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Abstract: Edge computing is a viable approach to improve service delivery and performance param-
eters by extending the cloud with resources placed closer to a given service environment. Numerous
research papers in the literature have already identified the key benefits of this architectural approach.
However, most results are based on simulations performed in closed network environments. This
paper aims to analyze the existing implementations of processing environments containing edge
resources, taking into account the targeted quality of service (QoS) parameters and the utilized
orchestration platforms. Based on this analysis, the most popular edge orchestration platforms are
evaluated in terms of their workflow that allows the inclusion of remote devices in the processing
environment and their ability to adapt the logic of the scheduling algorithms to improve the targeted
QoS attributes. The experimental results compare the performance of the platforms and show the
current state of their readiness for edge computing in real network and execution environments.
These findings suggest that Kubernetes and its distributions have the potential to provide effective
scheduling across the resources on the network’s edge. However, some challenges still have to be
addressed to completely adapt these tools for such a dynamic and distributed execution environment
as edge computing implies.

Keywords: edge computing; service scheduling; service orchestration; container; Internet of Things
(IoT); Kubernetes; K3s; KubeEdge; ioFog

1. Introduction

Most of today’s Internet of Things (IoT) data traffic is transmitted over the Internet
towards remote cloud servers for processing or storage. However, such an architectural
approach gradually leads to a buildup of network congestion and results in a prolonged
overall processing cycle for IoT services and reduced responsiveness to events detected
in local smart environments. The concept of Edge-to-Cloud Continuum (ECC) emerged
to reverse this trend and significantly reduce the traffic generated towards the cloud by
enabling the processing of IoT data closer to the data sources.

In the ECC, devices are organized hierarchically into layers, as shown in Figure 1. A
more detailed description of entities in each layer of the depicted architecture is given in
our previous work [1]. It is important to note that each layer offloads the upper layer and
executes a certain amount of its functionalities. Additionally, nodes within the same layer
are also mutually connected to share the processing load and optimize the placement of
the deployed services. Thus, the processing and storage capabilities are brought closer
to the end devices, which offers the opportunity to achieve the following critical goals
of IoT concept [2]: reduced overall network traffic, improved responsiveness and shorter
processing cycle, enhanced security with privacy control, and lower operational costs.

Since the emergence of the ECC concept, the idea of extending the cloud with com-
puting resources placed closer to IoT devices and end-users has been extensively covered
in the academic literature. The aforementioned benefits of ECC, introduced by the addi-
tional edge layers, are well known: In theory, efficient utilization of ECC resources should
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improve the performance of IoT services by executing processing closer to data sources
and service consumers. However, adding heterogeneous computing resources at the edge
of the network and service orchestration in such a distributed and dynamic execution
environment poses a significant challenge in practice. In such an execution environment,
where end devices and edge nodes are constantly changing their state and location, manual
service management becomes complex and should be avoided by utilizing the automated
approach enabled by an appropriate orchestration tool, e.g., Kubernetes, KubeEdge, K3s,
or ioFog. Thus, services running on the edge nodes should be automatically orchestrated
to maintain their high availability.
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Figure 1. Abstract view of the Edge-to-Cloud continuum.

In addition, an edge service assigned to manage or process data from an IoT device
must be autonomous, stateless, and portable to ensure that edge service migrations across
the ECC are short, while service availability remains high. The best solution for easy-to-
migrate services is container virtualization because, once packaged, a service can easily
be migrated with reduced startup time compared to the other methods. Thus, efficient
service orchestration combined with portable containerized components of IoT services
is required to achieve ECC benefits in practice. For that reason, throughout this paper,
we will focus specifically on container orchestration tools. These tools were primarily
designed to manage the deployment of containerized applications in large-scale clusters
and are capable of running hundreds of thousands of jobs across thousands of machines [3],
and in this paper, we will analyze how they can be applied to a distributed and dynamic
ECC environment.

Service orchestration in the ECC implies scheduling, deploying and managing services
based on a specific scheduling policy within a dynamic and unstable execution environment.
The challenge of implementing efficient service orchestration has been analyzed mainly
in the scope of cloud administration before the emergence of edge computing. Thus,
different approaches and orchestration systems already exist, but they must be adapted
to become more suitable for the edge computing environment. Current implementations
of orchestration tools typically involve many features and capabilities necessary to ensure
system scalability and reliability across cloud environments. However, such capabilities
make them resource-demanding and often too heavy for the devices at the network’s edge.
Furthermore, as these numerous features are not critical in edge computing use cases,
their number could be reduced to achieve optimized and lightweight versions of existing
orchestration tools. Such versions should primarily include features necessary to execute
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efficient orchestration in the edge computing environment, where the emphasis should be
on specific performance targets rather than goals critical for cloud-based systems.

Although such goals, critical for orchestration in the cloud environment, are not ex-
cluded, service orchestration in edge computing should be pointed more towards utilizing
the available computing resources to ensure the desired QoS and improved overall system
performance. Such a goal presents a challenge as the QoS target differs depending on
the goal of a specific use-case scenario. Thus, different use cases should apply custom
scheduling policies to properly exploit the benefits of the edge computing concept in a
specific scenario and reach the targeted QoS level. Therefore, an important requirement for
service orchestration platforms that are to be used within the ECC is to enable the adjust-
ments of scheduling policies that determine the execution logic of service orchestration.
Another differentiating factor between service orchestration in a cloud environment and
edge computing is that the involved computing edge nodes are placed across distant and
separate local area networks, often without static public IP addresses. This poses another
challenge for the adaptation of the existing orchestration tools since the orchestrating node
has to be able to issue commands towards entities without public IP addresses and outside
of its own private network, which is usually not the case within cloud environments.

The two aforementioned requirements, namely, custom scheduling policies and ease
of configuration across different networks, are the focus of our examination of the existing
tools for container orchestration within edge computing environments. To obtain relevant
inputs for our comparison of orchestration tools, we first conducted a survey of state of
the art in service scheduling and orchestration at the edge and categorized the works
based on the predefined parameters. The main objective of the survey is to analyze how
often orchestration tools were used to evaluate the proposed approaches and which are
the most commonly used tools. Furthermore, if the evaluation was done by simulation,
we wanted to identify the main reason for avoiding evaluation in a real environment
and utilizing an existing orchestration tool. Therefore, as input to our experiments on
tool evaluation, the survey had to provide the following answers: (i) what are the most
common QoS parameters that were considered for the implementation of custom service
scheduling; (ii) what is the most common hardware used to run the edge nodes. Based
on this information and the two requirements mentioned above, we then analyze the
complexity of utilizing the existing orchestration tools for the implementation of custom
service scheduling in a common edge execution environment.

