training set the following multi-
object detectors: RetinaNet [25], EfficientDet [26], YOLOv5 [27], YOLOX [28], FairMOT [34],
HRNet [29], Swin Transformer [30] and ConvNext [31]. Some of them [29–31] are at the top
of the BDD100K leaderboard. We chose a set of object detectors with architectures that are
designed for exploiting different aspects of an autonomous driving scenario. RetinaNet [25]
deals with class imbalance, EfficientDet [26] and YOLOv5 [27] face up objects with different
sizes, YOLOX [28] has a better management of occlusions and FairMOT [34] points to the
computational efficiency, while HRNet [29], Swin Transformer [30] and ConvNext [31]
achieve state-of-the-art performance on the chosen dataset for the detection task. Detailed
descriptions of all the methods and comprehensive explanations of the reasons that brought
us to choose them are listed in the following.

RetinaNet [25] is a multi-class multi-object detector that is trained with the focal loss
to mitigate the imbalance of performance on different object classes when the dataset is
highly unbalanced. With the problem of interest being multi-class and considering that
BDD100K is very unbalanced, the learning procedure used in RetinaNet could guarantee
higher accuracy than other methods on less-represented classes.

EfficientDet [26] is a multi-object detector based on the EfficientNet backbone [53] that
uses the bi-directional feature pyramid network (BiFPN) to combine the features extracted
at different scales. Its multi-resolution feature extraction can be suited for road driving
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scenarios, where objects at different distances from the camera may have various sizes. In
addition, its more efficient architecture compared to other detectors may allow it to achieve
high processing speed.

YOLOv5 [27] is an object detection model inspired by YOLOv4 [54] that adopts
CSPDarknet-53 as backbone and several modern techniques for fostering training conver-
gence and improving inference accuracy. The main novelty introduced by YOLOv5 is the
anchor box selection process, which automatically allows to learn the best anchor boxes for
the specific training set. Considering that the multi-object detector has to localize objects of
different shapes (pedestrians, motorcycles, vehicles, trucks), often partially occluded, this
feature can be very effective for the problem at hand.

YOLOX [28] is based on YOLOv3 [55] but it introduces various novelties. First of all,
it adopts a center-based anchor-free approach and a mosaic augmentation which may be
very suitable for dealing with partial occlusions. In addition, YOLOX has decoupled heads
for regression and classification to solve the problem of spatial misalignment of the features
necessary for the two tasks; this peculiarity may be useful for dealing with multi-object
detection and classification in crowded roads.

FairMOT [34] is a single multi-task network trained for performing multi-object
detection and description. The fusion in a single neural network of the two tasks allows an
improvement of the inference speed. It uses an anchor-free approach based on CenterNet
with ResNet-34 (DLA version) as backbone, so it may be effective with partial occlusions.
We will test the FairMOT multi-object tracking approach described in Section 3.3.

High-Resolution Network (HRNet) [29] has the objective to maintain high-resolution
representations throughout the whole feature extraction procedure. This goal is achieved by
connecting several high-to-low resolution convolution streams in parallel and by exchang-
ing information across resolutions. In this way, the obtained representation is spatially more
precise and the latent space maintains rich semantic information. Thanks to these architec-
tural peculiarities, HRNet achieved remarkable semantic segmentation results in road urban
scenarios; we expect that the same can happen for object detection in similar conditions.

Swin Transformer (SwinT) [30] is a transformer-based neural network that is achieving
state-of-the-art performance in various object detection tasks. Its success is mainly due to
hierarchical feature maps and patch merging that foster scale invariance and the limitation
of self-attention to non-overlapping local windows while allowing for cross-window con-
nections, which enforces shift invariance. These features can definitely be relevant even in
the considered autonomous driving scenarios.

ConvNext [31] is a pure convolutional neural network obtained by adding to a stan-
dard ResNet modern components that contribute to favorably compete with transformer-
based models. Thanks to these training techniques and architectural upgrades (inverted
bottlenecks, large kernels, GELU, Layer Normalization, fewer activation functions and
normalization layers, separate downsampling layers), it achieved 87.8% ImageNet top-1
image classification accuracy and outperformed Swin Transformer in object detection over
COCO dataset. Therefore, we also consider this multi-object detector promising for the
problem at hand.

3.3. Object Tracking

The tracking methods define the data association strategy, which includes the assign-
ment algorithm and the similarity function. The choice of the latter determines how to
compute the object descriptors and the track descriptors, namely, the feature extraction
method for the appearance-based representation and the motion prediction algorithm, as
well as the combination rule for computing the similarity. As was already done for multi-
object detectors, we choose tracking methods that have different characteristics, especially
in terms of data association strategies. In particular, the considered multi-object tracking
methods are: DeepSORT [32], UniTrack [33], FairMOT [34] and QDTrack [18]. The chosen
trackers consider positional-based and appearance-based similarity functions and associa-
tion strategies that can be effective in different situations in a road scenario. DeepSORT [32]
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introduces a combination of positional and appearance features that strongly matches
the tracklets in case of short movements, while UniTrack [33] gives more importance to
the appearance; that is indeed the only information which QDTrack [18] considers for
carrying out the association between detected and previously tracked objects. On the other
hand, FairMOT [34] provides a computationally efficient way to extract features for object
association. In the following, we provide a detailed description of the chosen tracking
methods and further motivations for our choice to adopt them.

