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Abstract: Machine learning (ML) is an effective tool to interrogate complex systems to find optimal
parameters more efficiently than through manual methods. This efficiency is particularly important
for systems with complex dynamics between multiple parameters and a subsequent high number of
parameter configurations, where an exhaustive optimisation search would be impractical. Here we
present a number of automated machine learning strategies utilised for optimisation of a single-beam
caesium (Cs) spin exchange relaxation free (SERF) optically pumped magnetometer (OPM). The
sensitivity of the OPM (T/

√
Hz), is optimised through direct measurement of the noise floor, and

indirectly through measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field
resonance. Both methods provide a viable strategy for the optimisation of sensitivity through effective
control of the OPM’s operational parameters. Ultimately, this machine learning approach increased
the optimal sensitivity from 500 fT/

√
Hz to < 109 fT/

√
Hz. The flexibility and efficiency of the ML

approaches can be utilised to benchmark SERF OPM sensor hardware improvements, such as cell
geometry, alkali species and sensor topologies.

Keywords: magnetometry; atomic; optimisation; machine learning; SERF; caesium

1. Introduction

OPMs have shown impacts across many fields of magnetic sensing, with the potential
perhaps being most transformative in the field of magnetoencephalography (MEG). The
flexible placement of sensing volumes and favourable operating temperature provide sig-
nificant advantages over superconducting quantum interference devices (SQUIDs) in many
contexts. The sensitivity of commercial OPMs approaches that of SQUIDs while providing
functional [1] and longitudinal [2] studies with an important new tool. SERF magnetome-
ters demonstrate sensitivities that approach the low-femtoTesla regime, making this type
of zero-field sensor ideal for MEG, although recent work has also demonstrated finite-field
sensors attaining the requisite sensitivity for these measurements in the Earth’s field [3,4].
The majority of reported work in SERF sensors for MEG utilise rubidium as the sensing
species. Cs is attractive for MEG as the temperature needed to achieve a comparable vapour
pressure is lower than that of other commonly used alkalis, rubidium or potassium. To
date, few SERF sensors reported in the literature use Cs [5,6] and only a single sensor is
known by the authors that operates in a single-beam configuration [7]. As such, the optimal
operation parameters of the sensor are not known a priori.

The optimal signal from the SERF sensor has intrinsic complex dynamics in at least
five-dimensions contained within the parameters of cell temperature, laser power, laser
detuning, modulation frequency and modulation depth. Some experimental parameter
configurations have been well-described in the literature [8,9] and others may be modelled
accurately [10]. In general, sensitivity is improved by elevating the temperature of the cell
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to the increase atomic density and subsequently increase spin exchange (SE) collisions.
A threshold exists at which the opacity of the cell reduces the transmission of the light
through the cell and hence the signal amplitude. Increasing laser power raises the optical
pumping efficiency, at the cost of higher intensity noise and broadening of the magnetic
resonance (and subsequent reduction of sensitivity). In order to ascertain the best opera-
tional parameters for the sensor described here, we have taken an automated approach to
optimising the primary experimental parameters with a view to maximising the sensitivity
of this device.

Here we present three automated optimisation techniques that have been used in-
dependently to assess the best operation parameters based on experimental performance
quantified through a chosen cost function C. The techniques include a genetic algorithm,
a simplified form of gradient ascent optimisation and an open-source machine-learning
package that utilises predictive modelling. We present these automated optimisation tech-
niques in the context of a Cs SERF magnetometer to demonstrate use as a generic routine
for finding the optimal operating point for a complex sensor.

Beyond the realms of computer science, automated optimisation and machine learning
have been utilised across many disciplines [11–16], and have found success in quantum
and particle physics [17–19]. Machine learning has been adopted for the optimisation of
experimental parameters for complex systems [20–22], where traditional human-intuition-
based experimental control is laborious, inefficient, and may not result in the optimal
configuration [23].

The optimisation approach applied here has yielded previously unknown configu-
rations of parameters leading to operation of the magnetometer blue-detuned from the
optical absorption peak rather than at peak absorption [24]. It has allowed us to create
a robust, flexible and fast test environment for benchmarking cells of various buffer gas
pressures and different alkali species, which aids sensor development.