Our main motivation for writing this paper stems from the need to provide a summary
and evaluation of the main container orchestration tools for the edge domain to facilitate
the selection of an appropriate container orchestration tool for edge computing solutions.
Therefore, we summarize the current state of the art in edge orchestration to classify the
work according to the scheduling strategies and the use of container orchestration to
provide input for the evaluation of container orchestration tools and highlight current
trends in edge orchestration.

A relevant survey focusing on containerization and scheduling of edge services is
reported in [4]. The authors provide an overview of Kubernetes and Docker Swarm
schedulers, as well as algorithms used to efficiently schedule container-based services in
edge computing environments. In comparison, our work examines a larger set of edge-
oriented container orchestration tools (K3s, KubeEdge, and ioFog) and provides their
comparative performance evaluation within a real-world edge deployment. The authors
in [5] also provide a survey of edge orchestration, focusing on container orchestration tools.
They analyze similar tools (Kubernetes, KubeEdge, K3s, and ioFog) with an emphasis on
theoretical evaluation, while we provide a practical deployment example and performance
evaluation of these tools in a real-world environment. A similar study is reported in [6].
The work provides an evaluation of the performance impact of using Docker containers
for IoT applications in fog computing infrastructures. Finally, the authors propose a
framework for running IoT applications at the edge based on Docker Swarm. Compared
to our experiments, they measure container overhead, while we measure the overhead
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of existing container orchestration tools once our service is containerized. A thorough
survey of fog/edge orchestration challenges was conducted in [7]. The authors provide
an overview of state of the art in service orchestration and present technologies that can
be used to overcome the major orchestration challenges. Compared to their overview of
related work, we focus more on orchestration tools, while their work focuses mainly on
edge-enabling technologies such as NFV, SDN, or serverless computing, and the challenges
of implementing these technologies.

Our contribution can be summarized as follows:

• We provide an overview of state of the art in edge orchestration, focusing on how or-
chestration has been implemented and what hardware has been most commonly used.

• We provide an architectural analysis of selected container orchestration tools, i.e.,
Kubernetes, K3s, KubeEdge and ioFog, focusing on their readiness for use in a resource-
constrained edge environment and the possibilities for implementing custom service
scheduling algorithms.

• We evaluate the selected container orchestration tools in an experiment to investigate
how they perform in a real edge computing environment regarding memory footprint
on a resource-constrained edge node and their support for edge nodes in private
networks. Finally, we provide a performance evaluation to determine the startup and
migration time of our custom edge service.

The work is organized as follows. Section 2 gives an overview of related work in the
field of ECC orchestration. Section 3 gives an architectural overview of selected container
orchestration tools with respect to their applicability in the edge domain. Section 4 provides
a comparison of selected container orchestration tools based on cluster deployment and
performance evaluation. Finally, Section 5 provides the conclusion and lists future work.

Short note on terminology. The term fog computing is frequently used in the literature,
and in fact both edge and fog computing refer to the same technology: a distributed
computing architecture that brings cloud services closer to end devices in the edge-to-cloud
continuum. In some related works, fog and edge computing are divided into different
layers, where the edge layer represents the far edge, placed at the first network hop from
the end devices, while the fog layer is placed between the edge and the cloud layer (near
edge). In this paper, we prefer to use the term edge as it has been used more frequently in
the scientific literature recently.

2. Extensive Survey of Relevant Works in the Area of Edge Orchestration

The paper aims to compare existing container orchestration tools in terms of their
applicability for edge computing implementations in the IoT domain. Our main motivation
for this comparison stems from the fact that academic works in the field of edge computing
often perform simulations without performing an evaluation in a real-world environment
using service orchestration tools. Therefore, we survey related work to identify works
that employ service scheduling, optimized service placement, or service orchestration in
IoT-based edge environments regardless of their evaluation methodology. Based on this
review, we aim to answer the following research questions and use it as the basis for our
performance evaluation of orchestration tools:

1. What type of service scheduling (static or dynamic) is mainly utilized and what QoS
parameters are used for scheduling?

2. Are orchestration tools used for deploying and managing services at the edge, and if
not, what are the main reasons for employing simulations to evaluate the proposed
algorithm/solution?

3. What is the main type of hardware being considered for running far- and near-
edge nodes?
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Table 1 shows queries used in the search for relevant works in IoT service orchestration
at the edge. The search was performed in the Web of Science Core Collection [8] database.
The table shows how many relevant papers were obtained with the given queries, and the
results are not distinct, i.e., the same paper can be obtained with multiple queries. It is
important to emphasize that not all results of the queries were considered, but results were
manually filtered to obtain only relevant works that employ service scheduling, optimized
service placement, or service orchestration in IoT-based edge environments. Both terms edge
and fog were used as keywords in the queries as it is still not standardized in the literature.
The table shows that the most relevant works were found when the terms orchestration and
container were used as keywords, which makes sense since container orchestration is our
main focus in this work.

Table 1. Related work search queries.

Query Reference Count

(edge OR fog) AND orchestration 24
(edge OR fog) AND container 17

(edge OR fog) AND scheduling 11
(edge OR fog) AND serverless 7
(edge OR fog) AND placement 7

(edge OR fog) AND (kubernetes or kubeedge or k3s or iofog) 7

Total number of relevant works 55

The problem of service orchestration in edge computing environments is a well-
known research topic. Table 2 gives an overview of related work in the field of edge service
orchestration with the five main categorization questions:

• ECC layer: Which ECC layer from the Figure 1 was targeted within the paper?
• Scheduling: Was service scheduling used? Was it static or dynamic scheduling?
• QoS parameters: If service scheduling was used, what QoS parameters were used for

scheduling? Three parameters were considered for this classification: response latency,
request throughput and privacy requirements.

• Containers: Were containers used for service deployment?
• Orchestration tool: What orchestration tool was used for service deployment and

management? Are the authors using general-purpose container orchestration tools,
such as Kubernetes [9] and Docker Swarm [10], container orchestration tools designed
for the edge, such as K3s [11], KubeEdge [12], or ioFog [13], or if the services are
running as VMs, are they using tools such as OpenStack [14] to manage this virtualized
environment?

• Edge node hardware: What hardware was used for the edge node implementation? If
the edge environment was simulated or no experiment was performed, no hardware
information is provided.

Figure 2 is the visual representation of the results from Table 2. Figure 2a provides the
classification of works according to the experiment performed, while Figure 2b classifies
works that use container orchestration according to the tool used or if a custom implemen-
tation was provided. Figure 2c indicates the number of works that utilize a particular QoS
parameter for service scheduling, and Figure 2d shows the hardware used to run edge
nodes with the number of occurrences in the corresponding works.



