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Abstract: In advanced robot control, reinforcement learning is a common technique used to transform
sensor data into signals for actuators, based on feedback from the robot’s environment. However, the
feedback or reward is typically sparse, as it is provided mainly after the task’s completion or failure,
leading to slow convergence. Additional intrinsic rewards based on the state visitation frequency can
provide more feedback. In this study, an Autoencoder deep learning neural network was utilized as
novelty detection for intrinsic rewards to guide the search process through a state space. The neural
network processed signals from various types of sensors simultaneously. It was tested on simulated
robotic agents in a benchmark set of classic control OpenAI Gym test environments (including
Mountain Car, Acrobot, CartPole, and LunarLander), achieving more efficient and accurate robot
control in three of the four tasks (with only slight degradation in the Lunar Lander task) when purely
intrinsic rewards were used compared to standard extrinsic rewards. By incorporating autoencoder-
based intrinsic rewards, robots could potentially become more dependable in autonomous operations
like space or underwater exploration or during natural disaster response. This is because the system
could better adapt to changing environments or unexpected situations.
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1. Introduction

Reinforcement learning is a well-known approach for teaching robots in simulated
environments. In this method, the robot is considered as an agent that receives information
in the form of observations about itself and its environment. The agent—simulated robot
performs actions in the environment and receives a reward signal as feedback. The learning
algorithm then tries to predict the ideal actions that will lead the agent to success, based
on the received reward signal. However, there are simulations where the reward signal
is insufficient for the agent to complete the overall task at hand. This happens when the
rewards are sparse, meaning that the agent only receives a high reward after successfully
completing the task, or a negative reward after a significant failure. In such cases, an
intrinsic reward needs to complement the reward signal from the environment.

Intrinsic reward-based control refers to a method of controlling robots that involves
giving them internal rewards for performing certain actions or achieving certain goals.
Ideally, these rewards are not explicitly defined by the programmer but instead are learned
by the robot through trial and error. The idea is that the robot will develop its own goals
and motivations based on its experiences, which will allow it to perform tasks efficiently
and adapt to new situations easily.

Existing control techniques, on the other hand, are based on well-established principles
of control theory, which have been developed over many years. These techniques typically
involve setting up a feedback loop between the robot and its environment, in which the
robot measures its performance and adjusts its actions accordingly.

Intrinsic reward-based control is a relatively new approach that has gained popularity
in recent years, while existing control techniques have been developed over many decades
and are widely used in robotics.
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The intrinsic reward, as it is understood in this paper, is a supplementary form of
feedback that conveys additional information about the agent’s state in the environment,
such as the frequency of visited states in the robot’s state space. The agent is compelled to
seek out and respond positively to newly discovered states that represent anomalies in its
observation. As the states are visited more frequently, they become less anomalous, and
therefore, the reward for visiting them decreases over time. A similar approach is used
in [1], where the reward increases if the predicted next state is different from the actual
next state. However, in cases where the environment is sufficiently stochastic, the agent
cannot predict the next state accurately, resulting in a problem known as Noisy TV [2]. To
overcome this, the deep neural network can memorize the states from the environment
instead of learning the environment’s dynamics.

