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Abstract: Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being.
Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches
such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home
sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters
while causing minimal discomfort to the user’s sleep. We developed a low-cost Out of Center Sleep
Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested
and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic
and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The
ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform
and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate,
respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and
2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors
were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and
verified the reliability and applicability of the system. It showed a minor dependency on sleeping
positions, one of the major cumbersome sleep measurements. We identified the sensor under the
thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the
system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising
results, further investigation is required with the bandwidth frequency and validation of the system
with larger groups of subjects, including patients.

Keywords: ballistocardiography; sleep monitoring; wavelet signal processing; heart rate; respiration
rate; noninvasive sleep measurement

1. Introduction

Sleep is crucial for general health and well-being and its associated problems and
diseases can significantly impact daily life, negatively impacting a person’s physical, emo-
tional, and cognitive health through various influencing elements, including hormone
control, memory consolidation, and restoration for healing damaged cells. Many mental
health conditions, such as sadness, anxiety, and irritability, can be exacerbated by sleep
deprivation [1–3]. Persistent sleep deprivation has been associated with, for example, a
higher risk of obesity, diabetes, high blood pressure, and heart diseases [4].

Circadian rhythm disruption, weakened immunological response, and cardiovascular
disease are just a few of the physiological effects of irregular sleep patterns that can
substantially affect the body [5,6].
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Insomnia [7], sleep apnea [8], restless leg syndrome (RLS) [9], narcolepsy [10], para-
somnias [11], and sleep-related movement disorders [12] are some of the most common
sleep disorders. Stress, anxiety, depression, loud snoring, daytime sleepiness, disrupted
sleep and daytime fatigue, disrupted nighttime, sleepwalking, and sleep talking are some
known consequences of such sleep disorders that affect the quality of life and, therefore,
require diagnosis or progress evaluation.

The traditional approaches to diagnosing sleep issues involve a combination of/or a
clinical assessment [13] and sleep diary, a review of medical history [14], and/or objective
measurements of sleep [15,16]. The latter is addressed by methods such as multiple sleep
latency test (MSLT) [17], actigraphy [18], and polysomnography (PSG) [19].

PSG is the most accurate and leading sleep study method. It involves monitoring
an individual’s brain activity, eye movement, heart rate, and breathing during sleep but
not limited to these. It is typically conducted in a sleep lab. However, this approach is
obtrusive, time-consuming, and expensive. An effort has been made to develop noninva-
sive, unobtrusive, and low-cost in-home continuous monitoring systems during the last
decades [20,21]. Recent studies have shown that sleep monitoring, including sleep stages,
sleep quality assessment, and sleep disorder diagnostics are mainly feasible by measuring
cardiorespiratory and body movement, i.e., minimal physiological and non-physiological
parameters [22–25].

Hence, the recent advances in technology have led to the development of new ap-
proaches to measure cardiorespiratory parameters during sleep using wearable devices,
e.g., pneumobelt sensors [26], smartphone apps [27], video monitoring [28], infrared ther-
mography [29], and ambient sensors [30] to overcome the cumbersome of using PSG.
However, interfering with sleep or, to some extent, obtrusiveness, privacy violation and
intrusiveness, lack of reliability and accuracy of measurements, complex systems, and
positioning uncertainty are some of the reasons transitions in the approaches to further
simple, unobtrusive, noninvasive, and reliable measurements [31] are necessary. With
advancements in sensor technology from one side and signal processing techniques from
the other, methods such as ballistocardiography (BCG) attracted more attention. It is a non-
invasive method of measuring the mechanical forces generated by the heart’s contraction
during each heartbeat [32,33].

BCG signals are measured using sensors placed on or under a subject’s body, typi-
cally on/under a bed or a chair. Several different types of sensors can be used for BCG
measurements during sleep, and the number and types of sensors continue to evolve
as new technology emerges. Pressure/force-based sensors such as force-sensitive resis-
tors (FSR) [34,35], load cells [36], inertial sensors such as accelerometers, gyroscopes, and
magnetometers [37,38], capacitive micromachined ultrasound transducers (CMUTs) [39],
piezoelectric sensors [40], and strain gauges [41] have been tested and used in cardiorespi-
ratory measurement during sleep.