Sensors 2023, 23, 4008 6 of 23

Table 2. Related work in the field of edge service orchestration.

Reference ECC Layer Scheduling QoS
Parameters Containers Orchestration Tool Edge Node Hardware

[15] NE Dynamic L, T Yes - (custom) Not specified

[16] NE Dynamic L Yes ioFog VM: 2 vCPU, 2 GB RAM

[17] FE, NE Dynamic L, T Yes - (simulated) -

[18] FE Dynamic T No - (simulated) -

[19] FE, C Dynamic L No - (simulated) -

[20] NE Dynamic L No - (simulated) -

[21] FE, C Dynamic L Yes Docker Swarm VM: 1 vCPU, 1 GB RAM

[22] NE, C Dynamic L No - Raspberry Pi 3

[23] FE Dynamic L Yes OpenWhisk Intel Xeon CPU

[24] FE, NE, C Dynamic L, T Yes - (custom) Raspberry Pi 3

[25] FE, NE Static L Yes - (custom) Raspberry Pi 3

[26] FE - - Yes Docker Swarm -

[27] FE, NE, C Dynamic L No - VM: 1 vCPU, 1 GB RAM

[28] FE, NE, C Dynamic L, T, P Yes Kubernetes Raspberry Pi 3

[29] NE, C Dynamic L No - (simulated) -

[30] FE - - Yes OpenWhisk 12 CPU cores, 16GB RAM

[31] FE - - No (We-
bAssembly) - (custom) Intel Xeon E5-2680 v2

(CPU)

[32] FE, C Dynamic L, T No Openwhisk VM: 2 or 4 vCPU, 4 GB
RAM

[33] FE Dynamic L No - Not specified

[34] FE, C Dynamic L No - VM

[35] FE, C Dynamic L, T No - (simulated) -

[36] FE, C Dynamic L No - (simulated) -

[37] FE Static - Yes Kubernetes Laptop Asus x507ma; VM:
4 vCPU, 3 GB RAM

[38] FE, C Dynamic L, T Yes K3s Not specified

[39] FE, C Dynamic - Yes Kubernetes,
KubeEdge

ARM64 4 core CPU, 4 GB
RAM

[40] FE, C Dynamic L, T, P Yes - (custom) -

[41] NE Dynamic L No (VMs) OpenStack Dell PowerEdge R530

[42] FE, NE, C Dynamic L, T, P No CometCloud Raspberry Pi

[43] FE, C Dynamic L No - (simulated) -

[44] FE, C Dynamic L, T Yes KubeEdge Jetson AGX Xavier; Jetson
Nano; Raspberry Pi 3

[45] NE, FE, C Dynamic L, T Yes Kubernetes Raspberry Pi 3; VM: 2
vCPU, 7.5 GB RAM

[46] FE, C Dynamic L No (VMs) - (custom)
Dell PowerEdge R530;
Intel NUC; Dell Optiplex
7050

[47] FE Dynamic L, T Yes - (custom) Desktop with Intel
i7-6700K CPU

[48] NE, C - - Yes Kubernetes Intel Xeon E5-2609 (CPU);
Intel Core i7-6700 CPU

[49] FE Dynamic L, T, P Yes - (custom) 4 CPU cores, 16 GB RAM

[50] NE, C Dynamic L Yes - (custom) Not specified

[51] FE Dynamic L, T Yes - (simulated) -
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Table 2. Cont.

Reference ECC Layer Scheduling QoS
Parameters Containers Orchestration Tool Edge Node Hardware

[52] FE, NE Dynamic L Yes - (custom) Raspberry Pi 3; Intel Core
i5, 8GB RAM

[53] FE, NE, C - - Yes K3s VM: 2vCPU, 4 GB RAM

[54] FE, NE, C Dynamic L, T Yes Kubernetes Raspberry Pi; Jetson TX2;
Intel NUC

[55] NE, C Dynamic L, T Yes - (simulated) -

[56] FE - - Yes - Raspberry Pi 3; Dell
PowerEdge C6220

[57] NE Dynamic L Yes - (simulated) -

[58] FE - - Yes - (custom) Raspberry Pi 3; Laptop
ASUS Zenbook UX331UN

[59] NE, C - - Yes Docker Swarm Intel Core i3-2120 CPU, 8
GB RAM

[60] NE, C Dynamic - Yes - (custom) Odroid C2 (ARM
Cortex-A53, 2 GB RAM)

[61] NE Dynamic L No - (simulated) -

[62] FE, NE Dynamic L No - (simulated) -

[63] FE, NE, C Dynamic L, T No - (simulated) -

[64] FE, NE, C Dynamic L Yes - (simulated) -

[65] FE, NE, C Dynamic L Yes Kubernetes Raspberry Pi

[66] FE Dynamic - Yes Kubernetes
Jetson TX1, TX2, Nano,
Xavier; Raspberry Pi with
Google Edge TPU

[67] FE, NE Dynamic L, T Yes Kubernetes Not specified

[68] FE, NE Dynamic L, T Yes KubeEdge 4 CPU cores, 4 GB RAM

[69] NE Dynamic L No - (simulated) Jetson Nano

FE—Far Edge; NE—Near Edge; C—Cloud | L—Latency; T- Throughput; P—Privacy

The main conclusion from the provided state-of-the-art overview is that container
orchestration tools are not yet widely utilized in edge orchestration works, as can be seen
in Figure 2a,b. One of the main reasons for this is that simulation (which is still a popular
validation technique) is more convenient for solution evaluation when a large number
of edge nodes need to be simulated along with an underlying network. For example,
some works require simulations of more than 1000 devices to validate the scalability of the
system, which is reasonably difficult and expensive to implement to prove the value of the
proposed algorithm, e.g., [35,62,63]. The following quote summarizes the problem faced
by the authors in evaluating edge-oriented algorithms: “Running comprehensive empirical
analysis for the resource management algorithms in such a problem would be very costly, therefore,
we rely on simulation environment” [62]. Another problem the authors are facing is the
implementation of a MEC (Multi-access Edge Computing) environment [70]. MEC offers
cloud computing capabilities at the edge of telecom operators’ infrastructure, which makes
it difficult to conduct experiments given the lack of testbeds. Therefore, we believe that the
authors of MEC-based works are more keen on providing evaluations through simulations,
as noted in [18,35,55,69]. Finally, we must point out that existing container orchestration
tools: (i) bring deployment complexity; (ii) make it difficult to implement custom scheduling
algorithms, and (iii) are mainly not designed for resource-constrained edge environments.
We concluded this due to the fact that most authors implement their own orchestration
solution or use Kubernetes [45,65–67]—which is not designed for edge environments—or
Docker Swarm [21,26,59]—which is no longer being developed nor supported.
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Figure 2. Summary of a related work survey (distribution by category).