Many methods have been proposed in the past to supplement the rewards generated
by the environment. One of the earliest approaches, the Counting by Density Model [3],
used a probabilistic model to express a pseudo-count metric based on state visitation
counts in the agent’s state space. Another method, Counting after Hashing, transformed
high-dimensional states into hash codes and stored their visitation frequency [4]. Curiosity-
based approaches, such as Intelligent Adaptive Curiosity [5], Intrinsic Curiosity Module [1],
and Variational information maximizing exploration [6] aimed to learn the dynamics of
the environment by predicting subsequent states. However, these methods struggled to
handle stochastic environments. Directed Outreach Reinforcement Action-Selection [7] and
Random Network Distillation [2] used E-values (similar to a Q-value) and memorization, re-
spectively, to address this issue. Random Network Distillation uses a pair of models where
one is just randomly initialized, and the other model learns to predict the same features as
generated by the random model. Generative Adversarial Network-based Intrinsic Reward
Module learned the distribution of observed states and rewarded the agent for exploring
unexplored states [8]. The GAN model is trained to produce samples that closely resemble
real-world states, while simultaneously training the encoder to map observed states onto a
latent noise space. Subsequently, the generator utilizes the regenerated latent noise space
to generate new observed states. The intrinsic reward is determined by calculating the
mean squared error between the original states and the regenerated states. If the states
are unfamiliar, the Generator block is unable to accurately re-generate them, leading to an
increase in deviation. An advantage of this approach is that the discriminator’s evaluation
of previously unseen states becomes irrelevant. Hyperparameter tuning was critical to
the success of this method [8]. A different approach, called Occupancy-Reward-Driven
Exploration [9], has been applied in robotics to explore uncharted territories within the
state space. In this technique, an occupancy map is utilized to acquire information about
the environment through sensors such as a laser sensor. The occupancy map comprises
occupancy probability values, where the likelihood of an obstacle is represented by a
probability value. A higher value is assigned to regions with a greater level of confidence
in obstacle detection, while an unknown region has a probability of 0.5, and a probability of
0 signifies the absence of obstacles. The robot’s reward is then determined by the number
of new segments discovered within the occupancy map at each time step. This approach
can also improve the robot’s power efficiency [9].

Intrinsic rewards have already been employed in a wide range of applications of deep
neural network robot control. One instance is the use of intrinsic rewards to maintain
a safe distance between a robot arm and a human operator [10]. In another application,
intrinsic rewards were utilized to facilitate collaboration between multiple autonomous
robots. This was achieved through a combination of curriculum-based learning, PPO
algorithm, and deep learning of convolutional neural network to process multi-channel
visual inputs [11]. In [12], an image was used as a state space for curiosity-driven navigation
strategy of mobile robots. Moreover, curiosity contrastive forward dynamics model using
efficient sampling for visual input was implemented in [13]. Furthermore, intrinsic rewards
were employed alongside extrinsic rewards to simulate robotic hand manipulation in [14].
Next, intrinsic rewards were used in [15] to assist robots in docking charging stations by
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providing visual identification. In [16], the goal of the penalty-based surprise intrinsic
reward was gentle object manipulation. Deep CNN-based method found their application
even in wire making [17].

The main inspiration for the present work was the approach which solved Atari games
through neural networks [18]. While both the objective of this work to address the sparse
reward problem [2] and the approach in [18] share similarities, it’s worth noting that in
Atari games, the only signal available was an image of the game screen, and the player
didn’t directly control a robot equipped with various sensors.

Unlike the methods mentioned earlier, this paper focuses on utilizing the AutoEncoder
architecture as an anomaly detector in the signal. This approach can compute intrinsic
rewards from anomalies, providing information about a new, previously unseen state
in the environment where the agent is moving. The principles employed in this study
are directly linked to earlier research on anomaly detection in data mining. Previous
uses of intrinsic reward for anomaly detection only involved labeling datasets or simpler
tasks that were unrelated to robot control from the signal [19–22]. However, in one case,
anomaly detection was used to identify subgoals when solving a complex problem [23].
In this study, novelty detection is used for simulated robot movement. In a deep learning
neural network, the AutoEncoder approach is appropriate for memorizing already explored
states. For new, previously unseen states, the Decoder block will inaccurately reconstruct
the reduced signal, which can be measured as novelty detection for the intrinsic reward.
Therefore, high intrinsic reward originates from an anomaly that the Decoder block cannot
transform correctly into the original state. As a result, the agent is compelled to explore the
environment to locate unexplored regions and states.

The agent’s objective was not to complete the assigned task (even though the test
ended when the task was completed), but rather to increase its score by exploring new
states in the environment that it had not yet encountered. This approach ensured that the
agent did not revisit already seen states and prioritized maximizing the score by visiting
unexplored states.

Current state-of-the-art techniques for optimizing agent performance use a combi-
nation of non-episodic and episodic [24] approaches, where a neural network training
parameterizes a spectrum of policies ranging from highly exploratory to entirely exploita-
tive. Another approach involves suppressing forgetting in a neural network to enhance
performance [25].