In addition, fiber-optic sensors have been used in BCG measurements as an alterna-
tive to traditional mechanical sensors [42]. There are several different types of fiber-optic
sensors, including fiber Bragg Grating (FBG) [43], Fabry–Perot interferometer [44], and
microbend [45]. These sensors use the structure inscribed in a fiber-optic cable to measure
strain and displacement. Fiber-optic sensors offer several advantages over traditional
mechanical sensors, including high sensitivity, noninvasiveness, and immunity to electro-
magnetic interference [46]. However, they are expensive and require specialized equipment
to operate, which can limit their widespread use in sleep monitoring [47].

As an example of noninvasive and unobtrusive measuring systems, the Medical Au-
tomation Research Center at the University of Virginia developed a noninvasive analysis of
a physiological signals system to measure physiological and environmental parameters [48].
In this system, two resilient force-coupling pads were placed beneath a typical hospital
bed sheet to detect the tiny forces generated during heart contraction and relaxation. Ad-
ditionally, the system was able to recognize changes in posture, breathing exertion, and
body movements. The system was examined and validated on 40 healthy participants
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during overnight research. Compared to the reference ECG, pulse oximetry, and respiratory
inductance PSG, the system produced good output [49].

More in the direction of diagnosis and progress evaluation, there are a few methods
specifically for inconspicuous apnea detection. For unconstrained apnea and arousal
detection, for instance, Mack et al. recommended employing the NAPSTM system; the
proposed approach was validated using data from forty participants [50]. In a dataset with
32 subjects, Hwang et al. suggested using a polyvinylidene fluoride film sensor put on
top of the mattress to identify apneic occurrences [51]. For 45 participants, Beattie et al.
described the use of load cells situated beneath the bed’s supports to identify apneic
episodes, with the apneic detection being performed manually by a professional [52]. In
order to identify apneic and limb movement events for patients. Waltisberg et al. devised a
sensor with integrated strain gauges implanted beneath the bed mattress [53].

In order to evaluate the potential of a single mat with an embedded microbend fiber-
optic sensor for nonintrusive monitoring of vital signs and the absence of breathing, a pilot
feasibility study was carried out in a clinical trial setup. The microbend fiber-optic sensor
pad was positioned beneath the patient’s chest and stomach. Despite the considerable body
movements during apnea occurrences, the system established a good agreement with the
reference device. Moreover, the mean absolute error of the mean respiratory and cardiac
rates was quite low [54]. A noninvasive and unobtrusive system using FSR sensors installed
under the mattress on the bed frame was proposed to measure heart and respiratory rates.
The authors reported an average error of 4 BPM in contrast with the reference device [55].

Another low-cost yet noninvasive and contactless system using off-the-shelf sensors,
i.e., load cell, was proposed in [56]. The sensors were installed on a typical hospital bed
to measure the longitudinal BCG. It aimed to evaluate its utility for monitoring heart and
respiration rates. An unsupervised machine learning algorithm was deployed to evaluate
its performance to an electrocardiogram (ECG) signal that serves as a reference. The system
was tested with seven subjects in four different sleeping positions and delivered an overall
detection rate of 83.9%.

The authors in [57] have developed an unobtrusive and noninvasive monitoring sys-
tem for sleep-related breathing disorders (SRBDs) and in particular, obstructive sleep apnea
(OPA). The system is Arduino-based, running FSR sensors embedded in the pillowcase
and the bedsheet. The system is further enriched with a triple-axis accelerometer sensor
(ADXL345) and a microphone. The platform analyzes the body position, respiratory rate,
snoring, sleep efficiency, and sleep apnea. The system also is an effort in order to train the
subject to sleep in an appropriate position to avoid snoring. The authors reported the high
agreement of the system in comparison with the PSG as the gold standard.

The authors in [58], used flexible piezoresistive architectures and machine learning
algorithms to develop an integrated sleep monitoring system. This low-cost and privacy-
protecting system includes a flexible pressure-sensing pad, in the form of a piezoresistive
array for capturing the pressure distribution during sleep, and the readout circuit. The
authors reported a high sleeping posture classification accuracy of 98.1% and RR estimation
accuracy of 97.5%, indicating a strong potential in practical utilization.