2. Materials and Methods
2.1. Experimental Set-Up

The experimental setup is displayed in Figure 1. A distributed Bragg reflector
(DBR) laser close to the F = 4 → F′ = 3 hyperfine transition of the Cs D1 line is fi-
bre coupled to the sensor package using a non-magnetic fibre coupler (Schäfter Kirchhoff
60FC-4-M12-10-Ti). Laser power and detuning is controlled by a digital butterfly laser
diode controller (Koheron CTL200) through direct control of laser current and TEC temper-
ature. Light polarisation is selected with a miniaturised quarter waveplate (λ/4) that can
be manually controlled to allow fine adjustment of polarisation. The beam is incident on a
micro-fabricated atomic vapour cell [25], which contains Cs vapour and 211 Torr nitrogen
gas. The OPM sensor head [26] consists of all sensing components (cell, optics, PD and
coils) in a portable package with external dimensions of 25 mm × 25 mm × 50 mm, which
is mounted within a 5-layer µ-metal shield (105 shielding factor) to attenuate the Earth’s
magnetic field.

Efforts have been made to reduce the number of magnetic components close to the
cell. The cell is mounted on a printed circuit board (PCB), which drives a single 8 Ω non-
magnetic aluminium nitride heating resistor. Resistive heating is realised by the application
of square-wave current modulation at 274.699 kHz, a frequency far outside the bandwidth
of the sensor. The temperature is varied by changing the phase offset of the two square
waves that drive a full-bridge class D amplifier. A T-type thermocouple is mounted close
to the cell in order to provide temperature feedback.
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Figure 1. Experimental setup. Elliptically polarised light from a distributed Bragg reflector (DBR)
laser close to the F = 4 → F′ = 3 hyperfine transition of the Cs D1 line is fibre-coupled to pass
through a micro-fabricated atomic vapour cell [25,26] filled with a saturated vapour of Cs and 211 Torr
of nitrogen buffer gas. The cell is heated through resistive heating by square-wave modulated current
provided by a custom high efficiency heater driver. Three pairs of biplanar coils, Bx, By, Bz, control the
static magnetic field along each axis, and an additional modulation coil, BRF, allows the application of
an oscillating field along the y-axis. The static field coils are driven using a custom low-noise current
driver [27]. The photodetector (PD) measures light transmitted through the vapour cell. A low
nT-level magnetic field environment is provided by a 5-layer µ-metal shield. λ/4, quarter waveplate;
Cs, caesium vapour cell; ADC, analog-to-digital converter; DAC, digital-to-analog converter.

The cell is mounted at the centre of three biplanar-configuration coil pairs designed
using open source coil design package “bfieldtools” [28,29], which control the static mag-
netic field along each axis. Additionally, a modulation coil along the y-axis allows ap-
plication of an oscillating magnetic field. The static-field coils are driven using a custom
low-noise current driver [27]. The light transmitted through the vapour cell is detected
using a photodetector with a custom transimpedance amplifier and the signal is digitised
via a 16-bit data acquisition system (National Instruments NI USB-6366).

2.2. Hanle Resonance

The magnetometer derives its measurement of the magnetic field through the trans-
verse zero-field Hanle resonance [10,30], which manifests as a peak in light transmission
through the cell when the atoms experience zero magnetic field, seen in Figure 2a. The
static magnetic field on each axis may be swept independently in order to null residual
fields [10]. Bx, By, and Bz denote the magnetic field values that are swept along the x, y
and z axes, respectively. Bx0, By0, and Bz0 denote the magnetic field values that are applied,
respectively, to cancel residual static fields and achieve zero-field. The magnetometer is
designed to be operated in the SERF regime, which requires elevated temperatures and a
low-field environment such that the spin-exchange collision rate sufficiently exceeds the
Larmor frequency.
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Figure 2. (a) (top), Hanle resonances, showing transmission, A, across the transverse axis as a function
of longitudinal magnetic field; far detuned from zero-field (light line) to zero field, Bz0 (darkest line).
(a) (bottom), Hanle resonances, showing transmission, A, across the longitudinal axis as a function of
the transverse magnetic field; far detuned from zero-field (light line) to zero field, Bx0 or By0 (darkest
line). (b), Hanle resonances across two axes. The transverse and longitudinal magnetic fields, Bx & Bz,
are swept across the x- and z-axes to generate a 2D landscape of the Hanle resonance. Colour indicates
the measured light transmission amplitude (A) on the photodetector, normalised with respect to the
maximum (1) and minimum (0) transmission. (c), modulation of the magnetic field is applied across
the y-axis as the transverse field, By, is swept from ByMIN to ByMAX . The resultant photodiode signal is
demodulated and the demodulated amplitude with respect to (By) is shown by the black solid line,
the linear sensing region is shown by the red dashed line.