Our tests on a set of benchmark environments established that the anomalies them-
selves can guide the agent to successfully complete the task and that the information
extracted from them is sufficient for the agent to converge correctly. To the best of our
knowledge, there has been no instance of accomplishing successful robotic guidance solely
through novelty seeking using an intrinsic function based on an autoencoder.

2. Materials and Methods

The following section is divided into three main parts. Firstly, a brief description
of the used benchmark set of test environment for simulated robots is provided. Subse-
quently, the article describes the control architecture of robots, which utilizes deep neural
networks incorporating AutoEncoder, and provides an account of how intrinsic rewards
are computed and applied.

2.1. Benchmark Set of Test Environments for Simulated Robots

The selected test environments belong to the standard tasks solved using reinforcement
learning methods. These environments have a continuous state space and a discrete action
space. The LunarLander-v2 [26] problem presents a classic rocket trajectory optimization
challenge where the objective is to land a lunar lander on a designated landing pad.
CartPole-v1 [27] is another problem that involves balancing an inverted pendulum on a
motor-driven cart, where the aim is to maintain the pole’s vertical position by moving
the cart to the right or left. The Acrobot-v1 problem [28,29] requires the agent to reach a
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specific height target with a simple 1-joint arm. The system consists of two links, one of
which is fixed, and the other is connected to it. The starting position has both links hanging
down, and the objective is to apply force to change the angle of the joint so that the free
end of the links swings above a target height. In the MountainCar-v0 environment [30], the
goal is to drive a car up a hill to reach the target state. Initially, the car is randomly placed
at the bottom of a sinusoidal valley, and the car can be accelerated in either direction, but
not strongly. The solution requires the utilization of potential energy by driving up the
opposite hill.

2.2. AutoEncoder Architecture

AutoEncoder is one of the techniques utilized in deep neural networks for identifying
anomalies in robotic sensor signals [31]. This approach involves training on previously
observed states from the experience replay buffer (RB) [32], and then predicting future
states based on those observations. As a result, the AutoEncoder can quickly identify any
new, previously unobserved states, allowing the agent to explore its environment and
access unvisited states within its state space.

Anomaly detection relies on a combination of exploration and exploitation, utilizing
AutoEncoder-based metric learning to measure reconstruction error in the agent’s pre-
diction. The AutoEncoder loss function is calculated as the commonly employed mean
squared error:

Loss =
1
n∑n

i=1 [statei − AE(state)i]
2, (1)

where n represents the number of features in the agent’s state space, the statei represents
the feature of the state that the agent obtains from the environment, and AEi represents the
output of the AutoEncoder model.

Intrinsic reward is calculated as the reconstruction error:

err(state) = ∑n
i=1 [statei − AE(state)i]

2, (2)

Intrinsic reward = ReLU6(
err(state)− µe

σe
), (3)

where µe and σe are running mean and standard deviation for err(state). When computing
the usual reconstruction error [33], feature averaging is not taken into account. This is
because if there are many sensors and most of them measure typical values while only one
sensor exhibits a significant difference, applying averaging could potentially mask this
signal, resulting in the loss of the intrinsic reward.

To ensure numerical stability, the average reward is calculated by computing the
running mean and standard deviation of the intrinsic reward. This average reward
reflects the offset, which is the average error of the AutoEncoder in reconstructing a
known signal, and must be subtracted from the intrinsic reward. However, the subtrac-
tion can result in negative values, which are not desirable as they may penalize even
well-known states. To prevent negative rewards, the Rectified Linear Unit 6 (ReLU-6)
function is applied to the normalized intrinsic reward, which ensures that rewards are
always positive and prevents the intrinsic reward from becoming too large [34]. The
purpose of this reward is to make unvisited states more attractive, rather than to punish
frequent visits to a state. For example, in a labyrinth, starting along the same path
repeatedly would result in a negative reward, which could lead the agent to consider the
path unfavorable. By assigning a reward of 0, the agent considers the path as neutral.
The intrinsic reward scale is governed by a standard deviation of 1. The AutoEncoder
architecture for anomaly detection is depicted in Figure 1, which takes the state from the
environment as input and predicts its reconstruction at the output.
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Figure 1. AutoEncoder model with size of the layers indicating the number of neurons in the layers,
where the smallest layer z in the middle corresponds to low-dimensional latent space representation.

