

 sensors-23-03963

sensors-23-03963

Sensors 2023, 23(8), 3963; doi:10.3390/s23083963

Article

Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution

Ying Shen[image: Orcid], Weihuang Zheng, Feng Huang *, Jing Wu and Liqiong Chen *

College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

*

Correspondence: huangf@fzu.edu.cn (F.H.); liqiongchen@fzu.edu.cn (L.C.)

Academic Editor: Sylvain Girard

Received: 6 January 2023 / Revised: 9 April 2023 / Accepted: 12 April 2023 / Published: 13 April 2023

Abstract

:

Deployment of deep convolutional neural networks (CNNs) in single image super-resolution (SISR) for edge computing devices is mainly hampered by the huge computational cost. In this work, we propose a lightweight image super-resolution (SR) network based on a reparameterizable multibranch bottleneck module (RMBM). In the training phase, RMBM efficiently extracts high-frequency information by utilizing multibranch structures, including bottleneck residual block (BRB), inverted bottleneck residual block (IBRB), and expand–squeeze convolution block (ESB). In the inference phase, the multibranch structures can be combined into a single 3 × 3 convolution to reduce the number of parameters without incurring any additional computational cost. Furthermore, a novel peak-structure-edge (PSE) loss is proposed to resolve the problem of oversmoothed reconstructed images while significantly improving image structure similarity. Finally, we optimize and deploy the algorithm on the edge devices equipped with the rockchip neural processor unit (RKNPU) to achieve real-time SR reconstruction. Extensive experiments on natural image datasets and remote sensing image datasets show that our network outperforms advanced lightweight SR networks regarding objective evaluation metrics and subjective vision quality. The reconstruction results demonstrate that the proposed network can achieve higher SR performance with a 98.1 K model size, which can be effectively deployed to edge computing devices.

Keywords:

lightweight image super-resolution; reparameterizable multibranch bottleneck module; PSE loss; edge computing device

1. Introduction

With the development of deep learning [1], single image super-resolution (SISR) models based on the convolutional neural network (CNN) [2] have achieved excellent performance compared to traditional interpolation methods. However, increasing network complexity is frequently used to improve reconstruction performance, making it challenging to deploy the latest super-resolution (SR) algorithms on resource-limited edge computing devices. On the one hand, although neural processor units (NPUs) optimized for neural network are common on edge computing devices, most SR networks do not consider compatibility with NPUs and hence cannot fully utilize NPUs. On the other hand, the requirement for high-resolution (HR) image processing (720 p/1080 p or higher) significantly increases memory and computational requirements. The existing SISR algorithms have very limited optimization for NPUs. Operations contained in the networks that are not supported by the NPUs will be partially processed by the CPUs or GPUs. This introduces additional data transfer costs between processors, resulting in a significant computational overhead. Therefore, there is growing interest in how to deploy SR models on resource-limited devices while improving computational efficiency.

Recently, many lightweight models have been proposed to facilitate the deployment [3,4]. Ahn et al. [5] proposed the cascading residual network (CARN), which reused information from different levels by cascading residuals, but the performance of this method significantly drops. Li et al. [6] designed a feedback network (SRFBN), which adopted a recurrent neural network structure to share the parameters of the hidden layers, but this method is not sufficiently lightweight and its performance needs further improvement. Hui et al. [7] proposed the information multidistillation network (IMDN), which employed a multiple information distillation block to distill and selectively fuse some features to compress parameters while enhancing the performance. Liu et al. [8] proposed the residual feature distillation network (RFDN), which built on IMDN by replacing all channel separation operations with 1 × 1 convolution and adding feature distillation connections to further improve the performance. These lightweight models can effectively reduce the number of parameters and floating-point operations (FLOPs). However, recent studies have shown that the number of parameters and FLOPs does not necessarily correlate positively with the performance on edge computing devices [9]. For example, residual connections and multibranch structures are commonly used in lightweight SISR tasks [10]. These operations may lead to high memory access costs, which hinder fast operation on edge computing devices. In addition, most of the existing efficient SISR networks have been evaluated for performance only on GPUs, which does not reflect their running speed on edge devices.

To minimize computational costs even more, reparameterization [11] is implemented into the SISR tasks. Zhang et al. [12] proposed an edge-oriented convolution block for real-time super-resolution (ECBSR), which provided high reconstruction quality while preserving fast inference speed by collapsing training multibranch modules into normal 3 × 3 convolutions in the inference phase. Bhardwaj et al. [13] proposed collapsible linear blocks for super-efficient super-resolution (SESR), which achieved 60 FPS reconstruction for 4K images on mobile devices by a folding network structure. However, both ECB and CLB fail to take full advantage of reparameterization and have some problems such as model overfitting, long training time, and slow convergence, which may limit the SR performance. To address these problems, we design a reparameterizable multibranch bottleneck module (RMBM) that consists of a bottleneck residual block (BRB), an inverted bottleneck residual block (IBRB), and an expand–squeeze convolution block (ESB). Based on these important components, RMBM can increase the field of perception and effectively improve model expression. RMBM accelerates the convergence of the model and solves the overfitting problem by using residual connection and normalization. Furthermore, we design a lightweight SISR model, termed the reparameterizable multibranch bottleneck network (RMBN), based on RMBM, which can reduce performance degradation caused by model quantization during deployment.