DeepSORT [32] is an advanced version of SORT [48] that uses a similarity function
based on the combination between the position-based similarity provided by SORT and
an appearance-based similarity. The position-based similarities are computed as the Ma-
halanobis distances between the centers of the bounding boxes of the detected objects
and the position estimated with Kalman filter for the previously tracked objects. The
appearance-based similarities are the cosine distances between the representations of the
detected objects and their stored representations. The object representation is computed
with a convolutional neural network with two convolutional layers and six residual blocks.
The matched pairs are then obtained with a two-step matching cascade technique. In the
first step, the weighted sum between the two similarities is used for matching pairs with
the Hungarian algorithm, which solves a linear assignment problem. In the second step,
the remaining objects are matched again with the Hungarian algorithm, but applied only
on the position-based similarities. The track management algorithm deletes unmatched
tracked objects after a configurable number of frames, while detected objects not matched
are considered new objects to track.

UniTrack [33] is similar to DeepSORT as it adopts the same two-step matching with the
Hungarian algorithm, but the object description, the appearance-based similarity and the
track management are different. In particular, the object representation is based on ResNet-
18 or ResNet-50 (we adopted the latter for our experiments) and the similarity function
is computed through the reconstruction similarity metric (RSM), which builds an affinity
matrix to extract the reconstruction matrices that are used to build the representation for
matching the pairs. The track management strategy removes the unmatched tracked objects
after 1 s, while new objects are tracked after two consecutive frames in which they appear
and are matched.

FairMOT [34] adopts the same two-step matching with Hungarian algorithm and
track management technique used in DeepSORT, but the appearance-based similarity is
totally different. In fact, FairMOT computes the object descriptor with a branch of its
multi-object detector. This branch is a convolutional layer with 128 kernels applied on top
of the backbone features. Bi-directional softmax is adopted as similarity function.

QDTrack [18] uses only an appearance-based similarity. The object descriptor is ob-
tained with a convolutional neural network with four convolutional blocks, trained through
a contrastive learning approach that determines the feature representation, allowing to
perform an effective re-identification. A quasi-dense similarity learning is applied to look
at the previously tracked objects and to find the best matching by using a bi-directional
softmax as similarity function. The matched pairs are not obtained by solving a linear
assignment problem, but by selecting the pairs corresponding to the maximum similarity.
The track management algorithm removes expired objects after a configurable number
of frames, while it treats differently the new objects according to their bi-softmax score.
In particular, detected objects with a bi-softmax score higher than a confidence threshold
are immediately tracked, while the others are considered after a configurable number of
consecutive frames in which they are matched with a lower bi-softmax score.

3.4. Evaluation Metrics

In the following subsections, we describe the metrics used to evaluate multi-object
tracking methods in terms of detection (Section 3.4.1), classification (Section 3.4.2) and
tracking (Section 3.4.3) capabilities.
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3.4.1. Detection

To compute the performance of a multi-object detection method, it is necessary to
define the sets of true positives (TP), false positives (FP) and false negatives (FN). In fact,
the metrics defined to evaluate these methods are based on the number of true positives
(|TP|), false positives (|FP|) and false negatives (|FN|).

With Pred being the set of bounding box predictions, Gt the set of bounding boxes in
the groundtruths and (p, gt) with p ∈ Pred and gt ∈ Gt, an association between a prediction
and a groundtruth box on the same frame, the sets of true positives, false positives and
false negatives are composed according to the Jaccard criteria:

TP = {(p, gt)|p ∈ Pred ∧ gt ∈ Gt ∧ IoU(p, gt) ≥ α} (1)

FN = {gt|gt ∈ Gt,@p ∈ Pred : (p, gt) ∈ TP} (2)

FP = {p|p ∈ Pred,@gt ∈ Gt : (p, gt) ∈ TP} (3)

where IoU(p, gt) is the intersection over union computed between the bounding boxes of a
prediction p ∈ Pred, and of a groundtruth element gt ∈ Gt and α is the detection threshold,
used to determine whether the association is accurate enough to consider it a true positive.

Adopting these sets for TP, FP and FN, the detection results are evaluated in terms of
the standard Precision (Pr), Recall (Re) and F1-score (F1) metrics, defined as follows:

Pr =
|TP|

|TP|+ |FP| (4)

Re =
|TP|

|TP|+ |FN| (5)

F1 = 2 · Pr · Re
Pr + Re

(6)

Precision measures the capability of the approach to reject false positives, which could
cause sudden vehicle decelerations and steering. Recall evaluates the sensitivity of the
method to detect the objects of interest, and is very important as false negatives could cause
vehicle collisions with objects in the scene. The F1-score is the harmonic mean between the
two values.

The precision of the bounding box around the detected object can be a crucial factor for
data association; in fact, an error in the alignment of the bounding box around the detected
object can cause the extraction of an object descriptor that is not representative enough.
Therefore, we measure this alignment in terms of mIoU on the detected objects as follows:

mIoU =
∑TP IoU(p, gt)

|TP| (7)

The higher is the mIoU value, the better is the alignment of the bounding box of
detected objects with the groundtruth annotations.

In addition, we will also compute the Recall for each class in order to have information
about the detection accuracy on specific object classes. With c being the generic class, we
can define the sets TPc and FNc as follows:

TPc = {(p, gt) ∈ TP ∧ Class(gt) = c} (8)

FNc = {gt|gt ∈ Gt ∧ Class(gt) = c,@p ∈ Pred : (p, gt) ∈ TP} (9)

Therefore, the Recall Rec for each class c can be computed as follows:

Rec =
|TPc|

|TPc|+ |FNc|
(10)
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The higher the Rec, the better is the accuracy of the method in detecting objects of
class c.

3.4.2. Classification

We find it useful to compute the classification accuracy to determine the amount of
possible associations made between objects of different classes. In fact, these errors may
lead to incorrect driving actions, as the behavior of the driver should certainly be different
when encountering pedestrians than when encountering vehicles.