The encoder block of the model is composed of a sequence of fully connected
layers, wherein the number of neurons in each layer gradually decreases towards the
latent space. The smallest layer in the entire model corresponds to the latent space
representation of the encoded state z. The decoder block works in the opposite manner,
increasing the number of neurons in each fully connected layer towards the output layer.
The output layer contains as many neurons as there are features in the agent’s state
space. The nonlinearity of the Exponential linear unit (ELU) activation function is used
in the hidden layers to facilitate fast and accurate deep neural network learning [35].
Compared to the typically used ReLU activation function, the ELU has an advantage
in addressing the dying neuron problem [36]. The model weights are initialized using
an Orthogonal initializer with gain set as the square root of 2 [37]. The output layer is
activated using a linear function, allowing for an unbounded range of output values
and enabling the application of AutoEncoder to different sensor types within a single
state space. Similarly, the activation function of the latent space layer z is also linear to
preserve the unbounded interval property even after state space compression, since this
layer is intended to reduce the number of dimensions rather than to purposely limit the
interval of compressed values (see Supplementary Materials for source code).

2.3. Application of Intrinsic Reward by the AutoEncoder Architecture

Guiding a robot towards signal anomalies can also be used to search a maze efficiently,
minimizing the robot’s visits to already-explored areas and guiding it towards unexplored
parts. This principle can be compared to a player using a yarn to mark his/her path through
the maze. In this case, the memorizing AutoEncoder model represents the yarn, with low
reconstruction error indicating that the yarn has been unrolled through here and high error
indicating that it hasn’t. This principle can also be applied to more complex problems, as
described in Section 2.1, such as landing a lunar lander, balancing an inverted pendulum,
swinging a simple 1-joint arm, or driving a car up a hill using acceleration going down the
opposite hill.

When combining intrinsic and extrinsic rewards obtained after performing an action,
the logic in Table 1 assumes that both signals fall within the range of [0, 1].
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Table 1. The logic of combining intrinsic with extrinsic reward elucidated through examples of
extreme value combinations and the novelty of the current state in relation to task completion, as
depicted in further figures.

Intrinsic Reward Extrinsic Reward Result

0 0 A frequently recurring state leading to a loss
1 0 New unseen state leading to a loss
0 1 Frequently recurring state leading to a win
1 1 New unseen state leading to a win

There are two possible approaches for merging both reward signals. The first and easier
approach is to add up the intrinsic reward and extrinsic reward, where you can regulate the
weight of intrinsic reward by modifying the scaling parameter β, where β > 0 [24].

rt = rextrinsic
t + β rintrinsic

t , (4)

A more advanced method involves merging rewards based on their respective Q values.
This entails generating distinct Q values for intrinsic and extrinsic rewards, allowing for the
use of specific discount factors (γ) for each predictor [24]. The approach proved beneficial
in the Random Network Distillation study, which exhibited the advantage of applying a
higher γ for extrinsic Q values than for intrinsic Q values.

Q(s, a) = Q
(

s, a, θextrinsic
)
+ β Q

(
s, a, θintrinsic

)
, (5)

The parameters θextrinsic and θintrinsic represent the Q parameters of the extrinsic reward
learning model and the Q parameters of the intrinsic reward learning model, respectively.
Again, the degree of influence of intrinsic reward can be controlled using the β parameter.

However, the combination of intrinsic and extrinsic rewards, as shown in
Equations (4) and (5), has not been employed in subsequent computations. This is be-
cause the purpose was to demonstrate that intrinsic reward alone can guide the agent’s
learning process to accomplish the task, even in the absence of extrinsic reward.