Gaiduk et al. in [59], developed an unobtrusive and low-cost sleep analysis system
based on a hardware sensor net. It is a grid of 24 pressure sensors, supporting sleep phase
recognition, respiration, and body movement. The hardware configuration of the system
includes a series of pressure sensor nodes forming a mesh architecture connected to a
microcontroller via a system-wide bus with address arbitration. All nodes are connected.
The embedded system enables network configuration, storing and pre-processing of the
data, external data access, and visualization. The authors reported validating the system
with healthy young subjects. The results obtained have indicated the potential to detect
breathing rate and body movement.

One of the main challenges with using BCG for sleep measurement is related to
the morphology of the signal. The BCG signal is characterized by a complex waveform
that is influenced by various factors, including body movements, the position of the
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subject on the bed, and the location of sensor deployment. Nevertheless, the choice of the
sensor itself depends on several factors, including the research question, application, the
desired accuracy and resolution of the data, and the available resources and infrastructure.
Moreover, the signal contamination by sources of noise, such as vibrations from external
sources or movements of the bed, the non-stationarity of the signal, signal variability,
and lack of standardized analysis methods, can make it difficult to develop a universal
algorithm for sleep measurement using BCG. All these factors influence the quality of the
signal processing and analysis algorithms [60].

In this work, we develop and propose an optimal, reliable, unobtrusive, and non-
invasive cardiorespiratory measuring, continuous in-home system with low hardware
setup complexity and user-friendliness to estimate heart and respiratory rates. This is
accomplished by testing and validating a strip standard FSR sensor. It further contributes
to reducing the dependency of accuracy on different sleeping positions. Furthermore, we
improve the reliability of the measurements by implementing two algorithms for heart rate
and respiration measurements using discrete wavelet transformation (DWT) and 2nd-order
Butterworth bandpass filter, respectively. The algorithms are light, efficient, near-real-time
operating, and do not need a complex embedded system.

The rest of this paper is organized as follows: in Section 2 the mechanism of the
system development, signal processing techniques, and data acquisition are described. In
Section 3 the results are presented. The paper is followed with the Discussion including the
interpretation of the data, the applications and extendibility, and the restriction of the work.
It is ended with the Conclusions.

2. Materials and Methods
2.1. System Setup and Configuration

The system consists of (i) two FSR 408 strip sensors, (ii) two amplification boards,
(iii) one analog-to-digital converter (ADC) board as well as ADC to an inter-integrated
circuit (IIC) interfacing converter, and (iv) an embedded system. The edging measuring
sensors, pre-processing, transmission and interfacing, and data processing occurs in steps
one to four, respectively.

2.1.1. Sensor

FSR 408 strip is a single-zone robust polymer thick film (PTF) sensor with 622.3 mm in
length that exhibits a decrease in resistance with an actuation force of as low as 0.2 N with
a sensitivity range of up to 20 N.

2.1.2. Pre-Processing, Communication, and Interfacing

The sensor is directly plugged into the pre-processing board to amplify and filter
the signal and gain. The board is designed based on the single supply chain operational
amplifier TLC271ACD (Texas Instruments, Dallas, TX, USA), which combines a wide range
of input offset voltage grades with low offset voltage drift and high input. The lower and
higher boundary of the low- and high-pass filters are set to 0.15 and 15 Hz, respectively,
which correspond to the cardiorespiratory signals to detect. We also consider that the
mattress, the subject, and the sensors act as low-pass filters. The signal gain is set to 90 to
overcome the distortion and low amplitude of the signal (<0.5 mV). As the embedded
system does not support the analog signal, we utilize ADS1015 (Adafruit, New York, NY,
USA), an ADC, and a switching communication protocol from ADC to IIC. ADS1015 is
high precision, four single-ended input channels supporting 12-bit precision at 3300 Hz
over IIC.