The experimental procedure of the magnetometer is as follows: the magnetic field
is swept across the x- and z-axes to generate a series of longitudinal Hanle resonances
with respect to the transverse field, seen in Figure 2b. This two-dimensional “2D” Hanle
landscape is fit using Equation (1), which describes the longitudinal Hanle resonance as a
function of the field applied in the transverse, in this case x, direction [10];

S2D = A
(

Γ2 + (Bx + Bx0)
2

Γ2 + (Bz + Bz0)2

)
−V0 , (1)

where V0 is the constant background offset voltage, A is the signal amplitude, and Γ is
the full-width at half-maximum (FWHM). The point at which the transverse resonance is
the sharpest indicates the value of the applied transverse and longitudinal field at which
the atoms experience close to zero-field. These fields, Bx0 and Bz0, are applied, effectively
zeroing the field in the x- and z-axes. The final stage steps the field along the y-axis to
generate a single one-dimensional “1D” transverse Hanle resonance, seen in Figure 2a and
[10]. The 1D resonance is fit to the model described as:

S1D = A

(
Γ2

Γ2 + (By − By0)
2

)
+ V0 . (2)

Subsequently, the magnetic field across the y−axis is swept, with an additional field
modulation applied along the same axis at an amplitude (Amod) and frequency (Fmod)
determined from Γ. For each value of By, the signal is demodulated. The demodulated
line shape, as seen in Figure 2c, shows the linear sensing region (red dashed line), and the
gradient (mV/nT) is used to generate the first cost function, Equation (3).

Finally, a free-running measurement of the magnetic field is carried out, allowing
the sensor noise floor and hence sensitivity to be characterised. The calculated Bx0, By0
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and Bz0 fields are applied, effectively zeroing the remaining magnetic field experienced
by the sensing atoms across all three axes. Modulation is again applied to the magnetic
field along the y-axis, and the response of the atoms is measured through the photodetector.
Analysis of this measurement through the square root of the power spectral density (PSD)
may be scaled by the measured demodulated gradient (mV/nT) to assess the noise floor
of the sensor. The power in the noise spectrum across the defined frequency band of
interest (5–20 Hz) is calculated, and this serves as the second cost function (Equation (4))
for optimising the OPM.

Machine Learning

Machine learning works to identify a global maximum or minimum within a parameter
space. Here, we will demonstrate and compare multiple machine learning algorithms
(MLAs) that implement supervised learning. Supervised learning refers to providing the
MLA with a quantitative measure of performance known as cost [20]. For all techniques,
the MLA and experiment are contained within a closed loop where the MLA controls
the experiment, which in turn gathers and returns cost information to the MLA. More
specifically, the MLA selects the experimental parameters, which are translated to the
experiment through control instrumentation. The experiment automatically completes the
zero-field resonance measurements in both 2D and 1D, and calculates cost according to
the cost function C(ρ). The cost associated with each parameter set is used by the MLA to
inform the next set of parameters to sample.

We define two cost functions, C1(ρ) and C2(ρ), to optimise in two distinct ways in
order to assess which cost function is most effective. C1(ρ), measured in (mV/nT), is the
gradient of the demodulated lineshape as seen in Figure 2c and given by:

C1(ρ) =
δADemod

δBy
, (3)

where δADemod and δBy are, respectively, the change in amplitude and magnetic field of the
demodulated lineshape within the linear range. C1 has been selected as this corresponds to
a “sharp” 1D resonance line-shape, that is, a high amplitude with narrow width, which is a
good indicator of OPM performance. Thus, C1 must be maximised to increase line-shape
sharpness and as such a global maximum of C1 is desired.

C2(ρ) is a sensitivity approximation measured directly through analysis of the noise
floor. A

√
PSD is taken to extract a series of frequency dependent amplitude values (X(k))

that are scaled by the demodulated gradient (C1) to provide frequency response as a
function of magnetic field. The geometric mean of the noise spectrum within our band of
interest (5 to 20 Hz) constitutes C2(ρ), where

C2(ρ) =

(
n

∏
5≤k≤20

δADemod
δBy

X(k)

) 1
n

. (4)

By minimising C2, which is a measure of the intrinsic noise of the magnetometer in
the frequency band of interest, we optimise the magnetic sensitivity. Thus, the location of a
global minimum of C2 across the parameter space is desired.

Both defined cost functions aim to improve sensitivity, where C2 will achieve this
directly and C1 indirectly.

2.3. Optimisation Techniques

For the total number of experimental parameters, M, a single set of experimental set-
tings (temperature, laser power, etc.) is defined as X = (x1, . . . xM). For each individual set,
Xi, an associated cost C(Xi) and uncertainty U(Xi) are found experimentally. All optimisa-
tion techniques selected are examples of online optimisation (OO) in which optimisation is
implemented concurrently with experimental testing. We employ two evolutionary OO
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algorithms, a gradient ascent OO and a predictive model-based machine learning algorithm.
All optimisation methods continue until 250 sets of parameters are tested, known as the
end condition, Nend = 250.