The set of correct classifications CC can be defined as follows:

CC = {(p, gt) ∈ TP ∧ Class(p) = Class(gt)} (11)

In addition, the set of correct classifications CCc for a specific class c is:

CCc = {(p, gt) ∈ TPc ∧ Class(p) = c} (12)

We compute the overall classification accuracy A as follows:

A =
|CC|
|TP| (13)

In addition, the classification accuracy Ac for a specific class c is:

Ac =
|CCc|
|TPc|

(14)

3.4.3. Tracking

All the metrics proposed in the literature for evaluating multi-object tracking algo-
rithms are based on the definition of true positives (TP), false positives (FP) and false
negatives (FN). However, unlike multi-object detection, TP, FP and FN sets are built
with an optimization process that typically maximizes the value of the specific tracking
metric. Therefore, for each metric it is first necessary to describe the method by which the
aforementioned sets are built and then the definition of the metric can be provided. In
the following, we describe the most popular metrics proposed so far, namely, CLEAR [35],
IDF1 [36], HOTA [37] and TETA [23], which we adopted to evaluate the performance of the
multi-object tracking methods.

CLEAR metrics [35] include Identity Switch (IDSW), Multiple Object Tracking Ac-
curacy (MOTA) and Multiple Object Tracking Precision (MOTP). IDSW is the number of
association errors between two consecutive frames; each of these events happens when
two consecutive instances of the same detected object are tracked with two different iden-
tifiers. The TP set is optimized with a two-step method. In the first step, the matching is
performed with couples (p, gt) for which the similarity value is higher than a configurable
threshold and that do not cause an identity switch. In the second step, the Hungarian
algorithm selects the set of remaining matches that maximize as a primary goal |TP| and
as secondary goal the mean similarity across TP. Then, FN and FP are built as shown in
Equations (2) and (3).

MOTA measures the multi-object tracking capability without distinguishing between
detections and associations, as follows:

MOTA = 1− |FN|+ |FP|+ |IDSW|
|TP|+ |FN| (15)

where |IDSW| is the number of identity switches, and |TP| + |FN| corresponds to the
number of groundtruth instances.
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MOTP measures the matching error as the average of the similarities S(p, gt) computed
over all the true positive samples.

MOTP =
∑TP S(p, gt)
|TP| (16)

Identity F1-score (IDF1) [36] is a metric computed by performing the matching for
TP, FP and FN at trajectory level and not at detection level. Thus, the definition is based
on three sets: Identity True Positives (IDTP), Identity False Negatives (IDFN) and Identity
False Positives (IDFP). The optimization procedure adopted to build these sets has the
goal of minimizing the sum of |IDFN| and |IDFP|. In particular, the Hungarian algorithm
is used to select the trajectories to match (to build IDTP) by finding the maximum number
of associations whose similarity is higher than a configurable threshold.

According to these definitions of IDTP, IDFN and IDFP, Identity Precision (IDP),
Identity Recall (IDR) and Identity F1-score (IDF1) are computed as follows:

IDP =
|IDTP|

|IDTP|+ |IDFP| (17)

IDR =
|IDTP|

|IDTP|+ |IDFN| (18)

IDF1 =
|IDTP|

|IDTP|+ 0.5|IDFN|+ 0.5|IDFP| (19)

Higher Order Tracking Accuracy (HOTA) is a metric that separately considers detec-
tion and data association capabilities by measuring them with two different indices, namely,
DetA and AssA. Both terms are dependent on the definition of TP, FP and FN, which is
similar to the procedure applied for CLEAR metrics. The Hungarian algorithm determines
the set of matches, maximizing as a first goal |TP|, as a secondary goal the mean of the
association similarities across TP, and as a third goal the mean of the localization similari-
ties across TP. The matching is performed only if IoU(p, gt) is higher than a configurable
threshold. The final metrics consist of the area under the curve obtained evaluating the
various optimization solutions at different localization thresholds.

According to this definition of TP, FP and FN, the detection accuracy DetAα for a
specific localization threshold α is computed as follows:

DetAα =
|TP|

|TP|+ |FN|+ |FP| (20)

The association accuracy AssA depends on sets that we can define for p|(p, gt) ∈ TP:

• TPA(p): True Positive Associations, the set of true positives whose predicted and
groundtruth identifier is the same of p.

• FNA(p): False Negative Associations, the set of true positives whose groundtruth
identifier is the same of p but with a different predicted identifier.

• FPA(p): False Positive Associations, the set of true positives whose predicted identifier
is the same of p but with a different groundtruth identifier.

For each p|(p, gt) ∈ TP, it is possible to define the association score as follows:

A(p) =
|TPA(p)|

|TPA(p)|+ |FNA(p)|+ |FPA(p)| (21)

Therefore, the association accuracy AssAα for a specific localization threshold α can be
computed as the average of the association scores:

AssAα =
1
|TP| ∑

p∈TP
A(p) (22)
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Finally, HOTAα for a specific localization threshold α is defined as the geometric mean
between DetAα and AssAα:

HOTAα =
√

DetAα · AssAα (23)

CLEAR, IDF1, and HOTA metrics are designed for single-class multi-object tracking.
When they are applied to multi-class multi-object tracking, their values are computed
separately on objects of each class (considering the groundtruth label), associating only the
pairs (p, gt) for which Class(p) = Class(gt). The final value is then obtained by computing
the average of the values obtained on the single classes, as done for the BDD100K challenge.
Therefore, we compute mMOTA, mMOTP, mIDP, mIDR, mIDF1, massA, mDetA and
mHOTA metrics in this way.