2.1.3. Embedded System

A Raspberry Pi 4B (Raspberry Pi foundation, Cambridge, UK) with 4 GB RAM and
32 GB external memory is used to collect, store, and process the data.
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2.2. Experiment Setup and Study Design
2.2.1. Bed and Mattress

We used a regular single bed (Askvoll), bed net/slatted (Lönset), and mattress with
dimensions of 90× 200 from IKEA (IKEA, Delft, The Netherlands). We have not considered
any particular requirements or customized specialties. All materials were wooden and
widely accessible by regular users.

2.2.2. Sensors Deployment and Distributions

We utilized two FSR strip sensors of Se1 and Se2 on the bed net and under the mattress
to cover subjects’ thoracic and abdominal regions, respectively, measuring the cardiorespi-
ratory parameters. The sensors are deployed horizontally, covering approximately 62 cm
of the bed. Sensors are connected to the pre-processing boards, ADC over the IIC board,
and eventually linked to Raspberry Pi 4B via wire (see Figure 1).

Figure 1. The approach offers a noninvasive, nonintrusive, and unobtrusive measurement of car-
diorespiratory parameters. The sensors and system setup are located under the mattress and attached
to the bed net without inconveniencing the user.

2.2.3. Subject Description

We recruited 20 subjects, 12 males and 8 females, with an average age, height, and
weight of 31 ± 8 years, 173 ± 8 cm, and 71 ± 7 kg, respectively. All subjects were healthy and
informed of the consent form. The subjects did not acknowledge any known cardiovascular,
pulmonary, or other diseases, nor were they under any treatment or medication.

2.2.4. Data Acquisition

We used SOMNO HD eco PSG (SOMNO medic GmbH, Randersacker, Germany) to
record the reference data. We recorded the respiratory (thorax and abdomen) and ECG
signals at 32 Hz and 256 Hz, respectively. The belt was tightened to a comfortable level,
and ECG electrodes were disposable. Data from the FSR strip sensors were captured at
a sampling rate of 150 Hz. The subjects were instructed to lie down on the bed in four
different positions: prone (P1), right lateral (P2), supine (P3), and left lateral (P4). The
experiment started with the individuals prone and ended with the left lateral position in a
counterclockwise rotation of the subjects. The data measurement lasted 80 s in each position.
We gave subjects five minutes to relax before collecting data. During the data collection,
the subjects were instructed to behave normally with the least amount of movement. They
were nevertheless advised that in the event of an inconvenience, the experiment would be
stopped (see Figure 2).
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Figure 2. We have performed the experiment in all four regular sleeping positions. The subject
switched position after every 80 s.

2.3. Data Processing and Analysis

We performed the data synchronization between the FSR strip sensors data and the
reference signals after removing the first and last ten seconds of the FSR strip sensors
data in each position and the offset. We derived the BCG and breathing signals from FSR
strip sensors. We extracted the BCG and respiratory signals using the Chebyshev type I
bandpass filter with the filters’ lower and higher cutoff frequencies (2.5–5 Hz, 0.5 dB) and
(0.01–0.4 Hz, 0.5 dB), respectively. The data recording and processing were performed in a
chunk of 20 s using a sliding time window size of 3000 samples.

To calculate the heart rate (HR), the multi-resolution analysis with the maximal overlap
discrete wavelet transform (MODWT) was performed. The BCG signal was converted
into an approximation and detailed signal by passing it through low- and high-pass filters.
The coefficients of the filter were not subsampled. After performing several trials earlier
than the actual data acquisition and observing the agreement between the periodicity of
the maxima and the cardiac cycles, the 4th smooth level (lev = 4) of wavelet biorthogonal
3.9 (bior3.9) basis function was chosen for the decomposition process to estimate HR.
Biorthogonal wavelet filters generate one scaling function and wavelet for decomposition,
and another pair for reconstruction. MODWTMRA is zero-phase filtering of the signal.
Features will be time-aligned. LoD, HiD, LoR, and HiR are the four lowpass and highpass,
decomposition (LoD and HiD) and reconstruction (LoR and HiR) filters associated with the
biorthogonal wavelet, respectively (see Figure 3).

Figure 3. The signal processing was performed in two pipelines using discrete wavelet transform
and Butterworth bandpass filter.