To stabilize the training and refine the parameters, SISR tasks often utilize L1 loss and L2 loss to determine the pixel disparities between the reconstructed images and ground truth. However, it has been proved that using a single loss is insufficient for accurately restoring locally varying diverse shapes in images, often generating undesirable artifacts or unnatural details [14]. To enhance the visual effect, Ledig et al. [15] proposed the super-resolution generative adversarial network (SRGAN), which used a succession of complicated losses. Nevertheless, the generative adversarial network (GAN) [16] training procedure is challenging and prone to gradient disappearance, collapse, and training instability. To address the issue of oversmoothed SR images, we introduce a simple but efficient peak-structure-edge (PSE) loss in this work. This new loss allows the network to concentrate more on the recovery of high-frequency texture details.

The main contributions of this work can be summarized as follows:

	(1)

	
We propose a lightweight image SR network, named RMBN, which uses the residual learning of image dimension and feature dimension to make the network focus on recovery of high-frequency information. Additionally, by adding constrained activation, the performance degradation of the uint8 model is decreased. The deployment SR network can run efficiently and stably on the edge device equipped with the rockchip neural processor unit (RKNPU).

	(2)

	
We propose RMBM to improve the expressiveness of the model by increasing the width and depth of the network during the training phase. In the deployment phase, RMBM is equivalently transformed into a simple convolutional layer using reparameterization to reduce the number of parameters.

	(3)

	
We propose a novel PSE loss that takes into account the recovery of both global and edge information and achieves better balance between perception quality and objective evaluation metrics.

The rest of this work is organized as follows. In Section 2, related works concerning CNN-based SISR methods and structure reparameterization are summarized. We also introduce model optimization in the same section. In Section 3, the network structure is proposed and the process of reparameterization is mentioned. Section 4 details the experimental results of the proposed method and compares it with state-of-the-art methods in natural image datasets and remote sensing image datasets. At last, the conclusions are drawn in Section 5.

2. Related Work

2.1. Single Image Super-Resolution

In a pioneer work, Dong et al. [17] proposed a shallow super-resolution CNN (SRCNN), which consisted of three layers of convolutional neural network and was used to perform end-to-end learning of image super-resolution. This approach showed outstanding performance compared to conventional solutions. Kim et al. [18] proposed very deep super-resolution (VDSR), which applied a residual learning strategy to SISR by increasing the network depth. Shi et al. [19] proposed an efficient subpixel convolutional neural network (ESPCN), which produced the subpixel operation, which is a learnable upsampling layer. Inspired by ESPCN, increasingly excellent SISR networks were proposed. Lim et al. [20] proposed an enhanced deep super-resolution network (EDSR), which integrated the modified residual blocks, considerably improving SISR performance. Other works, such as enhanced super-resolution generative adversarial network (ESRGAN) [21], persistent memory network (MemNet) [4], and residual dense network (RDN) [22], explored dense connectivity by using all features of the convolutional layers. Although these methods achieved significant performance, they were costly in memory consumption and computational complexity, limiting their applications on edge computing devices. Some recent SISR networks focus on the tradeoff between performance and complexity. CARN [5] used group convolution to make image SISR networks lightweight and efficient. Hui et al. [23] designed an information distillation network (IDN), which proposed a residual feature distillation structure for better exploiting hierarchical features. IMDN [7] improved IDN by using a channel-splitting strategy in an information multidistillation block. RFDN [8] rethought the channel splitting operation and introduced the progressive refinement module as an equivalent architecture. Different from other models, the linearly assembled pixel-adaptive regression network (LAPAR) [24] transformed SISR tasks to linear regression tasks for multiple base filters. Luo et al. [25] designed the lattice block network (LatticeNet), which used a lattice filter based on the butterfly structure and applied reverse fusion strategy to extract hierarchical context information. These works maintained good tradeoff between performance and model complexity on GPUs, but their performance on edge computing devices has to be studied further. Herein, we propose a single-branch deployment network consisting of simple operators that are suitable for most edge computing devices and can be run efficiently on NPUs.

2.2. Structure Reparameterization

The asymmetric convolution block network (ACNet) [11] was the first to apply the concept of structure reparameterization. It refers to the methodology that parameterizes a structure with the parameters transformed from another structure. Ding et al. [26] introduced a convolutional neural network architecture termed RepVGG, which was similar to the very deep convolutional network (VGG) [27]. It employed reparameterization to decouple the multibranch topology and the plain architecture, resulting in good speed–precision tradeoff in image classification. Zhang et al. [28] further extended RepVGG by combining multiple branches of different sizes and complexity to enrich feature spaces, including convolution sequences, multiscale convolution, and mean pools. Benefiting from the advantages of reparameterization, some works have successfully introduced it into SISR tasks. ECBSR [12] proposed an edge-oriented convolution block (ECB) that comprises four types of carefully designed operators to extract edge and texture details more effectively. SESR [13] designed a collapsible linear block (CLB), which consists of a series of linear convolutions that can be jumbled and merged in the inference phase. SESR achieved good balance between reconstruction image quality and computational complexity. However, as the depth of the network based on reparameterization has increased, problems such as slow training and overfitting have arisen. Therefore, we add residual connection and normalization to the multibranch structure to solve these problems.