TETA [23] was instead designed to be applied directly to multi-class multi-object
tracking. It adopts a class-agnostic association method, so it is not separately computed
on the objects of each class, since all the objects are considered together for the association
independently of the class. In this way, the measured multi-object tracking performance is
not affected by the classification accuracy. TETA depends on three contributions, namely,
localization accuracy (LocA), association accuracy (AssocA) and classification accuracy
(ClsA), which depends in turn on the definition of TP, FN and FP sets. The optimization of
these sets is performed with the Hungarian algorithm as in HOTA, but it is class-agnostic
and aims to maximize LocA and AssocA.

In particular, LocA and AssocA measure the localization and association accuracy,
respectively. They are computed with the same procedure defined in HOTA for DetA and
AssA, but the associations are class-agnostic.

ClsA measures the classification accuracy and depends, for a given class c, on:

TPC(c) = {(p, gt) ∈ TP ∧ Class(p) = c ∧ Class(gt) = c} (24)

FNC(c) = {(p, gt) ∈ TP ∧ Class(p) 6= c ∧ Class(gt) = c} (25)

FPC(c) = {(p, gt) ∈ TP ∧ Class(p) = c ∧ Class(gt) 6= c} (26)

With these sets computed for all the classes, ClsA is obtained as follows:

ClsA =
|TPC|

|TPC|+ |FNC|+ |FPC| (27)

Finally, TETA is the arithmetic mean of LocA, AssocA and ClsA:

TETA =
LocA + AssocA + ClsA

3
(28)

3.5. Experimental Setup

With the dataset, the detection and tracking approaches and the evaluation metrics
defined, we can now describe the setup of the experimental framework that allows us to use
the BDD100K dataset to train and evaluate the 22 multi-object tracking methods, computing
all the evaluation metrics defined in terms of detection, classification and tracking. To build
the framework, we used the tools already available for the BDD100K challenge [21] and in
TrackEval [56], adapting them to our purposes and adding the missing features.

First of all, to make possible the composition of methods with different multi-object
detectors and trackers, we decoupled the dependencies of the two modules by defining
a common and generic interface for each tracking method. In this way, we can carry out
separately the two steps, ensuring that the multi-object detectors produce only the outputs
with the defined format.

Therefore, for the detection step the only constraint is that the data format is compliant
with the BDD100K challenge framework [21]. In particular, the multi-object detectors must
produce as output a list of predictions obtained when they are applied on the BDD100K
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validation set. Each prediction is characterized by the following fields: filename, video
identifier, frame identifier, bounding box (xywh format), confidence score and category
identifier (pedestrian, rider, car, truck, bus, motorcycle, bicycle). We trained the seven multi-
object detectors (RetinaNet, EfficientDet, YOLOv5, YOLOX, HRNet, SwinT, ConvNext)
and FairMOT by using the BDD100K training set, considering only the seven classes of
interest. The results of all the detectors are then parsed to produce the output compliant
with the defined data format. The framework offers the possibility to run all the multi-object
detectors on the images of the BDD100K validation set, store the outputs and compute all
the detection (Precision, Recall, F1-score, mIoU, Recall for each class) and classification
(overall and by class accuracy) metrics. This structure allows to run all the methods once,
producing the outputs in a format compatible with all the tracking algorithms, and to easily
integrate new multi-object detectors.

The tracking step firstly requires the initialization of the detection results, which are
loaded and re-arranged to extract information regarding the specific video and frame.
Then, data association and track management procedures required by the various tracking
algorithms are executed. We integrated in this framework the considered trackers, namely,
DeepSORT, UniTrack, FairMOT and QDTrack, in order to make them compliant with the
defined data format. Each method produces, for each video, a JSON file of the results that
is compliant with the TrackEval standard [56]. Most of the considered tracking metrics
(mMOTA, mMOTP, IDSW, mIDF1, mIDP, mIDR, mHOTA, mDetA, mAssA, TETA, LocA,
AssocA, ClsA) are already available in TrackEval, while we implemented the missing
ones. The framework obviously takes into account the differences among the matching
techniques adopted for the various metrics.

4. Results

In the following subsections, we report and comment detection (Section 4.1), classifica-
tion (Section 4.2) and tracking results (Section 4.3) achieved by the considered methods.

4.1. Detection Results

The results achieved by the considered multi-object detectors are reported in Table 1.
We can observe a substantial balance in terms of F1-score between the top five methods,
namely, SwinT, ConvNext, HRNet, YOLOX and YOLOv5. SwinT is slightly higher (0.78), as
it reaches the best trade-off between Precision (0.73) and Recall (0.82). ConvNext is slightly
more effective in terms of Recall (0.83), while Precision is the prerogative of YOLOX (0.75),
HRNet (0.74) and YOLOv5 (0.74). We expect methods with higher Recall to be less prone to
possible collisions with undetected objects, while those with higher Precision will cause
fewer unnecessary decelerations and steering due to false positives.

This balance is also evident in terms of mIoU, whereby all the above methods obtain
the same value (0.84), except HRNet (0.83); we can therefore expect that the latter may be
less effective in data association, due to a higher misalignment of the bounding boxes. The
gap in terms of F1-score between the top five methods and the others, namely, FairMOT
(0.70), EfficientDet (0.67) and RetinaNet (0.65), is quite evident. FairMOT achieves the top
Precision (0.93), but also the worst Recall (0.56), proving to be a rather cautious multi-object
detector; the worst result in terms of mIoU (0.80) also implies a possible reduction in the
capability to extract an effective object descriptor, even if this neural network produces the
representation used for data association with its own branch. EfficientDet shows a good
trade-off between Precision (0.71) and Recall (0.64), but the latter value is too low compared
to the average; in terms of mIoU, the result is slightly lower (0.82) than HRNet. RetinaNet
achieves a better Recall (0.74) than the last two methods, but the worst performance in
terms of Precision (0.58); the high amount of false positives may cause problems for the
autonomous driving algorithm, while the result in terms of mIoU (0.81) is in the middle
between EfficientDet and RetinaNet.
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Table 1. Detection results computed with α = 0.5 in terms of Precision (Pr), Recall (Re), F1-score (F1),
mIoU and Recall for each class. The methods are ordered for descending F1-score.