However, the only way to determine the overhead incurred by orchestration, e.g.,
when deploying a service on a resource-constrained edge node and migrating the service
to a new node, is to perform an experimental evaluation in an operational environment.
Moreover, a resource-constrained environment needs to be continuously monitored to
evaluate the performance of a scheduling algorithm in practice. In addition, simulation
tools are not able to simulate with high precision the underlying network, which may be
unstable at the edge, as well as the hardware heterogeneity, which significantly affects the
performance of services at the edge. Therefore, we will provide the evaluation of existing
container orchestration tools in terms of their applicability for edge service orchestration
and scheduling on resource-constrained edge nodes.

Figure 2c shows that most of the works implementing scheduling use latency as the
main scheduling parameter. The main reason for this is that reducing latency is the most
emphasized benefit of edge computing, while preserving bandwidth and privacy is also
important, but not as prominent in state of the art. Moreover, developing latency-aware
scheduling algorithms is much more straightforward than bandwidth- or privacy-aware
scheduling. Finally, Figure 2d shows that most of the experiments performed on real
hardware are implemented on single-board computers (SBCs). This will serve as input for
our evaluation of container orchestration tools since one of the requirements is that the tool
can run on resource-constrained SBCs. In addition, it can be noted that the most common
VM setup for the edge node is up to 2 vCPU and 2 GB RAM.

3. Overview of Selected Container Orchestration Tools

Based on the survey reported in Section 2, we selected the following four orchestration
tools for our evaluation of their applicability within the edge computing environment:
Kubernetes, K3s, KubeEdge, and ioFog. We did not consider Docker Swarm as it is not
intended for managing distributed workloads, and it is often introduced as a simplified
alternative to Kubernetes, which does not offer its advanced automation features and high
customization. Our choice was primarily determined by the frequency of their utilization in
relevant papers analyzed in Section 2. In addition, we also considered tools that are utilized
less frequently but are designated specifically for edge environments. Most of these tools
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(such as K3s and KubeEdge) are built upon Kubernetes but have been simplified to provide
a lightweight alternative that is more suitable for resource-constrained nodes. In contrast,
ioFog is a standalone orchestration tool that is built on its own architectural principles.

3.1. Architectural Analysis of Selected Orchestration Tools

Before providing an overview of the four orchestration tools we have selected, we
analyze their architectural components to gain a better understanding of their operational
logic. The description of each tool provides insight into its operational logic, so this
section offers the opportunity to better understand their differences before the experimental
evaluation of their performance.

3.1.1. Kubernetes

Kubernetes is widely recognized as the preeminent open-source platform for container
orchestration. As defined in [9], Kubernetes is an open-source system designed to auto-
mate the deployment, scaling, and management of containerized applications. It offers a
wide range of capabilities such as configuration management, self-recovery, automated
rollouts and rollbacks, and load balancing that together make it probably the most popular
orchestration tool today.

Kubernetes enables the creation of a computer cluster composed of a group of op-
erational machines known as nodes, which are responsible for executing containerized
applications. Worker nodes serve as hosts for the execution of application components
which in Kubernetes terms are referred to as pods. The control plane, which may be
deployed on a single node or across multiple nodes, oversees the workers and pods within
the cluster. Its key responsibilities include making high-level decisions about the cluster
and responding to the detected events that occur within the cluster.

The control plane consists of several components: kube-apiserver, etcd, kube-scheduler,
kube-controller-manager, and cloud-controller-manager (Figure 3). These components can
be run on any machine in the cluster, and together, they enable efficient cluster management.
Worker nodes of the cluster run the following node components: kubelet, kube-proxy, and
container runtime. They are used to run pods and thus provide the Kubernetes runtime
environment [71].

As Kubernetes originally was not intended for deployment across distributed loca-
tions, it is not applicable for service orchestration within an edge computing environment
in its current form. However, with certain adjustments, it can be adapted to support remote
worker nodes and offer the possibility of implementing a functional orchestrated edge
layer. The main obstacle towards including remote worker nodes in a Kubernetes cluster
is the prerequisite of continuous communication between the control plane and worker
nodes. The communication from worker nodes towards the control plane terminates at
the exposed interface of the API server component [72]. Remote worker nodes are able
to communicate with the control plane exposing public IP addresses since, in the edge
computing environments, the control plane is expected to run on a publicly available cloud
infrastructure due to its resource-intensive components [73]. However, the control plane
should have two primary communication paths towards the included worker nodes: one
towards the kubelet that is terminated at the kubelet’s HTTPS endpoint (for fetching pod
logs, attaching to running pods, and providing the kubelet’s port-forwarding functionality),
and the second towards nodes, pods and services. In a cluster environment, such communi-
cation is enabled since worker nodes are within the same network environment or they at
least have available IP addresses. However, in the desired edge computing model, where
the worker devices could be placed in remote private networks without static public IP
addresses, this becomes a challenge that has to be resolved.

Other drawbacks of utilizing Kubernetes for edge orchestration are consequent to
its strong reliance on high network and processing performance that is available within
the cloud environments, while the edge usually implies reduced resource abilities. This
is why today there are multiple orchestration tools that are built upon Kubernetes or that
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utilize a similar approach but offer service orchestration that is more suitable for the edge
computing environment.

Worker components

kubectl

Etcd

Scheduler

Controller
Manager

Apiserver

Master components

Kube-proxy

Kubelet

Container 
EngineSSH Kube-config

Figure 3. Kubernetes architecture.

The motivation for building an edge computing platform based on Kubernetes was to
provide a solution that would enable the inclusion of remote and constrained devices in the
processing plane. The main challenges for the successful implementation of such a platform
are limited resources at the edge, unstable network environments, possible network outages,
and device heterogeneity. Thus, the platform has to extend Kubernetes functionality, but
it also has to be lightweight, enable interaction with devices in private networks with
lower bandwidth, support autonomy at the edge (offline mode) and support various
devices and protocols. Also, multiple Kubernetes distributions that specifically target edge
environments are available today, which confirms the premise of its inapplicability for its
straightforward utilization in architectures that include the edge processing layers.

3.1.2. K3s

K3s is a Kubernetes distribution designed to distribute processing workloads across
remote environments utilizing the available constrained edge devices. As described in its
official documentation [11], K3s is a lightweight Kubernetes version with a binary of less
than 100 MB in size that supports ARM, which makes it a good candidate for the utilization
in edge computing with constrained devices. Its binary contains all Kubernetes control
plane components encapsulated within a single process, while the number of external
dependencies is minimized.