2.3. Model Optimization

In computer vision tasks, a loss function is used to calculate and describe the gap between the prediction result and the ground truth, and this gap is quantified by the loss function to judge the degree of prediction error. Therefore, choosing an appropriate loss helps to obtain better results. Previous works on SISR tasks have tended to optimize network parameters through L1 and L2 losses [7]. However, some researchers found that using these losses alone may result in fuzzy and oversmoothed reconstructed images [14]. Therefore, a variety of special losses are proposed for SISR tasks. Feature reconstruction loss [29] was proposed to encourage the network to generate reconstructed images that are more similar to the ground truth in perception. The Laplacian pyramid network (LapSRN) [14] is applied the Charbonnier loss to improve the robustness of the deep SR network, which can better handle outliers. SRGAN [15] employed the perceptual loss, including content loss and adversarial loss, to make results more photorealistic. The u-shaped residual network (URNet) [30] uses a high-frequency loss design to alleviate the problem of oversmoothed SR images. In this work, we propose an efficient visual perceptual enhancement loss that is effective in improving the structural similarity of SR images.

3. Method

In this section, we first describe the overall structure of our proposed network. Then, we describe the structure of the reparameterizable multibranch bottleneck module and the process of reparameterization, respectively. Finally, we introduce the proposed PSE loss in detail, including the composition and the computation.

3.1. Network Structure

As shown in Figure 1, the proposed reparameterizable multibranch bottleneck network (RMBN) consists of three parts: the shallow feature extraction module (SFEM), the deep feature extraction module (DFEM), and the image reconstruction module (IRM). SFEM is used to extract the shallow feature information of the input LR image. To further extract the rich high-frequency information, the shallow feature information is further parsed by a cascaded reparameterizable multibranch bottleneck module (RMBM) in DFEM. IRM processes the deep feature information to obtain the reconstructed SR image. The deployment network (d-RMBN), as illustrated in Figure 2, reduces the number of parameters and computation by replacing the RMBM with a simple 3 × 3 convolutional layer. It can be efficiently deployed for edge computing devices.

We use a 3 × 3 convolutional layer to extract shallow features. SFEM takes advantage of the fact that convolutional layers are good at extracting features to transform the LR image into high-dimensional shallow feature maps and filter out some of the low-frequency information. The process is expressed as follows:

 M 0 = H S F E M I L R ,

(1)

where I LR denotes the low-resolution (LR) image, and H SFEM (·) denotes the shallow feature extraction module. M 0 denotes the shallow feature maps.

The shallow feature maps are fed into the DFEM to extract deeper and more abstract high-level features in order to obtain high-frequency information. The process is expressed as follows:

 M D F = H D F E M M 0 ,

(2)

where H DFEM (·) denotes the deep feature extraction module, and M DF denotes the deep feature maps. DFEM consists of multiple cascaded reparameterizable multibranch bottleneck modules (RMBMs) and PReLU activation [31], which can be equivalently converted to cascaded 3 × 3 convolutional layers and PReLU activation in the deployment phase. The PReLU activation introduces an implicit nonlinearity to the RMBM module, allowing the optimization of the model to better achieve local minima and improve the stability and convergence of the training process. The RMBM can effectively extract detailed information for the SISR tasks and enhance the cross-channel learning capability of the network.

After the deep feature extraction module, we use IRM to fuse the shallow feature maps, deep feature maps, and image dimensional feature maps composed of LR images. We also perform upsampling operations by rearranging channel features into spatial dimensions using a subpixel convolution layer, which is expressed as follows:

 H I R M = f u p f 3 × 3 M D F + M 0 + I ˙ L R ,

(3)

 I S R = H I R M M D F + M 0 + I ˙ L R ,

(4)

where H IRM (·) denotes the image reconstruction module, and f up (·) denotes the sub-pixel convolutional layer function; f 3 × 3 (·) denotes the 3 × 3 convolutional layer function, and I ˙ LR denotes the image dimensional feature maps. I SR represents the output images.

The shallow feature maps mainly contain the low-frequency information represented by the background, while the deep feature maps include the high-frequency details, such as edges and contours required for the SR. The network can transfer low-frequency information directly to the IRM via residual learning of feature dimension and image dimension. This helps the DFEM to focus on recovering high-frequency information and to reduce the difficulty of network training.

SISR networks generally employ linear output of floating-point data with no data range constraints. These networks are prone to lose some important information when quantizing uint8, resulting in dull colors and severe degradation in the SR images. In this work, we add the constrained activation function (Clipped ReLU) to the output of the model and reduce performance degradation by restricting the output pixel values to the range 0–255. The process is expressed as follows:

 C l i p p e d R e L U (x) = m a x (0 , m i n (x , 255)) ,

(5)

where max (·) denotes the maximum value, and min (·) denotes the minimum value.