Pr Re F1 mIoU ReP ReR ReC ReT ReBus ReM ReB

SwinT 0.73 0.82 0.78 0.84 0.74 0.70 0.85 0.76 0.80 0.63 0.58
ConvNext 0.71 0.83 0.77 0.84 0.75 0.71 0.85 0.78 0.81 0.67 0.58

HRNet 0.74 0.81 0.77 0.83 0.72 0.71 0.84 0.76 0.79 0.66 0.57
YOLOX 0.75 0.79 0.77 0.84 0.68 0.64 0.83 0.71 0.73 0.59 0.53
YOLOv5 0.74 0.78 0.76 0.84 0.65 0.56 0.81 0.71 0.72 0.60 0.55
FairMOT 0.93 0.56 0.70 0.80 0.43 0.30 0.60 0.48 0.42 0.15 0.20

EfficientDet 0.71 0.64 0.67 0.82 0.45 0.41 0.69 0.57 0.57 0.47 0.30
RetinaNet 0.58 0.74 0.65 0.81 0.62 0.60 0.77 0.67 0.71 0.51 0.48

Observing the performance in terms of Recall for each class, we can see a clearer gap
between the top three methods, i.e., SwinT, ConNext and HRNet, and the others; we expect
that this difference will also be evident in tracking metrics that consider the class to make
the associations. As for the Car class, YOLOX (0.83) and YOLOv5 (0.81) manage to keep up
with the best methods (0.84–0.85), while RetinaNet (0.77), EfficientDet (0.69) and FairMOT
(0.60) are more distant. On the other classes, the first three methods outperform YOLOX
by at least four percentage points, YOLOv5 even more and the last three by a long way.
RetinaNet deserves a special mention, as the optimization through focal loss allows it to
obtain a more balanced performance on the various classes and a smaller gap compared to
the best approaches on the less represented classes.

However, the superiority of the top three methods is evident and they should be
preferred as multi-object detectors in the field of self-driving vehicles; nevertheless, to the
best of our knowledge, these methods had never been tested together with state-of-the-
art tracking algorithms on image sequences acquired from cameras installed on board a
vehicle.

4.2. Classification Results

The association between detected objects and groundtruth elements for evaluating
multi-object detection results is class-agnostic, i.e., no class matching is evaluated (see
Equation (1)). In this way, we evaluated in the previous Section the localization capability of
the multi-object detectors, while we separately analyzed their object classification capability.
The results of this experiment are reported in Table 2.

Analyzing these results, we can notice a substantial overall balance, considering that
the average accuracy is equal to 0.97 for all methods and 0.96 for RetinaNet; for the latter,
the result is in contrast with respect to what was observed for the detection and seems to
demonstrate that the focal loss helps to better localize objects of different classes but does
not give an equally effective contribution to the classification. It is worth noting that the
classification results are computed on the objects actually detected by each method (see
Equation (11)), so the approaches that achieved a higher Recall correctly classified more
object instances.

We can generally observe that the classification accuracy is around 100% on Cars and
Pedestrians, and almost 95% on the Bicycles, while it dramatically drops on the Motorcycle,
Bus, Truck and Rider classes. If we consider that these classes are also the least detected
(see Table 1), we can conclude that some object categories are not correctly recognized and
can cause errors (collisions, steering, decelerations) in the autonomous driving algorithm.
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Table 2. Classification results in terms of overall accuracy (A) and accuracy for each class (Pedestrian,
Rider, Car, Truck, Bus, Motorcycle, Bicycle). The methods are ordered for descending A.

A AP AR AC AT ABus AM AB

ConvNext 0.97 0.99 0.68 1.00 0.68 0.78 0.78 0.95
SwinT 0.97 0.99 0.67 1.00 0.68 0.79 0.79 0.94

YOLOX 0.97 0.99 0.65 1.00 0.66 0.79 0.81 0.94
YOLOv5 0.97 0.99 0.65 1.00 0.66 0.78 0.74 0.95
HRNet 0.97 0.99 0.65 0.99 0.68 0.76 0.79 0.94

FairMOT 0.97 1.00 0.54 1.00 0.66 0.76 0.94 0.95
EfficientDet 0.97 0.99 0.55 1.00 0.59 0.74 0.79 0.91
RetinaNet 0.96 0.97 0.52 0.99 0.58 0.68 0.72 0.88

4.3. Tracking Results

We firstly analyze the performance of the tracking methods computed with the CLEAR
metrics; these results are reported in Table 3. We can note a substantial gap between the
first three methods and all the others, especially in terms of mMOTA. These results partially
reflect what was observed for the detection, where ConvNext, SwinT and HRNet already
demonstrated a remarkable performance; ConvNext is slightly better than the others,
probably thanks to the higher detection Recall. The combination of these multi-object
detectors with QDTrack, which proves to be the most effective data association method
on images acquired on board the vehicle, allows to significantly reduce |FN| and to
increase mMOTA (0.41–0.42). The superiority of QDTrack is evident by analyzing the
mMOTP value, which measures the average association similarity, of the methods that
use it (between 0.83 and 0.89); UniTrack, FairMOT and DeepSORT achieve a substantially
lower mMOTP (between 0.74 and 0.78). Not surprisingly, the same result can be observed
in terms of IDSW, whose average value (less than 6000) is clearly lower than the other
approaches (more than 20,000), demonstrating better stability in object tracking. It is
worth noting that, despite what has been observed on QDTrack, not all the methods that
use it occupy the first positions. In fact, half of the first 10 positions in the ranking are
taken by UniTrack. On one hand, this result points out that the contribution of the multi-
object detector on the overall accuracy is significant; on the other hand, it seems that the
effectiveness of the data association method also depends on the bounding box provided
by the multi-object detector.