K3s architecture also consists of two parts: server node running the k3s server command
and worker node running the k3s agent command (components booted by these commands
are the ones already described in Figure 3). Agent node connects to the server node
establishing a WebSocket connection which is then maintained by the load balancer running
as a part of the agent process. Depending on a specific use case scenario, two different
server setups can be established: a simple single-server setup with an embedded database
and a highly available setup that implies multiple server nodes with an external database.
A worker establishes a connection with the server using the server’s unique token and its
URL, or a fixed registration address in case of a highly available setup. After registration,
the agent node establishes a connection directly to one of the server nodes.

K3s does not differ much from Kubernetes, but due to its lightweight binary and ARM
chip support, it should be more suitable for edge computing use cases. Another advantage
that makes K3s a more appropriate solution than Kubernetes for the edge computing
environment is its ability to include devices without public IP addresses. This is achieved
by setting up a tunnel proxy on a device that runs the K3s agent. Once the K3s agent is up
and running, a tunnel proxy will be installed to establish a connection with the controller.
The data traffic between the agent node and the controller can then be exchanged securely
through this newly established bidirectional link [74].
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3.1.3. KubeEdge

KubeEdge is an open-source platform designed to enhance container orchestration and
cluster management at the network’s edge [12]. It leverages the well-established Kubernetes
framework to offer infrastructural support for networking, application deployment, and
metadata synchronization between the cloud and resources at the network’s edge. Also,
the platform additionally supports the MQTT protocol and empowers the implementation
of customized logic to offer a mechanism that facilitates communication with devices at the
network’s edge.

The architecture of KubeEdge consists of two separate parts: cloud and edge (Figure 4).
Each part contains multiple components that together provide support for extending the
cloud with edge resources. The cloud part that typically resides within the cloud environ-
ment includes three modules: EdgeController and DeviceController, which are extensions
of Kubernetes controller enabling management and data synchronization between the
cloud and edge devices, and Cloud Hub, which is a WebSocket server enabling the commu-
nication between the controller and the edge part. The edge part that should be deployed
on edge devices includes the following components: Edge Hub, which is a WebSocket
client connected to the Cloud Hub mentioned above, that provides the interface for syn-
chronization of cloud-side resource updates and status changes in the edge between the
two main parts of KubeEdge, Edged agent for pod management, MetaManager that is the
message processor between Edged and Edge Hub, EventBus MQTT client which enables
the interaction with MQTT servers, DeviceTwin that stores and synchronizes device status
to the cloud, and ServiceBus that provides the interface to interact with HTTP servers.

The main feature that enabled the inclusion of edge nodes to the remote cloud using
the KubeEdge platform is the bi-directional WebSocket connection between the edge site
and the cloud part, which is the extension of the existing Kubernetes platform. Thus, the Ku-
bernetes apiserver component within the cloud does not have to communicate with worker
devices directly, but instead, the communication is done through the WebSocket connection
between the edge device (Edge Hub) and the cloud part (Cloud Hub). Since the edge
device initiates this WebSocket connection between the edge and the cloud part, KubeEdge
enables support for the inclusion of devices in private networks. However, networking
between Kubernetes cluster and edge applications can still be a bottleneck that has yet to be
resolved as described in [75]. Since KubeEdge is based on Kubernetes, its scheduling policy
is implemented identically because the scheduling part was not extended. Thus, adapting
the scheduling algorithm in KubeEdge implies the customization of the kube-scheduler
component, as it is achievable in the same manner with the Kubernetes platform.

EdgeController

DeviceController

Cloud Hub Edge Hub

MetaManager DeviceTwin

Edged

Event Bus

Service Bus

Container Runtime 
(e.g. Docker)

MQTT Broker

HTTP Server 
(REST)

Cloud

Edge Core

Edge

K8S 
API Server

Figure 4. KubeEdge architecture.
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3.1.4. ioFog

The last orchestration tool considered in our evaluation is the Eclipse ioFog. It is
another open-source platform that facilitates deploying, running, and networking dis-
tributed microservices within edge computing environments [13]. The Edge Computing
Network (ECN) on which the ioFog operates comprises one or more nodes, each running
the Agent daemon service. The agent manages microservices running on the same node,
which are usually deployed as Docker containers. The second essential component is the
ioFog Controller, which orchestrates Agents in the ioFog network. It can be executed on
any device, including those running the Agent component. Although a single Controller
component is sufficient for smaller ECNs, multiple Controllers are enabled to support use
cases that require greater resiliency. However, it is mandatory to ensure that this device has
a stable hostname or static IP address to be reachable to all other Agents, enabling them to
establish a connection with the Controller and pull the necessary control messages.

The most recent version of ioFog (v2) has additional components in its architecture
(depicted in Figure 5) compared to the previous version which are enrolled to enable
communication between microservices and their exposure without direct access to the
Agent [76]. An AMQP Router component enables communication among microservices
and public port tunneling to these microservices. Each Controller and Agent component
have their own Router component by default. An interior dispatch Router is deployed
next to the Controller component first, and afterwards, each Agent component runs its
own edge dispatch Router by default that is connected to the Controller’s interior Router.
However, Routers can be modified by editing their AgentConfig to set up different network
topologies and enable, e.g., direct communication between Agents on the same network
without going back upstream to the default interior Router. The next important additional
component is the Proxy that translates HTTP requests to AMQP messages when necessary.
The Proxy is an additional container that boots up on the node where the service will be
accessed by users (next to the interior Router) and also on the node where the targeted
microservice is running (next to the edge Router).

The option of setting up an ECN that interacts with a Kubernetes cluster is also enabled
by two additional components: Operator and Port Manager. The Operator is an internal
ioFog component that manages ioFog control plane Custom resource, while Port Manager
deploys proxies on the cluster necessary to expose microservices on external public ports.
Setting up ioFog on Kubernetes requires that the Operator component is deployed first
in the namespace so it could deploy an ECN in the same Kubernetes namespace when
the control plane Custom resource is created. However, it is important to note that only
the control plane can be deployed in Kubernetes while ioFog Agents remain outside the
cluster. Thus, ioFog cannot schedule services on cluster nodes since these cannot act as
ioFog agents.

Controller
(Daemon)

Proxy 
(Docker Container)

Interior Router 
(Daemon)

Proxy 
(Docker Container)

Edge Router 
(Daemon)

Agent 
(Daemon)

Microservice 
(Docker Container)

ECN Manager

User

Access to microservice 
(HTTP)

Controller management 
(HTTP / SSH)

ioFog Controller node 
(Public IP address)

ioMessages 
(AMQP)

Rest API 
HTTP

AMQP AMQP

HTTP

ioFog Agent node

Figure 5. ioFog (v2) architecture.
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3.2. Customization of Scheduling Algorithms

After architectural analysis of the chosen orchestration tools, in this section, we evalu-
ate their potential to offer customization of their scheduling algorithms in order to provide
better support for custom IoT use cases. In the context of edge computing, service or-
chestration implies service management and deployment across the available distributed
execution environment. Each aforementioned orchestration tool offers the opportunity to
set up a distributed cluster and then deploy services in it, but the logic of service scheduling
and deployment differs. As K3s and KubeEdge are built upon Kubernetes, they utilize
the same scheduling procedure as Kubernetes by default, so in this context, we will not
consider them separately.