3.2. Reparameterizable Multibranch Bottleneck Module

ECB [12] contains a single 3 × 3 convolutional layer branch and three edge detection operator branches. The edge detection operator branches are trained by predefined templates and given learnable scaling weights, which are equivalent to depthwise convolution and prolongs part of the training time. The learning ability of a single learnable scaling weight is insufficient and the extracted edge information is limited for complex scenes. The simple structure of a single 3 × 3 convolutional layer branch does not fully exploit the advantages of reparameterization. Inspired by ECB, we remove the these branches and design a new reparameterizable multibranch bottleneck module (RMBM) based on the reparameterization. Different from RepVGG [26] and the diverse branch block (DBB) [28], we introduce the bottleneck structure and the inverted bottleneck structure to the RMBM during the training phase, which allows the model to extract multiscale features by scaling the channel dimensions. Moreover, we replace the normalization in the structure, making the module more beneficial for SR tasks. As shown in Figure 3, RMBM is primarily composed of bottleneck residual blocks (BRB), inverted bottleneck residual blocks (IBRB), and expand–squeeze convolution blocks (ESB). It can extract edge and high-frequency texture details for SISR tasks more effectively, improve the feature representation capability, and shorten the training time for the network. Each component and its function are described below:

The BRB consists of two 1 × 1 convolutional layers, a 3 × 3 convolutional layer, and a residual connection. First, the 1 × 1 convolutional layer is employed to reduce the feature maps channel by half in order to achieve cross-channel interaction and information fusion. The 3 × 3 convolutional layer, which has a larger perceptual field than the 1 × 1 convolutional layer, is then utilized to extract the low-dimensional deep features. Finally, we apply the 1 × 1 convolutional layer to increase the feature maps. The BRB makes good use of the small number of parameters and low computational complexity of the 1 × 1 convolutional layer, and it improves the computational efficiency of the 3 × 3 convolutional layer while using the internal residual connection to effectively avoid gradient disappearance and explosion. The BRB can be expressed as follows:

 F B R B = K S 1 ∗ I N K 3 ∗ K F 1 ∗ X + B F 1 + K F 1 ∗ X + B F 1 + B S 1 ,

(6)

where ∗ denotes the convolution operation, and K F 1 , B F 1 , respectively, represent the weight and bias of the first 1 × 1 convolution layer. K S 1 , B S 1 , respectively, denote the weight and bias of the second 1 × 1 convolution layer, and K 3 denotes the weight of the 3 × 3 convolution layer. IN (·) denotes the instance normalization, and F BRB denotes the output of the BRB.

A wider range of features can significantly improve model representation and contribute to better performance on SISR tasks [32]. The reduced dimensionality of BRB may not be sufficient to retain sufficient high-frequency information. We design IBRB to expand the channel of the feature maps twice and three times using the first 1 × 1 convolutional layer, which enables the network to learn deeper features. IBRB improves the utilization of features and the representation capability of the network, and helps the information flow and gradient back-propagation of the network. The simple composition of IBRB and BRB reduces memory requirements and is suitable for most deep learning training frameworks, as well as being easily applied to edge computing devices. The process of IBRB is consistent with Equation (6).

Firstly, the feature maps channel is expanded to double and triple by a 1 × 1 convolution layer, which is compressed to the original by a 3 × 3 convolution layer to better learn the interrelationship between features. ESB further enhances the capability of feature extraction for RMBM. It can be expressed as follows:

 F E S B = I N K 3 ∗ K 1 ∗ X + B 1 ,

(7)

where K 1 , B 1 , respectively, denote the weight and bias of 1 × 1 convolutional layers. K 3 denotes the weight of 3 × 3 convolutional layers, and F ESB denotes the output of the ESB.

After multibranch fusion, the final RMBM output can be expressed as follows:

 F = F B R B + F I B R B + F E S B ,

(8)

As the network deepens, some models use batch normalization (BN) [33] to mitigate the covariance drift within the model. Owing to the variability in different image patches within each batch and the different configurations of training and testing, BN is not common in low-level vision tasks, especially for SISR tasks. It tends to produce block artifacts in SR results. Inspired by HINet [34], we add instance normalization (IN) [35] after the 3 × 3 convolutional layers in the above module to solve the overfitting problem caused by the overdepth network. IN also speeds the training and convergence of the network and prevents gradient explosion and disappearance. IN is a nonlinear operator in the training phase, which normalizes the feature mapping and contains learnable parameters to participate in the back-propagation computation. In the inference phase, IN becomes a linear operator that uses the parameters obtained during training to merge the 3 × 3 convolutional layers into a single 3 × 3 convolutional layer to reduce the number of parameters and the computational effort of the network.

3.3. Reparameterization

After the network training is completed, the RMBM can be reparameterized to equivalently transform the training model into a single-branch deployment model. The following describes the reparameterization method.

For ESB, the 1 × 1 expanded convolutional layer, 3 × 3 squeezed convolutional layer, and IN can be equivalently transformed into a single 3 × 3 convolutional layer by the following equations:

 K ¯ 3 = γ σ 2 + ϵ ⋅ K 3 ,

(9)

 B ¯ 3 = − γ ⋅ μ σ 2 + ϵ + β ,

(10)

 K n 3 = K ¯ 3 ∗ p e r m K 1 ,

(11)

 B n 3 = K ¯ 3 ∗ r e p B 1 + B ¯ 3 ,

(12)

where μ , σ , γ , β denote the mean, variance, scale factor, and offset factor of IN, respectively; ϵ denotes the constant 10 − 5 , and K ¯ 3 , B ¯ 3 , respectively, denote the weight and bias of 3 × 3 convolutional layers after merging IN with 3 × 3 squeezed convolutional layers; perm (·) denotes the first and second dimensions of the exchange tensor K 1 , and rep (·) denotes the broadcast operation; K n 3 , B n 3 denote the weight and bias of the 3 × 3 convolutional layers after merging the ESB.