The results obtained in terms of IDF1, shown in Table 4, confirm most of the ob-
servations deduced from the analysis of the CLEAR metrics. Even with trajectory level
associations, ConvNext, SwinT and HRNet with QDTrack achieve the best IDF1 by far
(0.54 to 0.56); the contribution of QDTrack is more evident in terms of mIDP (as it was
on mMOTP), while multi-object detectors substantially impact mIDR (in the same order
as detection Recall). In trajectory-level associations, contrary to what was previously ob-
served, DeepSORT appears to be more effective than UniTrack, especially in terms of mIDR;
FairMOT, on the other hand, obtained rather modest results, while on the CLEAR metrics
it was better.

ConvNext, SwinT and HRNet with QDTrack demonstrate their effectiveness even in
terms of mHOTA, as evident from the results reported in Table 5. ConvNext maintains a
slight advantage in the detection capability (mDetA = 0.39), while the association accuracy
is the same as SwinT (mAssA = 0.55); the best mHOTA (0.46) is mainly due to the slightly
higher detection Recall of the method with respect to SwinT (0.45) and HRNet (0.44).
QDTrack occupies the first five positions of the ranking, improving the performance of
multi-object detectors not particularly effective in the previous leaderboards, such as
YOLOX and RetinaNet; the average of the results on variable values of the localization
threshold, between 0.05 and 0.95 with a step of 0.05, seems to favor the stability previously
demonstrated by QDTrack. Once again, DeepSORT outperforms UniTrack and FairMOT,
with a more marked gap in terms of mAssA, even if the distance from QDTrack remains
considerable. We can note the discrete positioning of RetinaNet in all the rankings, which
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demonstrates the importance of managing the imbalance between the classes, especially
adopting metrics that perform associations according to the class.

Table 3. Tracking results on the BDD100K validation set in terms of mMOTA and mMOTP. We
also report |FN|, |FP| and IDSW to analyze the data association capability of the methods. The
approaches are ranked for descending mMOTA.

Detector Tracker mMOTA mMOTP |FN| |FP| IDSW

ConvNext QDTrack 0.42 0.83 137,827 19,160 7262
SwinT QDTrack 0.42 0.83 141,444 17,215 5222
HRNet QDTrack 0.41 0.83 135,707 20,572 5585

ConvNext UniTrack 0.30 0.77 180,729 22,821 38,772
HRNet UniTrack 0.29 0.77 188,400 22,706 35,820

RetinaNet QDTrack 0.28 0.83 207,003 19,715 8326
YOLOX QDTrack 0.28 0.86 229,427 5043 4051
SwinT UniTrack 0.28 0.77 207,309 16,980 21,608

YOLOX UniTrack 0.27 0.78 210,391 11,065 32,710
YOLOv5 UniTrack 0.24 0.79 235,107 7168 27,355
FairMOT FairMOT 0.23 0.77 190,537 21,262 43,140
RetinaNet UniTrack 0.21 0.77 234,119 19,524 30,992
YOLOv5 QDTrack 0.20 0.89 254,542 3823 2665
YOLOv5 DeepSORT 0.19 0.75 183,116 63,681 18,814
HRNet DeepSORT 0.16 0.74 156,518 98,360 23,299
SwinT DeepSORT 0.16 0.74 156,647 98,523 23,307

YOLOX DeepSORT 0.16 0.75 165,816 76,382 21,065
ConvNext DeepSORT 0.15 0.74 153,056 103,642 22,995

EfficientDet DeepSORT 0.14 0.77 272,843 36,474 9998
EfficientDet QDTrack 0.14 0.87 305,060 5244 2379
EfficientDet UniTrack 0.14 0.80 314,947 3784 15,085
RetinaNet DeepSORT 0.04 0.74 199,032 95,992 22,230

Table 4. Tracking results on the BDD100K validation set in terms of mIDF1. We also report mIDR
and mIDP to analyze the data association sensitivity and specificity of the methods. The approaches
are ranked for descending mIDF1.

Detector Tracker mIDF1 mIDR mIDP

ConvNext QDTrack 0.56 0.43 0.82
SwinT QDTrack 0.55 0.42 0.83
HRNet QDTrack 0.54 0.41 0.82
HRNet DeepSORT 0.41 0.34 0.52
SwinT DeepSORT 0.41 0.34 0.52

RetinaNet QDTrack 0.41 0.29 0.76
ConvNext UniTrack 0.41 0.30 0.67
ConvNext DeepSORT 0.40 0.33 0.51

YOLOX QDTrack 0.39 0.27 0.83
YOLOv5 DeepSORT 0.38 0.29 0.58
YOLOX DeepSORT 0.38 0.30 0.54
HRNet UniTrack 0.36 0.27 0.61
SwinT UniTrack 0.36 0.26 0.66

YOLOX UniTrack 0.36 0.26 0.69
FairMOT FairMOT 0.35 0.24 0.69
YOLOv5 UniTrack 0.33 0.22 0.74

RetinaNet UniTrack 0.32 0.22 0.63
RetinaNet DeepSORT 0.30 0.24 0.43
YOLOv5 QDTrack 0.30 0.20 0.88

EfficientDet DeepSORT 0.28 0.19 0.62
EfficientDet QDTrack 0.23 0.15 0.82
EfficientDet UniTrack 0.22 0.14 0.74
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Table 5. Tracking results on the BDD100K validation set in terms of mHOTA. We also report mDetA
and mAssA to analyze the detection and association capabilities of the methods. The reported are
obtained by varying the localization threshold from 0.05 to 0.95 with a step of 0.05. The approaches
are ranked for descending mHOTA.