The Kube-Scheduler is a dedicated control plane component of Kubernetes that ex-
ecutes service scheduling in a two-step procedure [77]. When a pod is created, Kube-
scheduler first executes the node filtering step, where it filters out all available nodes
capable of running the specific pod based on its resource requirements, including primarily
CPU and memory, but also some other parameters if necessary. The remaining nodes then
enter into the second step of the Kubernetes scheduling procedure named scoring, where
the goal is to determine the node that is the best fit to run a specific pod [78].

Each of these steps in the scheduling procedure can be customized by specifying
various scheduling plugins that are parameters defining the custom criteria to achieve the
desired scheduling execution logic. There are multiple options to specify preferences of
the node selection process but most of them are based on the information characteristic
for deploying applications within a cloud environment (e.g., specifying pod’s resource
requirements, pod and volume collocation, etc.). However, customization based on the
specific criteria is also possible by utilizing nodeSelector, affinity/anti-affinity, and nodeAffinity
constraints. These mechanisms enable pod labeling, which guides the scheduling process
towards the available nodes that meet the desired criteria. NodeSelector is the simplest form
of node selection constraint that implies scheduling labeled pods on nodes with identical
labels. Affinities provide similar functionality, but they allow defining more expressive
types of constraints. Thus, they offer the opportunity to specify scheduling preferences
for a pod without posing obligatory requirements that must be satisfied, so the pod can
be scheduled even when the node with the given criteria is not found. The example of
utilizing affinities to accomplish custom scheduling based on specific criteria is described
in [77].

Thus, the conclusion is that Kubernetes does offer customization of its scheduling
logic to a certain level, but it still has some deficiencies that are yet to be addressed in order
for it to be utilized within the edge environments. These primarily imply its inability to
specify custom variable QoS parameters that have to be taken into account while executing
scheduling, and in addition to this, its inability to offer pod re-scheduling dependent
on such QoS parameters. As QoS parameters are constantly changing within the edge
environments (especially in terms of IoT use cases) and the benefits of the edge architecture
are closely dependent on them, it is essential to efficiently resolve these shortcomings
so that Kubernetes, and its edge-oriented distributions, become completely adapted for
supporting its application within the edge environments. In its current state, custom
parameters of available nodes and their assessment can be implemented in a separate
service that can also be deployed within the Kubernetes cluster. Such a service could then
update the metadata of the existing nodes with the latest values of custom parameters in a
specific use case. However, such a service would also need information about the context
of a service user in order to update the appropriate pod affinities so that the Kubernetes
scheduler can redeploy the pod to the appropriate node when the scheduling procedure is
triggered again.

IoFog is the only tool not built upon Kubernetes, so we examined its scheduling
procedure separately. However, looking into its open-source resources ioFog also utilized a
custom Kubernetes scheduler, but the component has not been maintained and upgraded
in its newer versions. This may be due to its simplified logic, where the ECN manager is
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expected to trigger the service deployment with the command where a specific available
worker node can be chosen. Therefore, the scheduling algorithm of ioFog schedules
services in a similar manner as the default Kubernetes scheduler if the node is not specified
within a command to deploy a service, or if it is, it deploys a service to the specific node.
Customization of such a procedure implies implementing a separate service that would
execute a complete overview of the execution environment and its specific QoS parameters.
Upon this information, a separate scheduling service would then have to determine the
most suitable node to deploy a service and trigger its deployment or redeployment over
the ECN manager’s interface.

4. Performance Comparison of the Selected Container Orchestration Tools

The selected orchestration tools are compared in practice to test their applicability in
the edge computing environment. For the comparison, we selected the container orchestra-
tion tools presented in the previous section, with the following latest stable releases at the
time of conducting the experiments: Kubernetes v1.26.1, K3s v1.26.1+k3s1, KubeEdge v1.12.1,
and ioFog v2.0.

Upon receiving the first request from a service client, the edge orchestration tool would
ideally have to check if the service is already running at the nearest edge node to the service
client and, if not, deploy or migrate the service to that particular node. In addition, further
communication between the service and service user has to be executed directly, while
the actions of the orchestration tool need to be triggered by the changes in the QoS for a
particular client to fully exploit the benefits of edge computing. However, as described
earlier in Section 3.2, none of the selected tools offer a solution to monitor and schedule
services based on client QoS parameters. Therefore, for the comparison, we have only
evaluated the possibility of connecting to the controller API and measured the time to start
and migrate a particular service on the selected edge node.

4.1. Prerequisites

Before conducting the evaluation of the container orchestration tools, we needed to:
(i) configure the evaluation environment and (ii) implement an edge service to be used in
the evaluation.

4.1.1. Environment Setup

Figure 6 shows how the environment was configured to evaluate the orchestration tools
with hardware and software details attached. Three nodes were used for the evaluation:
one to run the ECC controller and two to serve as edge nodes. The edge node hardware
was selected based on the survey results described in Section 2. The environment setup is
built to answer the following questions:

• How does the orchestration tool handle edge nodes in private networks?

– Edge nodes were placed in different private networks, and the controller was
placed in the public network.

• How does the orchestration tool support node heterogeneity?

– Nodes were deployed on both x86 and ARM processor architectures.

• How does the orchestration tool run on a resource-constrained edge node?

– Node node-1 runs on a single-board Raspberry Pi 4 computer.

It is important to note that all evaluations were performed in the same environment,
and full cleanup occurred between subsequent evaluations.
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Name node-1

Hardware Raspberry Pi 4 Model B
(4 GB RAM)

OS Raspberry Pi OS
Buster

Name node-2

Hardware Openstack VM
(2 vCPU, 2 GB RAM)

OS Ubuntu Server
20.04.2 LTS

Name orchestrator

Hardware Openstack VM
(4 vCPU, 8 GB RAM)

OS Ubuntu Server
20.04.2 LTS

Private Network A Private Network B

Cloud 

Edge

Public Network

Figure 6. Configuration of the evaluation environment.