For BRB and IBRB, the reparameterization process is shown in Figure 4. First, the transformation from (a) to (b) is achieved by repeating Equations (9)–(12) and combining the IN and the 3 × 3 convolutional layer into a single 3 × 3 convolutional layer. Then, the internal residual connection is replaced by a 3 × 3 convolutional layer with the center weight of the i-th channel of the i-th convolutional kernel being one and the rest being zero. Finally, the transformation from (b) to (c) is achieved by adding the weight and bias of the replaced 3 × 3 convolutional layer and the single 3 × 3 convolutional layer, respectively, which is calculated as follows:

 K 3 = K ¯ 3 + K r 3 ,

(13)

 B 3 = B ¯ 3 + B r 3 ,

(14)

where K r 3 , B r 3 denote the weight and bias of the 3 × 3 convolutional layers replacing the residual connection; K 3 ˙ , B 3 ˙ denote the weight and bias of the 3 × 3 convolutional layers after merging the residual connection and the 3 × 3 convolutional layers, respectively. The transformation from (c) to (e) can be achieved by repeating the ESB equivalent transformation process twice.

After the above equivalent transformation, multibranches containing only a single 3 × 3 convolutional layer can be obtained. Since the multibranch module has only convolution before going through the PReLU activation [31], the five branches of convolutional layers can be combined into a single 3 × 3 convolutional layer by exploiting the additivity of convolution, which is computed as follows:

 K R M B M = K 1 + … + K i (i = 1 , 2 , … , 5) ,

(15)

 B R M B M = B 1 + … + B i (i = 1 , 2 , … , 5) ,

(16)

where K i , B i denote the weight and bias of the i-th branch 3 × 3 convolutional layer, and K RMBM , B RMBM denote the weight and bias of the 3 × 3 convolutional layer obtained from RMBM equivalent transformation.

3.4. Loss Function

Using only L1 or L2 loss leads to SR images that lack high-frequency detail and present unsatisfactory results with oversmoothed texture. Therefore, we propose a novel PSE loss, which consists of common objective evaluation metrics for SISR tasks (peak signal-to-noise ratio [36], structural similarity [37] and edge loss [38]). We design the loss function from the perspective of improving the evaluation metrics of the reconstructed images. Considering that the loss function always tends to be decreasing, we utilize the calculation of (1-SSIM) in the numerator and PSNR in the denominator to satisfy the requirement. During the training process, we found that there existed a very small value of PSNR, which made the calculation of (1-SSIM)/PSNR not appear as a number (NaN). Therefore, a value was needed to be added to the denominator to stabilize the loss calculation. Further, we found that adding a SSIM calculation can improve the metrics better than adding a tiny fixed value, especially for the SSIM metric. Then, inspired by [38], we also added edge loss to the final loss function to further enhance the model’s ability to extract edge features. It is simple to compute without additional learnable parameters, which are calculated as follows:

 L P S C = 1 − S S I M (X , Y) P S N R (X , Y) + S S I M (X , Y) + α L E d g e ,

(17)

where X , Y denote the SR image and the ground truth, respectively; SSIM (·) denotes the calculated structural similarity, and PSNR (·) denotes the calculated peak signal-to-noise ratio; α denotes the weight parameter, which is empirically set to 0.05 to balance the loss term; L Edge denotes the variant Charbonnier loss [14], which is calculated as follows:

 L E d g e = ∥ Δ (X) − Δ (Y) ∥ 2 + ε 2 ,

(18)

where Δ (·) is the Laplace operator, and ε denotes the constant 10 − 3 .

4. Experiments

4.1. Datasets and Metrics

In this work, 3450 images from the DIV2K dataset [39] and Flicker2K [40] are used to train the network, and five standard benchmark datasets, including Set5 [41], Set14 [42], BSD100 [43], Urban100 [44], and DIV2K [39], are used to test the performance of the model. Various data augmentation methods are used to increase the size of the dataset during training, including random horizontal flip, random vertical flip, and random 90° rotation. In line with previous SISR algorithms, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are employed as metrics to assess network performance. SR images are first converted from RGB to YCbCr color space, and the luminance component (Y) is taken to calculate the evaluation metric uniformly.

4.2. Implementation Details

We use the Adam [45] optimizer for training, where the optimizer parameters are β 1 = 0.99 , β 2 = 0.999 , and ε = 10 − 8 . The training process is divided into two stages and the optimizer parameters are kept consistent. The first stage lasts 800 epochs, the learning rate is initialized to 5 × 10 − 4 , and shrinks by half after every 200 epochs. In the first stage, 64 randomly cropped 64 × 64 patches from the LR images are used as the batch size for training. The L1 loss is used for the first stage of training. The second stage lasts for 200 epochs, and the network is trained using the proposed PSE loss based on the first stage pretraining model with a batch size of 16 image patches of 128 × 128. The learning rate is initialized to 5 × 10 − 4 and remains constant in the second stage. The networks are trained and tested on four NVIDIA GTX 3090 GPUs using the Pytorch 1.7.0 framework.