2.3.1. Evolutionary Algorithms

Evolutionary algorithms are heuristic search-based approaches to solving problems.
The processes of evolutionary algorithms are inspired by nature and biological
systems [31], the scheme is shown here in Figure 3. This includes the evaluation of the
performance of individuals within a population to inform the selection of a new population
mimicking “survival of the fittest”, a crossover of high-performing individuals to imitate
reproduction and mutation. Mutation introduces a stochastic component and aims to drive
optimisation to a global maximum or minimum. Evolutionary algorithms are commonly
used across many types of optimisation problems [32], due to their robust convergence to a
solution. However, this convergence time increases with the system complexity. Here, we
will implement two evolutionary algorithms, (a) genetic algorithm (GA) and (b) differential
evolution (DE) algorithm. The GA process is displayed in Figure 3a. The GA first randomly
creates the initial population, X(t), of N sets of experimental parameters

X(t) = {X1, . . . XN} , (5)

where t denotes the generation of the population, initially t = 0.
All parameters chosen are selected within predefined parameter space limits. Next,

we automatically and iteratively evaluate each parameter set, Xi, through experimental
testing and find associated cost C(t) and uncertainty U(t) of the entire population, where,
C(t) = (C1, . . . CN) and U(t) = (U1, . . . UN). The selection of the new generation popula-
tion, X(t) where t = t + 1, is based on the best performing sets of experimental parameters
from the previous generation X(t− 1). To achieve this, X(t− 1) is ranked by C(t− 1) with
respect to U(t− 1) and the best performing N

2 sets of parameters are added to X(t). The
remaining N

2 sets of parameters are created through a crossover. Crossover occurs between
sets of parameters from the previous generation to create sets for the new generation,
shown in Figure 3a and given by:

X(t)j = {x|x ∈ Xa(t− 1) if xi ≤ CP, x ∈ Xb(t− 1) if xi > CP} (6)

X(t)k = {x|x ∈ Xb(t− 1) if xi ≤ CP, x ∈ Xa(t− 1) if xi > CP} , (7)

where X(t)j and X(t)k are “children” sets of “parent” Xa(t− 1) and Xb(t− 1). The crossover
point, CP, refers to an individual element, xi, of the parent sets. The final step is to introduce
random mutation to prevent optimisation for a local minimum or maximum. The new
population, X(t), is then evaluated experimentally and the algorithm continues until the
end condition is met.

The process of DE deviates from GA as shown in Figure 3b, while maintaining the same
evolutionary elements. The initial population of sets of parameters is created as defined in
Equation (5) and similarly evaluated to find the associated cost C(t) and uncertainty U(t)
of the entire population. The mutation element is incorporated through creation of a new
set, V, where V = Xc + (Xa − Xb) and Xa, Xb and Xc are randomly selected parameter
sets. Crossover occurs between V and a randomly selected target set XT to produce an
additional set Q. Q is evaluated experimentally and replaces XT in the new generation
where t = t + 1, if CQ outperforms CT . Lastly, three random sets and a target set are
selected from the new population, X(t). The algorithm continues until the end condition
is met.
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(a) (b)

Figure 3. Two evolutionary algorithm processes. (a,b) share evolutionary elements of initial popula-
tion formation, selection, crossover and mutation. For both algorithms, the initial population X(t)
contains a population of N sets of parameter settings. The colour indicates each set of parameter
settings. t, generation or loop number; t = t + 1, the next generation; and C(t), measured cost. Both
algorithms repeat until the end condition is met, where the number of sets of parameters tested
N is equal to 250 (Nend). (a) Genetic algorithm (GA) process. The initial population is generated
and evaluated for cost, with individual costs denoted as Ci. N

2 parameter sets are selected for the
next generation based on ranked cost. The best performing N

2 are used as “parents” to produce
“children” sets during crossover with respect to the crossover point. Mutation of individual parameter
values randomly occurs in the new population. (b) Differential evolution (DE) process. The initial
population is generated and evaluated for cost where three random sets Xa, Xb & Xc and a target set
XT are selected. A new set V is created during mutation from the randomly selected sets, and used in
a crossover with the target set to make a new set Q. CQ, the cost of Q, is evaluated and measured
against CT , the cost of the target set. The target set is replaced in a new generation if CQ > CT (for
C1) or CQ < CT (for C2).

2.3.2. Gradient Ascent

Gradient ascent algorithms are a first-order process. As such, the differential of the
changing cost C(ρ) is used to inform the learning process [33]. Here, we implement a form
of batch gradient algorithm, displayed in Figure 4. Small batches of data are tested to
find the optimal parameters based on the gradient of the cost across the batch. Learning
occurs between iterations of batches. Batch gradient algorithms guarantee convergence to
a local or global maximum or minimum. However, as the batch sizes are pre-defined, some
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points tested may be redundant, especially compared to stochastic gradient processes with
a higher learning rate [34–36].