4.1.2. Edge Service Implementation

To conduct our evaluation, we first needed to design and implement a simple use case
that would allow us to test the performance of selected orchestration tools and ultimately
provide an answer to the aforementioned questions about their readiness for use in edge
environments. The basic idea of edge computing is to perform data processing closer to data
sources, which are often mobile, especially for IoT use cases. Therefore, our experiment
uses a simple application that can be migrated depending on the location of the data
source so that it can always be placed at the closest available edge processing node to
the source. However, this goal must be achieved automatically by the orchestration tool,
which must overcome all the previously described obstacles characteristic of edge execution
environments.

The first step to building our experiment was to create a simple application and
containerize it to enable its portability across available processing nodes. We implemented
a Node.js HTTP server that returns a response to the GET request on the root path. The
server was packaged as a Docker image and pushed to the Docker Hub [79] public container
image registry.

4.2. Tool Evaluation

Once the environment was set up, we could evaluate the orchestration tools. The
evaluation was performed in two parts: (i) cluster deployment evaluation and (ii) perfor-
mance evaluation.

4.2.1. Cluster Deployment Evaluation

The first part of the evaluation was to evaluate the deployment of the cluster using the
selected tool. This evaluation step was intended to provide us with information about the
complexity of the deployment, the support for different node platforms, and the memory
footprint of the selected tool on the edge node. The deployment of the cluster was done in
the following steps for each tool:

1. Reading and evaluating the tool documentation, focusing on cluster deployment
instructions.

2. Installing and setting up the prerequisites for cluster deployment.
3. Deploying the cluster with the controller running on the cloud node controller.
4. Adding worker node node-1 to the cluster and measuring its RAM consumption.

Removing the node after the measurement and repeating this step several times to
obtain an average value.

5. Adding worker node node-2.
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6. Deploying our edge service on both nodes and connecting to it to verify that the
cluster is working.

Table 3 shows the results of comparing selected container orchestration tools based
on cluster deployment. Documentation quality and deployment complexity were closely
related, as documentation was evaluated against cluster deployment instructions. Ku-
bernetes is the expected winner regarding documentation quality, as it has the largest
community and is an industry standard for container orchestration. On the other hand,
the ioFog documentation lacked information about supported OS releases, which led to
problems when deploying controller and worker nodes. Deploying the Kubernetes cluster
was the most time-consuming of all the selected tools due to the fact that it is the only tool
that does not provide built-in support for nodes in different subnets. Therefore, before
deploying the Kubernetes cluster, we had to set up a VPN network, for which we used
Wireguard [80]. Deploying KubeEdge requires deploying the Kubernetes control-plane
node, which adds a bit of complexity, while ioFog requires setting up an SSH connection
to each node in the cluster with sudo permissions. K3s was by far the easiest to deploy,
requiring only one command to provision the controller and one command to join a node
to the cluster. All selected tools supported nodes and containers running on both x86
and ARM processor architectures. None of the tools experienced significant performance
degradation when running on an SBC, in this case, a Raspberry Pi 4.

Table 3. Cluster deployment comparison.

Parameter Kubernetes K3s KubeEdge ioFog

Documentation Quality High Medium Medium Low
Deployment Complexity High Low Medium Medium

Private Networks No Yes Yes Yes
Heterogeneity Yes Yes Yes Yes

Resource-Constrained Yes Yes Yes Yes
Memory Footprint (MB) ~50 ~50 ~40 ~240

As noted in Section 2, most authors consider using SBCs as edge nodes because they
consume less power while being able to run high-performance tasks. Therefore, we decided
to measure memory consumption on the node node-1 running on the Raspberry Pi 4. This
comparison gave unexpected results, showing that Kubernetes is undeservedly considered
“too heavy” to run at the edge. The overhead of running the Kubernetes worker node on
a Raspberry Pi is approximately the same as running a K3s or KubeEdge worker node,
while K3s is known as “lightweight Kubernetes” and KubeEdge is known as the distribution
designed for the edge. The worst performing is ioFog, which has almost five times higher
memory footprint compared to the other three tools.

4.2.2. Performance Evaluation

Once the cluster was deployed, we were able to measure the time needed to deploy
and migrate a particular service with a selected tool. The performance evaluation was
performed for each tool using the following steps:

1. Analyzing the controller API. Three main functions had to be performed through this
API: service deployment on a selected node, service migration to another node, and
service deletion.

2. Implementing an external service in Node.js that connects to the controller’s API and
implements custom scheduling.

3. Performing service startup time tests on node node-1. This step was repeated several
times to obtain an average value:

(a) Obtaining the start timestamp.
(b) Sending a request to deploy the service on node node-1.
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(c) Sending a request to the URL of the deployed service at regular intervals (every
100 ms) until a response is received.

(d) Obtaining the end timestamp once the response is received and calculating the
startup time.

(e) Deleting the service.

4. Performing service migration time tests from node-2 to node-1. This step was repeated
several times to obtain an average value:

(a) Sending a request to deploy the service on node node-2.
(b) Sending a request to the URL of the deployed service at regular intervals (every

100 ms) until a response is received.
(c) Obtaining the start timestamp once the response is received.
(d) Sending a request to migrate the service to the node node-1.
(e) Periodically (every 100 ms) sending a request to the newly deployed service

URL until a response is received.
(f) Obtaining the end timestamp once the response is received and calculating the

migration time.
(g) Deleting the service.

Table 4 shows the performance evaluation results by providing the average number of
total service startup and migration times for each of the four container orchestration tools
used in this study. The table also shows the overhead of a tool, which was determined by
subtracting the container engine startup time from the total time. Since containerd [81]
is a recommended container runtime for Kubernetes, we used it in this experiment for
Kubernetes, K3s, and KubeEdge. Only ioFog services were deployed using the Docker
Engine, as this is currently the only container runtime supported by ioFog. Therefore,
before running our evaluation experiments, we tested the startup time of our service
using these two container engines. The tests performed on node-1 node that was used for
comparison showed that containerd took 1.295 s and Docker Engine took 1.211 s to start
the given service.

Table 4. Performance comparison results.