Similar to ECBSR [12], we set up RMBN with several groups of different sizes, including RMBN-M4C8, RMBN-M4C16, RMBN-M10C16, RMBN-M10C32, and RMBN-M16C64, where M denotes the number of RMBMs and C denotes the number of intermediate feature map channels.

4.3. Ablation Studies

To analyze the impact of the three blocks in RMBM, we conduct experiments on five standard benchmark datasets. The baseline network uses the modules containing five 3 × 3 convolutions without channel scaling operation. All models are trained from scratch using the same setting. As shown in Table 1, the performance of the base network can be improved by using any of the three components, and is further improved when the different components are stacked. When all three components are used simultaneously (0.32 dB improvement in PSNR value on the Set5 dataset), the performance reaches the highest. These results show that RMBM can make full use of the correlation between feature maps to facilitate the flow of information and make the network give more attention to the high-frequency texture details.

To verify the effectiveness of the constrained activation, two sets of comparison experiments are conducted to analyze the performance of the networks before and after quantization. We test the running time when the LR images are scaled to 1280 × 720 pixels on the edge computing device. As shown in Table 2, the PSNR value of the floating-point model decreases severely after uint8 quantization without using the constraint activation, especially on the Set14 dataset, which reaches 1.59 dB. However, the performance decreases by only 0.27 dB after using the constraint activation and increases only a few NPU running times (0.002 s). The experimental results show that constraint activation reduces the performance degradation caused by model quantization, making the SR results more suitable for network deployment.

As shown in Table 3, we design two sets of comparison experiments to prove the effectiveness of the feature dimension residual learning (FDRL). In addition, the performance of the prequantization and postquantization networks is also compared. We can see that the floating-point model with FDRL outperforms the one without it, and the NPU running time increases by only 0.001 s. The floating-point model without FDRL has significant performance degradation when quantizing uint8, which reaches 0.86 dB on the Set5 dataset. The experimental results show that FDRL can deliver more effective information deeper into the network and increase the usage of shallow features. FDRL can also reduce the loss of low-frequency information, and improve the model performance while reducing the degradation of performance during model quantization.

In order to verify the effectiveness of the PSE loss, we run comparison experiments between training all epochs with L1 or L2 loss only and training all epochs with combined L1 and PSE losses. As shown in Table 4, without any additional parameters, the PSE loss can improve the performance of the network. In particular, the SSIM metric increases the most, which is sensitive to human eyes, reaching 0.0038 on the Urban100 dataset. The results show that the proposed PSE loss takes the human visual system into account and significantly increases expression ability and network performance.

4.4. Comparison with State-of-the-Art Methods

In this work, we validate the proposed network SR performance on five standard benchmark datasets with upsampling scales of ×2 and ×4. The objective evaluation metrics and subjective visual effects of RMBN and some representative lightweight SISR models are compared, including bicubic; SRCNN [17]; fast super-resolution CNN (FSRCNN) [46]; ESPCN [19]; VDSR [18]; LapSRN [28]; fast, accurate, and lightweight super-resolution (FLASR) [47]; CARN-M [5]; IMDN [7]; ECBSR [12]; RFDN [8]; LatticeNet [25]; etc.

4.4.1. Quantitative Results

Table 5 and Table 6 summarize the performance comparisons of different SISR networks on the five benchmark datasets. The implementation of the comparison algorithms is taken from the authors’ publicly available source code, and the comparison data used the results of other networks from published papers [16]. In addition to the PSNR/SSIM metrics, these tables also show the number of parameters and the computation for a more comprehensive comparison. The FLOPs are calculated when the images are upsampled to 1280 × 720 pixels.

As shown in Table 5 and Table 6, our networks achieve the best objective evaluation metrics at all scales. RMBN-M4C8 is the smallest network in this work, which achieves better performance than SRCNN [17] and ESPCN [19], while reducing the number of parameters by a factor of 12 and 10, and the FLOPs by a factor of 92 and 9, respectively. RMBN-M4C8 and ECBSR-M4C8 [12] have the same number of parameters and computational effort, but we obtain higher objective evaluation metrics. Similarly, RMBN-M4C16, RMBN-M10C16, and RMBN-M10C32 significantly outperform other comparative networks, and the balance between the number of model parameters and FLOPs. In this work, we also compare RMBN extended to M16C64 with some more complex SISR networks, such as IMDN [7], LAPAR-A [24], and LatticeNet [25]. RMBN-M16C64 significantly reduces the computational complexity and has better performance. Compared with RFDN [8], RMBN-M16C64 achieves better performance with an average improvement of 0.1 dB in PSNR over the five benchmark datasets, which fully exploits the advantages of the reparameterization. In particular, the significant improvement on the Urban100 dataset, which contains richer structural texture information, demonstrates that the proposed network is able to reconstruct more texture details than other comparison networks. As shown in Figure 5, the proposed RMBN achieves better tradeoff between the performance of image SR and model complexity than other advanced lightweight models on the BSD100 dataset.