Figure 4. Gradient ascent algorithm process. x(i), a vector value for a single parameter xi ranging
from minimum xmin

i to maximum xmax
i as defined by parameter space range. i, the individual

parameter selected. Initially, the first parameter is selected for the first batch i = 1. All other
parameters are kept constant. The batch is evaluated based on cost, indicated in green, to find where
the gradient tends to zero, ∂C(ρ)

∂x → 0 indicated in red. The corresponding parameter value xopt is
then set for this parameter for the next batch, i = i + 1. This continues until all parameters are used as
batches, for a total number of parameters M. The segmented graph shows this process as a function
of the run number. This process in turn repeats until the end condition is met, where the number of
sets of parameters tested N is equal to 250 (Nend).

In this context, each batch x(i) is defined as a broad sweep of a single parameter across
the full range for that parameter in regular intervals as follows:

x(i) = (xmin
i , xmin

i + n, ..xmax
i ) , (8)
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where i denotes the individual parameter, n is the interval for the parameter, and xmax
i and

xmin
i are the maximum and minimum values of the specific parameter from the defined

parameter range. The first batch targets the first parameter only, where i = 1. The non-
target parameter values are kept constant throughout the batch testing at the previously
found optimum, or initially selected randomly. Evaluation of the batch experimentally finds
the associated cost for each element of x(i). The cost curve of the batch is used to find where
the gradient tends to zero, ∂C(ρ)

∂x → 0. The value of xi is set to the corresponding parameter
value, xopt, for the next batch iteration. Each iteration changes the target parameter used
for the batch, where i = i + 1 after each batch, up to the total number of M parameters.
One full process of the gradient algorithm occurs after all parameters have been selected as
the target parameter, which in turn loops until the end condition is met.

2.3.3. Gaussian Process Regression

The Gaussian process (GP) regression OO method creates a model defining how
each experimental parameter relates to the experimentally found cost, known as the cost-
landscape. The cost-landscape is formed through training the MLA with data collected by
DE for 2M sets of parameters. The model generates correlation lengths to indicate how
sensitive the cost is to each parameter, where the correlation length is inversely proportional
to its influence on cost. The cost-landscape model informs the selection of new parameter
values to test. Each iteration informs the model and contributes to defining the noise level
of “expected cost” to “found cost”, i.e., the variance of the cost if measured at the same set
of parameters many times. For this method, we utilise M-LOOP (Machine Learning Online
Optimization Package), an open-source Python-based machine learning toolkit [20], which
utilises DE and GP during optimisation. While GP regression is the most sophisticated
MLA we employ, Gaussian processes lose efficiency in high dimensional spaces and the
computational time required scales with the cube of the number of tests.

2.4. Parameters

The parameters, p, selected for optimisation are: (1) Cell Temperature T, (2) Laser
Power LP and (3) Laser Detuning LD. These parameters are intrinsically linked with
complex dynamics as described in Section 4. Each parameter is directly controlled through
experimental hardware.

A further two parameters are defined, namely (4) Modulation Amplitude BMod
and (5) Modulation Frequency ωMod. Both amplitude and frequency of the applied mod-
ulated magnetic field influence light absorption and magnetometer performance. These
parameters are not directly selected, rather dimensionless factors AMod and FMod are de-
fined that are tied to the magnetic resonance line width of the magnetometer response,
defined as:

AMod =
BMod

Γ
(9)

FMod =
ωMod

Γγ
, (10)

where total relaxation Γ is equal to the HWHM width extracted from magnetic resonance
and γ is the gyromagnetic ratio (3.5× 2π Hz/nT for Cs). BMod and ωMod are dependent
factors, and the modulation index, mi, defines this dependency:

mi =
γBMod

q(P)ωMod
, (11)

where q(P) is the nuclear slowing-down factor at high polarisation [37]. It has been shown
that the optimal modulation index occurs when mi = 0.5− 1 [38]. All control parameter
ranges are defined in Table 1.
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Table 1. Definition of all controlled parameters (p) used for optimisation, with corresponding units.
Min (p), the minimum value for each parameter. Max (p), the maximum value for each parameter.
Default (p), chosen default value if parameter is not directly optimised during optimisation.