We used a Butterworth 2nd order as the bandpass filter in the frequency range of
0.15 to 0.4 Hz to estimate respiration rate (RR). This step was followed with a peak detector
to recognize the respiratory peaks.

We assessed the outcomes using mean absolute error (MAE) and Bland–Altman limit
of agreement (LoA) for processing and analysis.
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3. Results

We processed the data after cutting the first and last ten seconds of signal in each
position and, thus, prepared 60 s in each position and 240 s for each subject in all four
positions. In total, 4800 s of data were divided into 240 signal segments for HR and RR
estimation (see Figure 4).

Figure 4. The label description of the figure from top to bottom are as follows: the acquired signal
from the strip sensor under the thoracic region (Raw signal), the reference ECG signal as the gold
standard (ECG signal), BCG signal and the processed signal acquired from the strip sensor for HR
estimation (BCG signal and 4th smooth level), the reference respiration signal from the thoracic region
as the gold standard (RIP THO signal), and the respiration signal from the strip sensor under the
thoracic region (Respiration signal): 20 s of the 9th subject’s signals in P4 position. The sensitivity of
the FSR strip enabled us to detect the smallest movements caused by cardiac and breathing activity.

In RR estimation of all subjects in all positions, Se1 and Se2 delivered the average MAE
of 2.32 and 2.83, respectively. Dividing the results according to gender showed that the
average MAE of RR estimation for Se1 and Se2 was 2.33 and 2.77 for females, and 2.32 and
2.86 for males, respectively.

The RR estimation from the thoracic region (Se1) yielded the same results for both
genders (MAE = 2.32). The abdominal region (Se2) also yielded similar outputs for both
genders, slightly better for females (MAE < 0.09). In total, estimating RR from the thoracic
region delivered better results than abdominal regions in males, females, and all subjects.

Comparing the average MAE results of Se1 and Se2 in individual positions for all
subjects indicated similar results. Considering both genders, Se1 in individual positions
suppressed Se2 with a lower error, even with a small difference. Further, exploring Se1
as the superior sensor showed that Se1 delivers the smallest and largest error in P1 (2.09)
and P3 (2.57), respectively. However, P2 with an error of 2.13 and P4 with 2.49 are in the
same range, i.e., improving the accuracy of the measurements has reduced the sleeping
position dependency. This pattern was in line for males where Se1 in individual positions
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delivered lower error than Se2. It is repeated for females with an exception in P4. Although
the outputs of Se1 in P1 to P3 overcome Se2, the opposite results were observed in P4.
This could be neglected due to the very small difference (MAE = 0.14). The significant
comparison of Se1 and Se2 takes place for females in P1, delivering MAE of 1.85 and
3.17, respectively.

The most minor and most significant deviations between sensors in the same position
were observed in P4 (0.03) and P1 (0.86). For females, P4 (0.14) and P1 (1.32) and for
males, P4 (0.09) and P2 (0.82) delivered the smallest and largest deviations, respectively
(see Table 1).

From the LoA point of view, Se2 stud better than Se1 with a total LoA in the range of
[−6.19, 5.98] for all subjects, [−6.20, 6.25] for males, and [−6.16, 5.29] for females.

Table 1. The respiration estimation shows the agreement on carrying less error by Se1 under the
thoracic region compared to Se2 under the abdominal region for both genders and in all positions.

Male Female All Subjects

Position Se1 Se2 Se1 Se2 Se1 Se2

P1 2.19 2.86 1.85 3.17 2.09 2.95

P2 2.04 2.86 2.34 2.52 2.13 2.76

P3 2.50 3.11 2.74 3.11 2.57 3.11

P4 2.53 2.62 2.41 2.27 2.49 2.52

Average 2.32 2.86 2.33 2.77 2.32 2.83

As for HR estimation of all subjects and positions, Se1 and Se2 delivered average MAE
of 3.24 and 3.67, respectively. These results for females were 2.68 and 3.94, and for males,
they were 3.47 and 3.55, respectively. In total, measuring HR from the thoracic region in
males, females, and all subjects suppressed the abdominal region. For individual positions
of all subjects, Se1 yielded superior results to Se2. Further, exploring Se1 as the efficient
sensor indicated that the smallest and largest errors are yielded by P3 (2.85) and P1 (3.47),
respectively. However, the difference between the error of these two positions is as small as
0.62, i.e., reducing the output dependency on the sleeping positions. For females, Se1 in all
four positions gave better results than Se2. P2 with 2.12 and P1 with 3.20 carry the smallest
and largest errors, respectively. For the males, Se1 and Se2 showed similar performance
with the smallest and greatest error in P3 (2.91) and P2 (4.10) (see Table 2).