4.4.2. Qualitative Results

Considering the effect of the parameter number on performance, we select RMBN-M16C64 to compare the ×2 and ×4 SR subjective visual effects with other lightweight SISR networks on the Set14, BSD100, and Urban100 datasets (see Figure 6, Figure 7, Figure 8 and Figure 9). The compared SR images are locally cropped and enlarged for observation.

It can be observed that most contrast networks produce blurred and inaccurate edge and texture details (see board stripes in Figure 7 and railing stripes in Figure 8), while RMBN can mitigate the ringing phenomenon and recover more accurate and sharper edge details. Some comparison networks (e.g., IMDN [7], ECBSR-M16C64 [12]) reconstruct images with the opposite texture orientation of the building as the ground truth, and even produce severe artifacts (see the book edges in Figure 6 and the target board stripes in Figure 9). While the RMBN-M16C64 correctly recovers the main structures, especially for regular structural patterns and text information, more high-frequency texture details are reconstructed, making the edges and contour features more visible (see the letters in Figure 6 and the glass window in Figure 9). These observations show that the proposed network is capable of recovering the edge information. The proposed PSE loss is used to improve the SR performance by fully considering the high-frequency texture information, solving the problem of oversmoothed SR images and enhancing the realism of results.

4.5. Edge Device Performance

We further test the running time of the network on edge devices since the number of parameters and FLOPs are unable to reflect the model’s inference speed. We also compare the performance of several representative lightweight SISR networks after uint8 quantization on the same device. As can be seen from Table 7 for scaling the image ×4 to 1280 × 720 pixels, common lightweight networks such as FSRCNN [46] and IMDN-RTC [7] fail to realize real-time inference on the edge devices. Furthermore, RMBN-M10C32 achieves real-time image SR with the lowest guaranteed accuracy loss and the highest evaluation metrics (running time of 0.032 s) after model quantization. Compared to RFDN [8], which utilizes an attention mechanism, the proposed network achieves better performance while reducing the inference time by a factor of five. It demonstrates that a network containing only 3 × 3 convolutional layers and activation is more suitable for deployment in edge computing devices. Compared to ECBSR-M10C32 [12] with the same model size, RMBN-M10C32 only increases the running time slightly, but obtains a 0.97 dB improvement in PSNR value on the Set14 dataset. These results show that RMBN achieves good balance between performance, parameters, and computational complexity, which is more favorable for network deployment.

4.6. Remote Sensing Image Super-Resolution

Since the remote sensing images have complex scenes and massive background information, more attention to useful information is needed in SR reconstruction [48]. Moreover, remote sensing images are generally high resolution, making SR reconstruction more difficult.

To demonstrate the effectiveness of the proposed network, we train and test it on public remote sensing datasets. UC-Merced [49] is a remote sensing image dataset used for land-use research, with 21 categories, each with 1000 images of 256 × 256 pixels. We randomly select 40 images from each category, obtain LR images by bicubic downsampling, and use these 840 pairs of images as the training dataset. The NWPU45 [50] dataset is a large-scale public dataset for remote sensing image scene classification, containing 45 categories of scenes, and the sample of each category contains 700 images with 256 × 256 pixels. AID [51] is an aerial image dataset, which consists of 30 types of aerial scenes, with 10,000 images in each scene. The above datasets have the characteristics of large scale and rich information. We randomly select 100 remote sensing images from the NWPU45 and AID datasets, respectively, and also use bicubic downsampling to obtain LR images for testing the network. We fine-tune our model with the proposed PSE loss based on the natural image training, which lasts 200 epochs with a learning rate of 5 × 10 − 4 and a batch size of 64. To ensure fairness, we use the same training strategy to fine-tune the comparison algorithms for training remote sensing images as their papers.

Table 8 shows the quantitative results of the representative SR methods on remote sensing datasets. We can notice that the proposed RMBN-M16C64 has the highest PSNR and SSIM on these two datasets, with an average PSNR improvement of 0.15 dB over RFDN [8]. The low-level feature information from the natural image dataset is allowed to be shared with the remote sensing datasets by employing the pretraining strategy, resulting in better performance. The results of the experiments reveal that our network is more general and capable of capturing useful information in complex backgrounds. Using the PSE loss, the network can effectively extract texture details from remote sensing images and obtain SR images with higher quantitative metrics.

To fully demonstrate the effectiveness of our network, we also show the ×4 SR visual results for the NWPU45 and AID datasets in Figure 10 and Figure 11. It can be observed that our network is more advantageous in recovering remote sensing images with more texture details, especially for lines and repetitive structures (see the court in Figure 10 and the top of the building in Figure 11). Other contrast algorithms are prone to produce artifacts and blending when recovering remote sensing images with complex backgrounds, while our network can effectively reduce the blur (see the boat in Figure 10 and the house in Figure 11) and reconstruct more edge details.