Parameter Min (p) Max (p) Default (p) Unit

Temperature 115 140 - ◦C
Laser Power 0.5 6 - mW
Laser Detuning −20 20 - GHz
AMod 0.2 1.5 0.5 dimensionless
FMod 0.2 1.5 1 dimensionless

3. Results

We applied the MLAs presented in Section 2.3 to optimise the sensitivity of a single-
beam Cs SERF OPM. Two cost functions (C1, C2) are utilised to investigate cost function
suitability. The number of parameters optimised (M = 3: LD, LP, T, M = 5: LD, LP, T, AMod,
FMod) is varied to demonstrate MLA robustness with respect to optimisation complexity. In
total, four independent optimisation schemes are measured:

Scheme 1. Cost = C1, M = 3
Scheme 2. Cost = C1, M = 5
Scheme 3. Cost = C2, M = 3
Scheme 4. Cost = C2, M = 5

Three MLAs are used per optimisation scheme: (1) Genetic Algorithm (GA), (2)
Gradient Descent algorithm (GD) and (3) Gaussian Process Regression (GP). The full
parameter space used for all optimisation schemes is defined in Table 1. For equality
between optimisation schemes, all methods are initialised with a random set of parameter
values, often initially producing no magnetic resonance signal. Each MLA ran until the
end condition, requiring 250 sets of experimental settings to be tested, Nend = 250, taking
approximately 4 h in total per MLA. Both cost functions were measured during each
technique, regardless of the selected cost function, to allow comparison.

To benchmark the optimised sensitivity of all MLAs and optimisation schemes, we first
manually optimised through human-intuition-based experimental control. During human
optimisation, the operational parameters are manually selected and the subsequent mea-
sured sensitivity informs the selection of the next parameters based on intuition. The human
optimisation process found an optimal sensitivity of 500 fT/

√
Hz, in approximately 4 h.

The results of all optimisation schemes for all MLAs are shown in Figure 5. Each row in
Figure 5 displays the results for an individual optimisation scheme, with Cost Function C(ρ)
and the number of parameters (M) indicated accordingly. Progression of each technique can
be seen in Figure 5a,d,g,j, where cost is a function of the experimental run number and the
moving maximum (for C1) or minimum (for C2) throughout optimisation run is indicated
by the solid line for each MLA. Figure 5b,e,h,k show the corresponding FFT for the optimal
parameters found per MLA, with the sensitivity shown as a function of frequency (Hz) in
the bandwidth of interest (5 to 20 Hz). Figure 5c,f,i,l depict the corresponding demodulated
line shape for the optimal parameters found per MLA.
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Figure 5. All figure parts contain the following optimisation techniques, gradient descent algorithm
in green , genetic algorithm in blue and Gaussian process regression model in pink. M, the number
of parameters optimised. Row 1 & 3, (a–c,g–i), optimisation of 3 parameters (M = 3). Row 2 &
4, (d–f,j–l) optimisation of 5 parameters (M = 5). Row 1 & 2, (a–f), optimise for maximising cost
function C1 the demodulated line shape gradient (mV/nT). Row 3 & 4, (g–l), optimise for minimising
cost function C2, calculated sensitivity (T/

√
Hz). Column 1 “Optimisation”, (a,d,g,j), show Cost

function as a function of run number. The solid line indicates the moving maximum per optimisation
technique. Column 2 “Sensitivity”, (b,e,h,k), shows corresponding FFT for the optimal parameters
found per optimisation technique. Sensitivity is shown as a function frequency (Hz), raw data are
shown by solid lines. The frequency band of interest (5 to 20 Hz) is highlighted in grey. Averaged
sensitivity in this band is shown by the dashed line (value represented in the key). Column 3,
“Demodulation”, (c,f,i,l), shows a corresponding demodulated line shape for the optimal parameters
found per optimisation technique.

The optimised cost for each MLA and optimisation scheme with corresponding op-
timal parameter settings can be seen in Table 2. All optimisation schemes resulted in
large cost improvement throughout optimisation. Convergence of optimised values oc-
curred within each optimisation scheme. The mean and standard deviation across all ML
techniques within each scheme are summarised below:
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Scheme 1. C1. All MLAs converged at 2.5± 1 mV/nT, equating to a measured sensitivity
of 163 ± 20 fT/

√
Hz.

Scheme 2. C1. All MLAs converged at 4.4± 0.4 mV/nT, equating to a measured sensi-
tivity of 147 ± 11 fT/

√
Hz.

Scheme 3. C2. All MLAs converged at a measured sensitivity of 163 ± 15 fT/
√

Hz,
equating to a demodulated gradient of 2.2± 0.15 mV/nT.

Scheme 4. C2. All MLAs converged at a measured sensitivity of 132 ± 23 fT/
√

Hz,
equating to a demodulated gradient of 2.8± 0.9 mV/nT.