This new method of intrinsic rewards does not replace traditional exploration strate-
gies, such as Epsilon-greedy [38] or Boltzmann exploration [39]. Instead, it serves as a
complement to these methods, which primarily focus on exploring the agent’s action space.
Their role is to strike a balance between purely random action selection and action selection
based on predictions made by the neural network from the current state. On the other
hand, the intrinsic reward method guides the agent in exploring the state space of the
environment, with a focus on the frequency of visiting individual states. By combining both
approaches in the future, the agent is expected to gain complete control over the search of
the environment.

Like other methods, such as Directed Outreach Reinforcement Action-Selection or
Random Network Distillation, AutoEncoder does not reset its knowledge about state
visitation between episodes, making it a non-episodic [40] intrinsic reward method. The
method memorizes the frequency of state visitation across multiple episodes.

3. Results

The agent used in this study was represented by the Dueling Deep Q Network (DQN)
algorithm [41], which was chosen due to its suitability for discrete action spaces, encom-
passing all the test environments used in this paper. DQN has demonstrated success in
Atari games [41] and therefore is expected to be capable of solving robot control tasks. The
agent employs Boltzmann exploration to search the action space (contrary to the greedy
policy), with the temperature parameter linearly decreasing over time using the same decay
value until it reaches a preset minimum temperature value. The experiments revealed that
extensive searching is advantageous compared to the greedy policy based on learned Q
values, as it enables intrinsic reward to attain high values and rewards states that have



Sensors 2023, 23, 3985 7 of 17

not been previously observed. Then, a standardized state space [42] can facilitate neural
network convergence quickly and accurately. The intrinsic reward can be read from RB or
computed directly during DQN update and substituted into Bellman’s equation [43].

Table 2 provides a comprehensive list of the hyperparameters employed in the Acrobot-
v1, CartPole-v1, LunarLander-v2, and MountainCar-v0 environments. These hyperparame-
ters were fine-tuned using the W&B Sweeps tool [44], where random search was conducted
on 45 combinations of values around the optimal values. The optimal values were iden-
tified as the ones that enabled successful completion of the tasks in the aforementioned
environments. In Table 2, the abbreviation LS indicates the number of neurons allocated for
the latent space, which was determined experimentally to be half the number of features
in the state space. In the future, the training process is expected to be accelerated through
distributed parallelization [45–47].

Table 2. Optimized hyperparameters for Dueling DQN agent.

Name Description Value

Epochs Number of training episodes 2000

Buffer size The capacity of experience replay buffer 1,000,000

Min. temperature The minimal value of temperature for Boltzmann
exploration 0.01

Init. temperature The maximal value of temperature for Boltzmann
exploration 1.0

Decay temperature The value of temperature reduction 1 × 10−5

Batch size Number of samples applied during training at once 256

Learning rate The learning rate for training process 3 × 10−4

Global clipnorm Clipping applied globally on gradients 1.0

τ Soft target update value for coping original to target DQN 0.01

γ Discount factor for Bellman equation 0.99

No. neurons in DQN Number of neurons for each hidden layer 512, 256

No. neurons in
AutoEncoder Number of neurons for each hidden layer 128, 64, 32, 16, LS, 16, 32, 64, 128

The cumulative intrinsic and extrinsic rewards obtained by an agent throughout a
single episode are represented by the intrinsic and extrinsic scores shown in the following
figures. An episode can be defined as a sequence of time steps after which an agent either
accomplishes a task or, for example, destroys a robot. If the maximum number of steps for
completing a specific task is exceeded, the episode will still come to an external end, but the
Markov decision process [48] chain will continue, thanks to the differentiation between the
“signal terminated” and “signal truncated” conditions. The “signal terminated” condition
refers to the episode ending after reaching a terminal state, as defined by the environment,
whereas the “signal truncated” condition refers to the episode ending after an externally
set time-limit for solving the task [49].