Table 2. The heart rate estimation of Se1 and Se2 between males and females are significantly different.
This might be due to the physical difference in the thoracic region.

Male Female All Subjects

Position Se1 Se2 Se1 Se2 Se1 Se2

P1 3.58 3.58 3.20 3.46 3.47 3.55

P2 4.10 4.04 2.12 4.01 3.51 4.03

P3 2.91 3.57 2.71 4.45 2.85 3.83

P4 3.31 3.02 2.68 3.85 3.12 3.27

Average 3.47 3.55 2.68 3.94 3.24 3.67

Overall, in all four positions, Se1 in the thoracic region performed better, and we
reached the error of 2.32 and 3.24 for RR and HR estimation, respectively. Overall, the
system showed similar performance and reliability of RR estimation for both males and
females (unless P1 for females); but females performed significantly better in HR estimation
than males. The females’ RR estimation in P1 was significantly better than males, which can
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be due to the physical differences in the chest region. As for RR estimation, Se1 performed
better than Se2 with minimum dependency on sleeping positions and gender. Regarding
HR estimation, for females, Se1 delivered better results in all positions. The error in P2,
P3, and P4 (Se1: 2.12, 2.71, and 2.68 compared to Se2: 4.01, 4.45, and 3.85) are significantly
different from P1 (Se1: 3.20 compared to Se2: 3.46). However, it could be concluded that
Se1 suppressed Se2 in both RR and HR estimation for both genders, with small differences.

From the LoA point of view, Se1 has a better LoA than Se2 in all three categories. The
overall LoA of Se1 in all positions is in the range of [−8.23, 8.24], [−6.31, 6.93] for females
and [−8.90, 8.70] for males (see Figures 5 and 6).

Figure 5. The LoA between the respiratory estimation of Se1 (left) and Se2 (right) under the thoracic
and abdominal regions. From top to bottom: LoA of all subjects, males, and females. In total Se2
showed a better agreement with the reference data.
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Figure 6. The LoA between the heart rate estimation of Se1 (left) and Se2 (right) under the thoracic
and abdominal regions. From top to bottom: LoA of all subjects, males, and females. For females, Se1
showed significantly better agreement with the reference data.

4. Discussion
4.1. Challenges and Drawbacks

Estimating reliable HR and RR during sleep from the BCG technique using FSR sensors
can be challenging for several reasons, such as the signal morphology, signal-to-noise ratio,
and sensitivity to changes in pressure that can be affected by changes in body position,
body weight, and other factors. One of the known challenges is to design a system with
features and specifications such as certainty and reliability of measurements in different
sleeping positions, and yet has a simple, optimized, low-cost, and user-friendliness system.
This is correlated to the coverage region of the bed and the position of the sensor(s), as well
as the sensitivity of the sensor(s). This was addressed in some works using distributed
FSR sensors, and fiber-optic solutions [43,57,59,61,62]. However, the first one suffers from a
distributed approach and thus lacks accuracy, and dependency on sleeping positions, and
the latter, although the reliability of measurement has been improved, the complexity and
expense of the system have been increased.

4.2. Improvements, Applications, and Opportunities

We tested and validated FSR strip sensors to address the reliability and accuracy of the
system, certainty, and reducing the dependency on sleeping positions by sensor sensitivity,
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seamless signal processing, and covering the larger region of the bed, respectively. Using a
minimum number of simple sensors consequently reduced the system’s complexity and
the total development cost. We tested the system’s performance with 20 subjects of both
genders to perform an in-deep evaluation due to various physical features of males and
females influencing the morphology of the signal.