Table 2. Optimal parameters found for the following optimisation techniques, Genetic Algorithm
(GA), Gradient Descent algorithm (GD) and Gaussian process (GP). The number of parameters
tested, M, is specified for each optimisation run. T, cell temperature (◦C). LP, laser power (mW).
LD, laser detuning (GHz). AMod, modulation amplitude factor (dimensionless). FMod, modulation
frequency factor (dimensionless). mi, modulation index (dimensionless). C(ρ) defines the cost
function implemented. C1 is the demodulated lineshape gradient (mV/nT), with uncertainty taken as
the geometric standard deviation across the frequency band of interest. C2 is the calculated sensitivity
(fT/
√

Hz), with uncertainty taken as the linear fitting error across demodulated linear region. Γ is the
full-width at half-maximum (FWHM) of the magnetic resonance (nT), with uncertainty taken as the
fit error to Equation (2). Values in grey indicate parameters that were not optimised during operation.

MLA M C(ρ) C1 C2 Γ T LD LP AMod FMod mi
GD 3 C1 2.82 ± 0.03 158.62 ± 1.3 132.51 ± 1.5 119.41 8.24 6.00 0.50 1.00 0.55
GA 3 C1 2.59 ± 0.02 182.39 ± 1.4 183.27 ± 2.1 115.00 3.00 5.35 0.50 1.00 0.55
GP 3 C1 3.50 ± 0.03 143.40 ± 1.2 168.83 ± 1.6 115.00 8.00 6.00 0.50 1.00 0.55
GD 5 C1 4.04 ± 0.02 150.24 ± 1.5 130.06 ± 2.1 118.85 10.77 5.58 1.50 0.30 5.51
GA 5 C1 4.23 ± 0.02 157.62 ± 1.3 98.81 ± 2.0 123.00 7.00 5.32 1.48 0.39 4.21
GP 5 C1 4.75 ± 0.03 136.30 ± 1.2 147.36 ± 1.2 120.13 6.22 6.00 1.50 0.21 7.82
GD 3 C2 2.10 ± 0.02 148.28 ± 1.3 143.36 ± 2.5 117.94 5.88 5.35 0.50 1.00 0.55
GA 3 C2 2.35 ± 0.02 152.30 ± 1.3 136.66 ± 1.3 119.00 4.00 4.66 0.50 1.00 0.55
GP 3 C2 2.31 ± 0.02 177.40 ± 1.3 192.81 ± 1.6 115.01 3.49 5.57 0.50 1.00 0.55
GD 5 C2 2.22 ± 0.03 109.59 ± 1.3 137.70 ± 1.6 118.85 7.69 5.58 0.70 0.80 0.96
GA 5 C2 1.95 ± 0.02 119.76 ± 1.2 111.05 ± 2.1 121.00 7.00 5.24 0.97 1.15 0.93
GP 5 C2 3.65 ± 0.02 154.81 ± 1.2 203.05 ± 1.6 115.00 3.00 5.50 1.09 1.00 1.20

The optimum sensitivity of 109 fT/
√

Hz was identified by the gradient descent algo-
rithm (with an uncertainty of ±1 fT/

√
Hz taken from the geometric standard deviation

across the frequency band of interest) using five parameters (M = 5) and direct optimisa-
tion of sensitivity (C2). The optimum demodulated gradient of 4.75 mV/nT was identified
(with an uncertainty of ±0.03 mV/nT, taken as the linear fitting error across demodulated
linear region) by the Gaussian process regression model using five parameters and direct
optimisation of demodulated gradient (C1).

The GP model is the most sophisticated MLA demonstrated in this paper. Due to the
nature of the optimisation method, as described in Section 2.3.3, a cost-landscape depicting
how each parameter affects the measured cost is produced throughout the optimisation
process. Figure 6 shows the measured data for each parameter as a function of cost, for
optimisation schemes 2 and 4 (5 parameter optimisations). The parameter cost-landscape
model is indicated with a line, and the 95% confidence interval generated by the model is
indicated by the shaded region. Many measured points for all parameters lie outside the
confidence interval due to the nature of multi-parameter optimisation, where the optimised
value of one parameter may produce a poor cost value if other parameters are not optimised.
The confidence interval shows the trust region of the models predictive landscape after all
measurement has been completed.
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Figure 6. Data and models resulting from the Gaussian process regression model MLA, from a
5 parameter optimisation scheme (M = 5). The 5 parameters optimised are cell temperature (T), laser
power (LP), laser detuning (LD), modulation amplitude factor (AMod) and modulation frequency
factor (FMod). Each part shows a parameter as a function of the cost. Row 1, (a–e), shows optimisation
for cost function C1, the demodulated line shape gradient (mV/nT). Row 2 , (f–j) optimisation for
cost function C2, calculated sensitivity (T/

√
Hz). Marks indicate measured values from optimisation,

solid line indicates the Gaussian process predicted cost-landscape and shaded region indicates the
model provided 95% confidence interval of the cost-landscape.