In cases where the latent space z consisted of more than two features, a t-SNE reduction
technique [50] was employed to visualize the data in a 2D space. However, when there was
only one feature in the latent space, all points were placed on the y-axis with the same value
of 1. In instances where there were only two features, the latent space was directly displayed
on the graph. In the resulting latent space plots, the points were categorized based on
whether the compressed states led directly to a win, making them part of a winning episode,
or if they were necessary for exploring the environment, but did not result in a swift win.
Two potential scenarios can be inferred from the findings presented below. The first scenario
involves the emergence of two distinct clusters when the agent wins even in unseen states.
The second scenario occurs when a specific combination of visited states leads to the agent’s
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victory, and both winning and losing states are concentrated in a single cluster. When
a high intrinsic reward is offered, the agent explores entirely new states, whereas even
a low intrinsic reward induces an exploration of the action space, ultimately leading to
task completion induced by the organization of previously visited states. Consequently, a
combination of state-level and action-space searches is crucial.

The novelty intrinsic reward method enabled learning of all tested tasks without
the need for external rewards from the environment. The extrinsic scores presented in
following figures were solely utilized for evaluating task performance and had no influence
on the agent’s learning process (see Supplementary Materials for interactive charts).

In Figure 2, a comparison is presented between the normalized intrinsic and extrinsic
scores in the Acrobot-v1 environment. This comparison reveals that as the agent explores
the environment during learning, the intrinsic scores gradually decrease over time, while
the extrinsic score increases. This increase in extrinsic score is due to the agent’s exploration
of the environment until it reaches the score threshold required to complete the task, which
involves reaching a certain altitude target with its arm. The agent scans multiple altitude
levels until it finally reaches the target. The relationship between extrinsic and intrinsic
scores demonstrates the interplay between search dynamics and environmental complexity.
A high extrinsic score suggests that the task is close to being finished, while a low intrinsic
score indicates that only minor adjustments are needed to complete the task, and the
learning environment does not present any sudden or unexpected challenges.
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gradual fine-tuning of parameters.

In Figure 3, the distribution of win points in the latent space is analyzed. The analysis
reveals that most of the win points are uniformly distributed over both the latent space and
the non-win points, which are frequently recurring states that do not instantly lead to a win.
However, there is one small cluster of win points that is distinct from the non-win points.
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In CartPole-v1 environment, Figure 4 presents a comparison between the normalized
intrinsic and extrinsic scores. The comparison reveals that initially, the agent explored
the nearby vicinity, which minimized the intrinsic score. As the agent progressed, it
encountered novel states leading to an increase in the intrinsic score. Eventually, the agent
discovered states that resulted in a win, where both the extrinsic and intrinsic scores were
high. The absence of a distinct pattern in the scores indicates that the environment is
highly intricate, and making incremental changes is not effective. Instead, progress towards
(almost) complete solutions is achieved by exploring previously unexplored areas of the
state space.
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of the task.

In LunarLander-v2 environment, Figure 6 illustrates a comparison between the intrin-
sic and extrinsic scores, which have been normalized. The intrinsic score decreases over
time as the agent explores its immediate surroundings at the start of learning, while the
extrinsic score remains unchanged, indicating no advantage from scanned states. As the
agent explores more states, there is a slight increase in the extrinsic score, but the high
intrinsic scores are also awarded for states leading to a clear loss, which is not desirable.
However, since these states were infrequently visited, it was still possible. At the end of the
learning process, the agent solved the task by exceeding the score threshold, but did not
achieve a high intrinsic score, which indicates that frequently recurring states leading to a
win were observed. The comparison between extrinsic and intrinsic rewards indicates that
while the agent may have experienced some significant control failures while exploring
uncharted territories, it was able to achieve satisfactory results when the intrinsic reward
was high, and the extrinsic reward was low.
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In Figure 7, the win points are clustered separately around the non-win points. The
win points mostly consist of previously unvisited states, which suggests that the agent’s
exploration was effective in discovering new states.
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In MountainCar-v0 environment, Figure 8 presents a comparison between normalized
intrinsic and extrinsic scores. The agent apparently scanned its immediate surroundings
from the beginning of the learning process. As time progressed, the agent began to uncover
novel states, resulting in a high intrinsic score, and the extrinsic score increased gradually.
This behavior demonstrates how the car gradually approached the goal state on top of the
right hill.
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Figure 8. MountainCar-v0 learning scores, as the learning process progresses, newly explored states
near the completion of the task yield high scores for both types of measurements.