Time(s) Kubernetes K3s KubeEdge ioFog

Total Startup Time 1.799 2.798 2.858 34.537
Total Migration Time 1.838 2.782 2.781 23.244

Startup Time Overhead 0.504 1.502 1.562 33.326
Migration Time Overhead 0.542 1.486 1.485 22.032

Note that ioFog is by far the worst performer in terms of service startup and migration
time. We analyzed the agent logs and concluded that the message to start a particular
container arrives about 30 s after the container start is triggered via the API, suggesting that
the problem lies in the long request processing time at the controller. This is a known issue,
identified in one of our previous works [16], that still needs to be resolved because it is the
reason why ioFog is not yet suitable for running edge services on demand. The results
show that K3s and KubeEdge have similar performance results, i.e., it takes about 2.8 s for
the service to be deployed and available. Kubernetes, on the other hand, shows the best
performance, with a startup time of approximately 1.8 s. This result was expected since
both K3s and KubeEdge are Kubernetes under the hood with additional edge-specific com-
ponents which may impact performance. KubeEdge introduces CloudCore and EdgeCore
components between the Kubernetes API server and the container runtime on the node.
In addition, the EdgeCore component includes a MetaManager that stores and retrieves
metadata from the SQLite database installed on the node, which gives the node greater
autonomy but also affects performance. On the other hand, K3s uses the lightweight
SQLite [82] database for storage, which can cause performance degradation compared to
Kubernetes with etcd [83]. Migration times are more or less comparable to the service
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startup time, meaning there is no significant overhead when performing migrations. This
is important in edge environments with unstable nodes and networks where migrations
occur with high frequency.

4.3. Discussion

In summary, Kubernetes performed excellently in both cluster deployment and perfor-
mance evaluation. It has an unexpectedly low memory footprint on a resource-constrained
edge node, so the only drawback to its use in the edge computing environment is the lack of
support for nodes in private networks. Therefore, we had to set up a VPN network, which
further complicates the setup and management of the cluster. Also, the utilization of VPN is
not acceptable as a long-term solution to adopt Kubernetes within edge environments since
the stability and performance would be highly dependent on the specific VPN solution.
However, due to the large Kubernetes community, this orchestration platform frequently
receives upgrades to enhance its performance and offer new features extending the scope
of its usage. Received results of reduced memory footprint demonstrate its performance
improvement in past years, and with other recent extensions that Kubernetes offers to
enhance the support for its customization, such as e.g., Operators or Scheduling Framework,
its utilization as the orchestration platform within edge computing setups is most likely to
happen. Furthermore, recent development of Scheduling Framework offers a wider range
of possibilities to adapt the scheduling policy of the cluster, which is also an important
factor for the edge environment, as described in the text above. Thus, the only remaining
challenge for using Kubernetes in edge environments is its support for built-in integration
of nodes from private networks to the functional cluster environment.

K3s is specifically designed to overcome the drawback of setting up a VPN to enable
the setup of Kubernetes cluster in the described test scenario, and evaluation results
show that it has done so with minor performance degradation. K3s retains all the good
Kubernetes practices, but contrary to its main slogan “lightweight Kubernetes”, it does
not significantly reduce the memory footprint on an edge node. However, a memory
footprint of 50 MB on a Raspberry Pi is still acceptable, so this is not really a drawback,
just a misinterpretation. Using SQLite instead of the default etcd affects the footprint of
the controller, but not the worker node. Another reason for the received degradation in
results compared to Kubernetes is the communication between the api-server and the agent
through the tunnel proxy. Thus, establishing a bidirectional link between the agent and the
server offers the opportunity to enable communication towards nodes in private networks
but at the cost of the additional overhead in communication, which reduces the considered
performance score.

KubeEdge achieved similar evaluation results to K3s, with some minor improvements
in memory footprint but with added deployment complexity, as the Kubernetes control
plane must be deployed before KubeEdge can be deployed. It can be concluded that the
inclusion of additional components in K3s and KubeEdge leads to a higher service startup
time, which can still be improved, but makes Kubernetes distributions suitable for the
implementation of edge solutions. Again, providing a bidirectional websocket connection
between the cloud part and the edge resolves the challenge of including the edge nodes
running in private networks to the cluster, but again with the cost of generating the over-
head in communication that causes performance degradation. This points to the conclusion
that the goal of including the edge nodes in the cluster is achievable, but then perfor-
mance optimization is necessary to reach the results of the regular Kubernetes tool, or the
communication will be slower, causing the degradation of overall migration performance.

Finally, ioFog has a single advantage of being deployable in relatively few steps, but
its poor documentation, high memory footprint, and, most importantly, unacceptably high
service startup time make it inadequate for edge orchestration. The current stable release
of IoFog, v2.0, is already two years old, and since v3.0 is still in beta, we hope that some of
these major drawbacks will be fixed soon.
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In general, received performance results from the described case-study scenario show-
cased that Kubernetes is the most promising solution for executing service orchestration
within edge environments considering its best performance results, its active support,
the size of the community and recent upgrades intended to enhance its extensibility and
component customization. However, it still does not offer built-in support for including
nodes running in private networks in the cluster environment. This requirement is resolved
in other considered counterparts but with the cost of performance degradation that is more
or less significant depending on the specific counterpart.

5. Conclusions and Future Work

In this paper, we first conducted a survey to provide an overview of the current
state of the art in edge orchestration. In doing so, we focused on the question of whether
orchestration tools have been used for experimentation in relevant work and, if not, what
was the main reason for not using them. The survey results show that in most cases, the
proposed edge orchestration algorithms or solutions have not been verified in a real-world
environment using the available orchestration tools to schedule services according to user-
defined QoS criteria. The customization of scheduling logic and tracking of various QoS
parameters is done externally, which can lead to performance degradation in a real-world
environment, as it is difficult to maintain an overview of the entire execution environment
and all external parameters that can affect scheduling without orchestration tools.

Second, we evaluated the most commonly used container orchestration tools in lit-
erature (Kubernetes, K3s, KubeEdge, and ioFog) in a comparative experiment on a real
edge deployment. The evaluation showed that Kubernetes performs very well even in a
resource-constrained edge environment, disproving the assumption that only its distribu-
tions (K3s and KubeEdge) are more lightweight and suitable for edge computing nodes.
However, K3s and KubeEdge solve the main problem of Kubernetes at the edge, namely
by supporting nodes in private networks, albeit with some performance degradation. On
the other hand, ioFog proved to be unsuitable for use in a dynamic edge environment due
to its high service deployment time and a high memory footprint.

We can conclude that the potential exists for efficient scheduling within the edge
computing environment by leveraging the available orchestration tools. However, there
are still some challenges that should be addressed first to fully adapt these tools for use
in distributed and unstable edge execution environments, as the tools were primarily
designed for cloud environments.

Another important outcome of this study was to find out how custom scheduling can
be integrated into existing container orchestration tools. In doing so, we found that the
selected tools still do not provide the feature to specify custom and variable QoS parameters
that need to be considered when running different scheduling algorithms. For this reason,
they are not able to perform re-scheduling dependent on such dynamic QoS parameters.
Therefore, in our future work, we intend to implement an external service and integrate
it with Kubernetes (or one of its edge-oriented distributions) to continuously collect QoS
information for each client-service connection so that re-scheduling can be performed when
an important QoS parameter falls below a certain threshold. We also intend to design and
implement a dynamic IoT case study to validate the selected container orchestration tool in
an operational environment.
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