We could noticeably reduce the dependency of the measurements on the sleeping
positions in RR and HR estimation of both genders. We reached the error difference of
RR estimation (dependency on sleeping positions) of 0.49 and 0.89 for males and females,
respectively, and HR estimation of 1.19 and 1.08 for males and females, respectively.

This improvement might be of significance in both clinical trials and OCTS systems
where the monitoring subjects are usually patients [18]. They often suffer from a sleep
disorder and consequently require an unobtrusive and noninvasive measurement that does
not interfere with their sleep nor impose any additional activities, while it is affordable,
reliable, and could be referred by clinicians to motivate both parties using it. In addition,
such a system with minimal dependency on the sleeping positions in actual life, where
there is minimum control on the subjects, can bring additional benefits in terms of acquiring
more extended periods of valid signal because the subject does not need (or at least is
less required) to follow particular instructions. Moreover, as the overall performance of
the system has been improved rather than position-related enhancement, with further
tests and validation, we expect re-calibration and personalization are less often needed.
Consequently, the low effort and cost of maintenance is achieved.

With the initial tests performed and the validation, the system has shown its potential
in sleep stage identification as well as stress monitoring [24,63,64]. These roles can be
considered through the accurate measurement of movements and cardiorespiratory as well
as heart rate variability implementation. Therefore, this enables the system applications
to be extended not only as a diagnostic but well-being monitor—a complementary or
substitution to wearable devices which often are considered obtrusive to some extent [65].

The system deployment can depend on the purpose and gender according to the
application. Using the system with the optimal configuration (only one sensor) for RR
estimation requires Se1 deployment disregarding gender. We expect that in such an ap-
plication, Se1 delivers a less average MAE (0.5) than Se2. Regarding the HR estimation,
depending on the subject’s gender, this needs to be tuned. If females use the system, Se1
should be deployed; and if males use the system, either Se1 or Se2 can be chosen, with a
priority to Se1. Care must be taken in particular applications where the system is supposed
to be used, for example, only in one position in HR estimation for males.

In general, using Se1 for measuring both cardiorespiratory parameters in both genders
yields optimal performance. The body surface and shape of subjects can be impactful in
HR estimation, as we observed such a factor reflected the HR estimation of females in Se1
and Se2. However, we could not formulate this point. We found negative (−0.72) and
positive (0.82) correlations between the females’ weights and heart rate and respiration rate
measured from Se1, respectively. We could not find such a correlation in males.

FSR sensors can carry a sort of error even though tested under the same conditions
which can affect the stability and reproducibility of the signal and data. However, we
have tried to exclude the effect of external factors by maintaining similar experimental
conditions for all subjects. This includes (i) air conditions such as temperature, humidity,
and pressure, by continuously measuring and tracking these parameters, (ii) performing
the experiments during a fixed time of the day with some tolerance, (iii) leaving the
bed unoccupied for a duration of 15 min to recover the potential drift of the sensors to
initial states from the previous experiments (influenced by weight, force, and surface of
subjects), and (iv) maintaining the environment isolated from sound pollutants. We did
not observe any particular divergence, trend, sensitivity loss, or performance drop during
the experiment. This could be confirmed by the comparison of the subjects’ sequence
experiments over time with MAE. Looking at the weight factor, we could not find any
relation between the MAE before or after a subject with significantly different weight than
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others. This is the same with the genders. We performed the experiments in a completely
random gender sequence and the results disregarded the sequence of the experiment.
Considering the performance and output of the sensors, the stability of the sensors under
the discussed conditions is trustworthy.

Developing a sleep monitoring system is composed of several aspects, of which the
reliability of the system, unobtrusiveness, nonintrusiveness, complexity, and expense are
given priority. However, depending on the application of the system (diagnostic, well-
being, and general health monitoring), mode of usability (in-home monitoring, clinical
trials), target group (patients, healthy subjects, elderly, children), element of measurement
(sleep staging, sleep-related disorders) and technology use, one or the other gain greater
weight. Thus, the previous works depending on the stated criteria have addressed various
aspects varies from one to another, which makes the comparison more qualitative rather
than quantitative [66].