Figure 9 illustrates that both win and non-win points are uniformly distributed across
the latent space. The frequently repeated states lead to a win.
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in parameters.

Table 3 presents a comparison of scores between the approach used in this paper,
which solely focused on intrinsic reward, and the conventional DQN results obtained from
the CleanRL environment [51] and the Stable-Baselines3 environment [52]. The results in
this study were obtained from the average of 100 independent consecutive experiments,
and only successful runs that led to solving the given task were included for statistical
analysis. The experiment always ended when the agent surpassed a predetermined score
threshold [53], indicated in the third column of Table 3. If the agent would continue to
search and learn beyond this point, the results would degrade as the winning states would
be marked as frequently visited and the agent would explore other inferior directions.
The outcomes demonstrate that intrinsic reward alone can be utilized as a search method;
however, the agent may not fully understand its true objective in the environment.

Table 3. The comparison of DQN’s performance using solely extrinsic reward and intrinsic reward.
The results are evaluated based on the score, where a more positive score signifies better performance.
The task’s completion requires surpassing the score threshold in the last column, and both approaches
attained it for all environments. The superior outcomes are highlighted in bold.

Environment Score
(w/Extrinsic Reward Only)

Score
(This Paper) Score Threshold

MountainCar-v0 −194.95 ± 8.48 [51] −96.684 ± 7.028 −110
Acrobot-v1 −91.54 ± 7.20 [51] −86.12 ± 4.604 −100
CartPole-v1 488.69 ± 16.11 [51] 499.483 ± 3.05 475

LunarLander-v2 280.22 ± 13.03 [54] 234.881 ± 33.86 200

One disadvantage of relying solely on intrinsic reward was that, in some instances,
the agent got stuck if it exhausted all possibilities in its immediate surroundings, resulting
in an average intrinsic reward of 0, which then became a sparse reward.

Despite these potential limitations, the results in Table 3 indicate that, in three out
of four environments, using intrinsic reward alone achieved better outcomes than rely-
ing solely on extrinsic reward, as shown by the bold scores in the table. In the fourth
environment, where intrinsic reward results were slightly inferior, the problem was still
solved successfully.

The agents using solely intrinsic reward in all the environments completed the tasks.
If the parameters from the previous winning episode were utilized for the agent in a new
instance, it would be able to complete the task successfully, as if it had learned from an
external reward. However, the caveat is that without the user setting a score threshold or
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some other indicator, relying solely on intrinsic reward would not provide any indication
of task completion, and agent would continue searching.

When to Compute the Intrinsic Reward

There are two possible approaches to calculating intrinsic rewards. One approach
involves expressing the intrinsic reward after the agent has obtained the state from the
environment and storing it in the experience replay buffer (RB). In this case, the AutoEn-
coder is trained on the observed statet from the RB, while the intrinsic reward prediction
is made based on the current statet used by the agent in the environment to predict the
actiont. However, this can result in off-policyness, where intrinsic rewards sampled from
the past may no longer correspond to the current visitation frequency of a given state and
inaccurately affect the agent’s policy during DQN model updates. The approach in “Never
Give Up” [55] also stores the intrinsic reward in RB.

Alternatively, intrinsic rewards can be computed during the update of the DQN model
without immediately imposing the reward. Since states are usually part of the stored
experiences, intrinsic rewards can be computed based on the current state visitations in the
agent’s state space. In this case, the AutoEncoder is taught on the statet from RB, and the
intrinsic reward prediction is done from statet+1, which is also part of RB. To compare both
options, statistics were generated in different environments with 100 runs in each case.