4. Discussion

The sensitivity of the Cs OPM has been improved by all of the MLAs presented
in comparison to human optimisation over comparable run-time. This comprehensive
improvement indicates the suitability of automated optimisation methods for experimental
parameter optimisation tasks in optically pumped magnetometry.

The use of 3 MLAs allowed for comparison of these techniques to aid recommendations
for suitability. In this use case, all techniques appear capable, with no single technique
standing out as significantly more favourable. Completing the MLA techniques for a
differing number of parameters allows comparison of the robustness of the MLA techniques
to the system complexity. Interestingly, the more simple MLAs (GA and GD) proved most
successful for direct sensitivity optimisation C2, with GD providing the optimal sensitivity
value of 109 fT/

√
Hz. However, the Gaussian process regression model proved most

effective for optimisation of C1. This suggests that the Gaussian process regression model
was more sensitive to the more stochastic nature of cost function C2.

Increasing the complexity, M = 5, proved beneficial to both cost functions. As such,
the amplitude and frequency of the applied magnetic modulation are tied to magnetometer
performance due to their influence on light absorption. Optical noise has a large contri-
bution in this sensor, and this noise decreases with increased absorption. Furthermore,
low frequency 1/f noise decreases with increasing modulation frequency. Each five pa-
rameter optimisation scheme converged before the end condition, suggesting that, in
multi-parameter systems with five parameters, all MLAs are suitable.

The implementation of two cost functions, C1 and C2, aids identification of the most
suitable cost function for this purpose. Table 2 shows relative alignment of the best
parameter values between cost functions. The peak sensitivity found indirectly (C1) is
30 fT/

√
Hz higher than through direct sensitivity optimisation (C2). As such, C1 acts as a

reasonable proxy for sensitivity optimisation without specifically measuring sensitivity. C1
requires less data collection and corresponding sensitivity measurements may be taken
after the fact. C2 takes longer experimentally and computationally and is more susceptible
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to extraneous environmental and technical noise. However, 5 parameter optimisation
using C1 optimised the modulation frequency to a much lower frequency. The subsequent
modulation index for these optimised values are also far outside the expected range
(mi > 5). This highlights a key drawback of optimisation using C1, that technical noise
contributions are not considered.

A benefit of the implementation of the GP is the production of the cost-landscape
model that defines how influential each parameter is on performance. From this model,
Figure 6, clear trends can be seen that span across both cost functions, for example, the
peak in temperature for C1 aligns with the trough in C2. This is likely due to the increased
sensitivity gained when the temperature of the cell has increased atomic vapour density
sufficiently to reach the SERF regime. As cell temperature is increased, we see a subsequent
improvement of sensitivity up to 120 ◦C, after which the opacity of the cell is increased by
the increasing atomic density, allowing less light to reach the detector.

Figure 6 also shows mirrored trends for laser detuning. However, a deviation between
the laser power landscape between cost functions is also present. The peak laser power
required for C1 continues to increase beyond the defined range, whereas the optimum
laser power for C2 saturates at 5 mW. This could be due to the increasing laser power
detrimentally affecting sensitivity due to intensity noise with increased laser power, which
does not degrade C1 to the same degree. These trends suggest that either cost function is
suitable for optimisation if intensity noise is taken into consideration.

The predicted cost-landscapes for AMod and FMod (Figure 6) show broad trends with
large confidence intervals, suggesting that the relationship between these parameters and
the cost functions are not well-defined. Table 2 shows in the results for optimisation
scheme 4 (C2, M = 5) that the optimised values for modulation amplitude and frequency
gave a modulation index within the expected optimal values (mi =0.5 − 1). While clear
gains in sensitivity were provided by increasing the number of parameters optimised,
C2 is advised for directly optimising sensitivity while keeping modulation values within
expected optimal conditions.

It is interesting to note that the optimal detuning parameter found is positively de-
tuned from the optical absorption peak (Table 2). It appears that the effect of the buffer
gas introduces complex optical pumping dynamics in the atomic system, likely tied to
depopulation on the F = 3 ground state. The results of the MLA techniques show that the
detuning and power dependence are non-trivial. These results may vary depending on cell
parameters such as the optical path length and buffer gas pressure. The techniques shown
here will allow future cells to be characterised in an efficient and comprehensive manner.

With an optimised sensitivity of 109 fT/
√

Hz, the ML methods here have aided the
tuning of operational parameters of a SERF OPM to facilitate a sensitivity suitable for use
in magnetoencephalography.
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