Reliability of the system: includes accuracy of the measurement (less error compared
with the reference data), stability of the system (less failure prone, drift, hysteresis, etc.),
and reproducibility of the signal and data. We aimed to validate the cardiorespiratory
measurements that play important roles in sleep staging, and sleep-related diseases and
abnormalities detection in well-being, general health monitoring, and diagnostics. We
attempted to enhance this factor by reducing the dependency on sleeping positions by
improving the sensitivity of the sensors. Compared to the works in [34,35,57–59] which
are using similar technology, the performance of the system in terms of accuracy of the
cardiorespiratory parameters has been improved. On the other hand, the fiber-optic-based
system in [42,67], in general, delivers greater performance disregarding the complexity and
cost of the system.

Unobtrusiveness: does not interfere with the regular sleeping positions nor impose ad-
ditional activities. Not considering the wearable devices and camera-based vital signs mon-
itoring during sleep, this work and comparable studies such as those in [34,35,42,57–59,67]
are using the similar method of deployment for the sensors, which are under the mattress
and on the bed slatter. However, the work resolves the issue, to some extent, of unobtrusive
deployment of FSR sensors in bed and pillow cases [68].

Nonintrusiveness: complies with the privacy of the user and data. Despite of the
camera-based approaches presented in [69–71], and similar to [34,35,57–59] our work
preserves the privacy of the subject.

Complexity of the system, maintenance, and expense: includes the software and
hardware implementation mechanism which deals with several sensors, construction of
the sensors’ net, readout, communication, deployment, and operation. It will impact the
user-friendliness of the system, instructions for use, and cost, but not limited to these. The
expense of the system is a consequence of implementation and configuration, material and
sensors, processing box, embedded system, and the need for calibration and re-calibration
at the maintenance stage. Among other things, this is the highlight of our system which,
compared to the work in [42,44,55,62], reduces the complexity of sensor net, readout,
processing time, deployment, and communication and, unlike the fiber-based sensors, is
affordable and does not need complex instructions for use. In addition, due to the simplicity
of the system, if required a sensor could be substituted with another by the user.

4.3. Limitations

However, it should be noted that we measured the healthy subjects with regular
cardiorespiratory parameters. Patients with irregular patterns might demand altered
bandwidth frequency. In addition, even though we covered a wide range of HR from 48 to
108 and RR from 8 to 23, the system needs to be evaluated with subjects different than to
range. In-depth diaphragm or thoracic breathing could be an influencing factor in the final
system evaluation that requires further investigation.
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5. Conclusions

We designed, developed, and tested a noninvasive, low-cost, simplified, and user-
friendly in-home continuous cardiorespiratory system using FSR strip sensors. This pre-
liminary study indicated that increasing the sensitivity of traditional mechanical sensors
followed by signal processing can contribute to detecting slight cardiac and respiration
activity and, therefore, estimating the heart rate and respiration rate. Using the FSR strip
sensors, we could improve the reliability and accuracy of the system to as small as errors of
2.32 and 3.24 for respiration and heart rate, respectively (reflected in the results of sensors
delivering less error). In the RR estimation of all subjects in all positions, Se1 and Se2 deliv-
ered an average MAE of 2.32 and 2.83, respectively. The average MAE of RR estimation
for Se1 and Se2 was 2.33 and 2.77 for females, and 2.32 and 2.86 for males, respectively.
In HR estimation of all subjects and positions, Se1 and Se2 delivered an average MAE of
3.24 and 3.67, respectively. These results for females were 2.68 and 3.94, and for males,
they were 3.47 and 3.55, respectively. In addition, we could decrease the system’s depen-
dency on the sleeping positions for heart rate and respiration rate to as small as 0.62 and
0.48, respectively. Our study showed that designing an optimized system with minimal
deployed sensors is feasible for measuring both males’ and females’ heart and respiration
rates from the thoracic region. We observed fewer errors during the heart rate measurement
for females than males. In addition, we could find the correlation between the weight and
cardiorespiratory results obtained from the thoracic region in females, which is reflected in
the results, and justified by the body surface and physical differences in the chest region.
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