According to Table 4, the optimal timing for calculating the intrinsic reward is depen-
dent on the type of environment and the specific task being performed. For the selected
environments, MountainCar-v0 and LunarLander-v2 exhibited more consistent goal con-
vergence when the intrinsic reward was computed during DQN model updates, using
the stored states in RB. On the other hand, for the CartPole-v1 environment, it was more
advantageous to store intrinsic rewards in RB and then sample them during DQN model
updates. Despite the difficulty in learning due to sparse extrinsic rewards, MountainCar-v0
achieved a high task success rate of up to 98 percent when intrinsic rewards were utilized.

Table 4. Problem-solving success in all tested environments for different methods of updating the
intrinsic score. No single method can be considered universally better, as the effectiveness of each
method depends on the specific environment. Best results are highlighted in bold.

Environment Method Percentage Success Rate

Acrobot-v1 Stored in RB 100
Calculated during DQN model update 100

CartPole-v1 Saved in RB 75
Calculated during DQN model update 60

LunarLander-v2 Saved in RB 11
Calculated during DQN model update 14

MountainCar-v0 Saved in RB 61
Calculated during DQN model update 98

4. Discussion

In the present study, extrinsic reward was not employed. Instead, the paper demon-
strates the effectiveness of novelty-seeking intrinsic rewards for reinforcement learning,
rendering extrinsic rewards unnecessary. Despite the absence of extrinsic reward, the task
were successfully completed, most of them even better than when extrinsic rewards were
tested in other studies [51,54]. Nonetheless, it is recommended that future robot learning
should incorporate a fusion of both intrinsic and extrinsic rewards for optimal results. The
blending of intrinsic reward-based robot control with existing control techniques described
earlier in Equations (4) and (5) combines two different approaches to controlling robots
in a way that leverages the strengths of each approach. In this way, the robot is able to
take advantage of the stability and reliability of existing control techniques, while also
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benefiting from the flexibility and adaptability of intrinsic reward-based control. In future,
more advanced methods of blending various types of rewards can be explored.

The method proposed here allows a robot to explore its immediate surroundings
during an autonomous search by detecting anomalies that guide it towards uncharted
terrain. For instance, a Mars rover that lacks real-time communication with Earth might
use the proposed method instead of the currently used grid-based planner approach. The
presently employed planner generates a terrain map using stereo cameras and creates a
path on the grid using the Field D* planning algorithm [56]. This algorithm assigns a cost to
each grid cell and generates a path that minimizes this cost. However, this paper proposes
a different approach that utilizes a neural network to generate paths based on previously
unseen states. The goal is to choose a path that provides the newest information while
exploring the Martian surface, rather than selecting the most optimal path.

Another example where the robot’s success depends on discovering unexplored
terrain is archaeological exploration of the seabed or land at greater depths. Typically,
search techniques such as the random tree algorithm (RRT) or RRT* are used to navigate
empty areas quickly and locate the next traversable route in complex environments [57]. In
contrast, this paper focuses on using a pure neural network as a memory instead of tree
generation. This approach can also be useful in natural disaster response by automating
search in complex environments and guiding the robot to a target or exit. In each of these
scenarios, the intrinsic reward needs to be supplemented with information about what the
robot should search for.

Intrinsic reward can help to guide the robot’s behavior also in other ways. For example,
the robot could be rewarded for achieving a certain level of accuracy in its movements or to
encourage the robot to perform the task more quickly or using less energy. The introduction
stated that such intrinsic reward applications have been previously employed successfully
in other contexts without the use of an autoencoder, which is utilized in the present study.
It is suggested that using an autoencoder for intrinsic reward may be more suitable for
more intricate tasks such as novelty search.

5. Conclusions

The results successfully demonstrated how intrinsic rewards using autoencoder for
multiple signal input processing can aid in navigating an agent through the state search
space representing robot’s motion within its environment. Such a capability could prove
useful in scenarios where a robot has limited means of communication with its human
operator. This should be beneficial when a robot needs to operate in environments that are
hazardous or difficult for humans to access. In subsequent research, an operational robot
will be deployed to evaluate the effectiveness of intrinsic rewards in resolving the same
tasks performed by the simulated robots. It should provide insights into the real-world
application of intrinsic rewards in robotics and could lead to the development of more
advanced and efficient autonomous systems.
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