Detector Tracker mHOTA mDetA mAssA

ConvNext QDTrack 0.46 0.39 0.55
SwinT QDTrack 0.45 0.38 0.55
HRNet QDTrack 0.44 0.37 0.54
YOLOX QDTrack 0.35 0.27 0.47

RetinaNet QDTrack 0.35 0.28 0.44
ConvNext DeepSORT 0.34 0.27 0.44

SwinT DeepSORT 0.34 0.28 0.45
HRNet DeepSORT 0.34 0.27 0.45

ConvNext UniTrack 0.34 0.30 0.40
YOLOv5 DeepSORT 0.32 0.25 0.44
YOLOX DeepSORT 0.32 0.25 0.44
YOLOX UniTrack 0.31 0.27 0.39
HRNet UniTrack 0.31 0.29 0.34
SwinT UniTrack 0.31 0.26 0.37

FairMOT FairMOT 0.29 0.24 0.39
YOLOv5 UniTrack 0.29 0.23 0.39

RetinaNet UniTrack 0.28 0.23 0.35
RetinaNet DeepSORT 0.27 0.21 0.38

EfficientDet DeepSORT 0.26 0.17 0.40
YOLOv5 QDTrack 0.25 0.17 0.38

EfficientDet QDTrack 0.23 0.14 0.39
EfficientDet UniTrack 0.21 0.14 0.34

The results in terms of TETA, reported in Table 6 and based on class-agnostic associ-
ations, definitely demonstrate the superiority of QDTrack for the problem at hand. The
adopted matching strategy, independent of the class, further favors associations based on
similarity and rewards not only of the data association capability of QDTrack, but also
the localization effectiveness of the multi-object detectors. ConvNext, SwinT and HRNet
occupy the top of the ranking, with the first standing out for its localization capability
(LocA = 0.41) and the second for its classification accuracy (ClsA = 0.61). In this case,
the superiority over the others is less evident, since YOLOX (TETA = 0.45) and YOLOv5
(TETA = 0.43) are close to the best performance (TETA = 0.49) thanks to their excellent
performance in terms of ClsA (0.68 and 0.67), already shown in Section 4.2; the same cannot
be observed for LocA, which is a favorable index for almost all methods based on the
top three multi-object detectors. In class-agnostic optimization, UniTrack outperforms
DeepSORT in almost all the approaches; FairMOT, on the other hand, occupies one of the
last positions.

A summary representation of all the results described above is shown in Figure 4. By
observing the chart, the superiority of the methods that use ConvNext, SwinT or HRNet as
detector and QDTrack as tracker is even more evident. Indeed, for each metric we can note
a substantial gap between these three methods and all the others, clearly visible as a high
step. This evidence confirms what has been discussed so far.
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Table 6. Tracking results on the BDD100K validation set in terms of TETA. We also report LocA,
AssocA and ClsA to analyze localization, association and classification capabilities of the methods.
The approaches are ranked for descending TETA.

Detector Tracker TETA LocA AssocA ClsA

ConvNext QDTrack 0.49 0.41 0.46 0.60
SwinT QDTrack 0.49 0.39 0.46 0.61
HRNet QDTrack 0.48 0.39 0.46 0.59
YOLOX QDTrack 0.45 0.26 0.42 0.67
YOLOv5 QDTrack 0.43 0.21 0.40 0.68

RetinaNet QDTrack 0.41 0.29 0.36 0.57
YOLOX UniTrack 0.40 0.27 0.33 0.59

ConvNext UniTrack 0.39 0.32 0.32 0.53
YOLOv5 UniTrack 0.39 0.22 0.33 0.60

EfficientDet UniTrack 0.38 0.14 0.34 0.65
SwinT UniTrack 0.38 0.28 0.32 0.54

EfficientDet QDTrack 0.37 0.15 0.35 0.61
HRNet UniTrack 0.37 0.31 0.30 0.52

ConvNext DeepSORT 0.35 0.39 0.37 0.29
RetinaNet UniTrack 0.35 0.24 0.29 0.51

SwinT DeepSORT 0.34 0.37 0.36 0.29
HRNet DeepSORT 0.34 0.37 0.35 0.29

YOLOv5 DeepSORT 0.34 0.31 0.36 0.35
YOLOX DeepSORT 0.34 0.35 0.36 0.32

FairMOT FairMOT 0.34 0.30 0.28 0.46
EfficientDet DeepSORT 0.32 0.20 0.35 0.41
RetinaNet DeepSORT 0.30 0.31 0.34 0.26

Figure 4. Comparison between the considered methods in terms of mMOTA, mIDF1, mHOTA and
TETA. Each line represents a metric whose value is reported on the y-axis, while the methods are
scattered on the x-axis. For all the metrics, the superiority of ConvNext, SwinT and HRNet combined
with QDTrack is evident.

5. Discussion

The analysis of the experimental results allows the discussion of interesting insights.
On one hand, the adoption of QDTrack with a multi-object detector among ConvNext,
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SwinT or HRNet is the most effective approach for multi-object tracking in autonomous
driving scenarios, as evident from the ranking reported in Figure 5. On the other hand,
the absolute performance should be substantially improved, even for the best methods.
Indeed, from Table 1 we can observe that 15% of the cars (ReC = 0.85), 20% of the buses
(ReBus ' 0.80) and 23% of the trucks (ReT ' 0.77) are not detected by ConvNext and
SwinT; in addition, around 25% of the pedestrians (ReP ' 0.75) and 40% of bicycles
and motorcycles (ReM ' 0.65 and ReB ' 0.58) are invisible for the considered detectors.
Also for the riders, we can note a miss rate around 25% (ReR ' 0.75); in addition, the
analysis of the confusion matrix of ConvNext allows us to observe that about 35% of the
riders are misclassified as pedestrians. This confusion can cause serious errors in terms
of collisions, steering and decelerations. Furthermore, the results in Table 2 point out the
wrong classification of a high percentage of the objects belonging to less-represented classes,
even when they are correctly detected. Therefore, there is certainly room for improvement
for multi-object detectors applied in autonomous driving scenarios.

Figure 5. Ranking of the considered methods in terms of mMOTA, mIDF1, mHOTA and TETA. Each
line represents a method whose position in the ranking is reported on the y-axis, while the metrics
are scattered on the x-axis. ConvNext, SwinT and HRNet combined with QDTrack always keep the
top three positions.

The issues described above may be less serious if the missed detections and wrong
classifications take place for objects that are far from the vehicle. Indeed, depending on
the speed of the vehicle, objects far away may not require any braking or steering action.
Nevertheless, a drawback of current tracking metrics is that they do not consider distance
from objects and thus do not weight the errors according to that distance. Therefore, we
have no way to evaluate this aspect, which could instead be relevant for preferring one
method to another. A future research direction should be the definition of metrics that take
into account the distance from objects and, consequently, the adaptation of loss functions
to train multi-object detectors and the neural networks used to extract object descriptors
for appearance-based re-identification. Obviously, in support of this research direction, it
would be useful to have data annotated also with the distance from the objects, which are
available, for example, in Waymo Open Dataset; alternatively, the only possibility would
be to estimate the distance from the object, starting from the extrinsic and the intrinsic
matrices of the camera and the class of the object.

It is also worth noting that none of the multi-object tracking methods have been
optimized to perform data association on multi-class objects; in fact, all the considered
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approaches are designed to carry out the re-identification of a single class of objects,
typically people, and are only re-adapted for the multi-class problem at hand. In addition,
in the case under examination, the camera is moving and the objects (especially the vehicles
parked on the roadside) are framed from different angles and can have totally different
frame-by-frame appearances. Therefore, another research direction could be to design data
association algorithms that take into account the different classes of objects of interest and
the peculiarities of the images acquired by the vehicle on the road (especially occlusions
and different points of view). Similarly, new methods for predicting the next position
occupied by tracked objects should be investigated; such approaches could make use of an
ego-motion estimation based on image analysis, or even better, on information collected by
the inertial navigation system of the vehicle.

Finally, another very serious shortcoming is the lack of simulations of such errors
(detection and/or tracking) in driving scenarios in order to evaluate their impact on
autonomous navigation. To this purpose, it would be useful to have a framework in which
artificial vision algorithms can be integrated and the negative effects of perception errors on
autonomous navigation can be verified in simulation. This integration can be done within
a simulator such as CARLA, in which it is possible to implement a navigation algorithm
that exploits the considered multi-object tracking methods in its perception module to
estimate position, speed and orientation of cars, trucks, buses, pedestrians, bicycles and
motorbikes. Furthermore, it is necessary to define an experimental framework that allows
to evaluate the performance of the various multi-object tracking methods. On one hand,
it is possible to compute the standard multi-object tracking metrics, or any additional
new metric, by comparing the estimated perceptions with the groundtruth provided by
the simulator. On the other hand, it is required to compute a driving score that takes
into account, for example, collisions due to false negatives or incorrect estimation of the
position of the objects which may be evaluated, as well as unnecessary decelerations or
sharp steering due to false positives. The evaluation may also consider the number of
infractions, the lane invasions, the number of collisions, the driving comfort, the navigation
time and so on. This framework would produce results that allow to evaluate both the
tracking performance and the effect of errors on the autonomous navigation. It is not easy to
develop such a framework, as the navigation algorithm performs its operations in the world
reference system; therefore, its realization requires the definition of multi-sensor fusion
algorithms for obtaining 3D coordinates, ego-state and ego-motion estimation methods,
and transformation of the tracking results into estimation of the speed and orientation of
vehicles and pedestrians on the road. Providing such a tool would be a great contribution
to the development of research in this field.

6. Conclusions

In this paper, we have proposed a framework for evaluating multi-object detection
and tracking methods on image sequences acquired by a camera installed on board an
autonomous driving vehicle. Twenty-two different approaches were trained and tested
on the BDD100K dataset, computing several evaluation metrics measuring detection,
classification and tracking capability of the methods. The experimental analysis allowed to
highlight the superiority of QDTrack as a tracking method, observing that it performs best
in combination with a detector based on ConvNext, SwinT or HRNet; such multi-object
tracking methods had never before been applied in autonomous driving. The proposed
framework has allowed for a deeper evaluation of the contribution provided by each of the
modules on the overall performance of the methods. Furthermore, the discussion of the
experimental results brought out the shortcomings of the currently existing approaches
and allowed to outline possible future directions of research in this field. In particular, we
conclude that: (i) object detectors and their classification branches definitely need to be
improved to ensure higher reliability on all the classes of interest; (ii) the metrics used to
evaluate the multi-object tracking methods in road scenarios and the loss functions used
in the learning procedure must consider specific aspects of this field, such as the class of
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the objects and their distance from the vehicle; (iii) the data association methods must be
designed to solve a multi-class object re-identification problem with a moving camera, thus
investigating appearance-based and position-based similarity functions that take these
aspects into account; (iv) the navigation algorithms that make use of the aforementioned
multi-object tracking methods must be simulated in order to verify the impact of perception
errors in terms of collisions and sudden steerings and decelerations.
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