5. Conclusions

In this work, we propose a new lightweight SISR network named RMBN to solve the problems of high computational complexity and large model size of existing CNN-based SISR algorithms for edge computing devices. Specifically, we design a reparameterizable multibranch bottleneck module (RMBM) to separate the training phase from the deployment phase by using the reparameterization. In the training phase, RMBM can fully utilize and fuse features of different widths and depths based on the multibranch structure. In the inference phase, the RMBM is collapsed by reparameterization, which reduces the number of parameters while increasing the inference speed. In addition, we propose a novel PSE loss for SISR tasks, making the network focus on recovering high-frequency details while alleviating the problem of oversmoothed images. Numerous experimental results show that the proposed network can improve visual perception and enhance high-frequency information such as edges and textures. By using constrained activation, the network significantly reduces performance degradation when deployed to edge computing devices. In comparison to advanced algorithms, RMBN achieves a better balance of reconstruction performance, model complexity, and inference speed. In the future, we intend to further reduce the size and calculation complexity of the training model to reduce the training time of the network.

Author Contributions

Conceptualization, Y.S.; formal analysis, J.W.; methodology, Y.S., W.Z. and F.H.; resources, J.W.; software, W.Z. and L.C.; validation, L.C.; writing—original draft, W.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported in part by the Nature Science Foundation of Fujian Province (No. 2022J05113).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Publicly available datasets were analyzed in this study. Our training set DIV2K can be obtained from: https://data.vision.ee.ethz.ch/cvl/DIV2K/ (accessed on 18 October 2021). The URLs of test sets Set5, Set14, BSD100, and Urban 100 are available online at: https://sites.google.com/site/romanzeyde/research-interests (accessed on 18 October 2021); https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (accessed on 18 October 2021); https://sites.google.com/site/jbhuang0604/publications/struct_sr (accessed on 18 October 2021). The super-resolution algorithm codes are available online at: https://github.com/zwh001zwh/RMBN (accessed on 10 March 2023).

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]

	

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]

	

Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]

	

Tai, Y.; Yang, J.; Liu, X.; Xu, C. Memnet: A persistent memory network for image restoration. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4539–4547. [Google Scholar]

	

Ahn, N.; Kang, B.; Sohn, K.A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]

	

Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3862–3871. [Google Scholar]

	

Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]

	

Liu, J.; Tang, J.; Wu, G. Residual Feature Distillation Network for Lightweight Image Super-Resolution. In Proceedings of the European Conference on Computer Vision AIM Workshops, Glasgow, UK, 23–28 August 2020. [Google Scholar]

	

Vasu PK, A.; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. An improved one millisecond mobile backbone. arXiv 2022, arXiv:2206.04040. [Google Scholar]

	

Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H.; Shao, L. Multi-stage progressive image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 14821–14831. [Google Scholar]

	

Ding, X.; Guo, Y.; Ding, G.; Han, J. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1911–1920. [Google Scholar]

	

Zhang, X.; Zeng, H.; Zhang, L. Edge-oriented convolution block for real-time super resolution on mobile devices. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 4034–4043. [Google Scholar]

	

Bhardwaj, K.; Milosavljevic, M.; O’Neil, L.; Gope, D.; Matas, R.; Chalfin, A.; Suda, N.; Meng, L.; Loh, D. Collapsible linear blocks for super-efficient super resolution. Proc. Mach. Learn. Syst. 2022, 4, 529–547. [Google Scholar]

	

Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 624–632. [Google Scholar]

	

Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5892–5900. [Google Scholar]

	

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 2, 2672–2680. [Google Scholar]

	

Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar] [CrossRef]

	

Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 60, pp. 1646–1654. [Google Scholar]

	

Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super resolution using an efficient subpixel convolutional neural network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883. [Google Scholar]

	

Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]

	

Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]

	

Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2480–2495. [Google Scholar] [CrossRef] [PubMed]

	

Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 723–731. [Google Scholar]

	

Li, W.; Zhou, K.; Qi, L.; Jiang, N.; Lu, J.; Jia, J. Lapar: Linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond. Adv. Neural Inf. Process. Syst. 2020, 33, 20343–20355. [Google Scholar]

	

Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y. LatticeNet: Towards Lightweight Image Super-resolution with Lattice Block. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020. [Google Scholar]

	

Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 13733–13742. [Google Scholar]

	

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]

	

Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse branch block: Building a convolution as an inception-like unit. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 10886–10895. [Google Scholar]

	

Justin, J.; Alexandre, A.; Li, F.-F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711. [Google Scholar]

	

Wang, Y.; Zhao, L.; Liu, L.; Hu, H.; Tao, W. URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution. Remote Sens. 2021, 13, 3848. [Google Scholar] [CrossRef]

	

He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]

	

Cai, Y.; Gao, G.; Jia, Z.; Lai, H. Image Reconstruction of Multibranch Feature Multiplexing Fusion Network with Mixed Multilayer Attention. Remote Sens. 2022, 14, 2029. [Google Scholar] [CrossRef]

	

Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]

	

Chen, L.; Lu, X.; Zhang, J.; Chu, X.; Chen, C. Hinet: Half instance normalization network for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 182–192. [Google Scholar]

	

Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]

	

Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]

	

Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2366–2369. [Google Scholar]

	

Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Huang, B.; Luo, Y.; Jiang, J. Multi-scale progressive fusion network for single image deraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 8346–8355. [Google Scholar]

	

Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.H.; Zhang, L. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 114–125. [Google Scholar]

	

Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Tan, M. Closed-loop matters: Dual regression networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5407–5416. [Google Scholar]

	

Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 2012 British Machine Vision Conference, Surrey, UK, 3–7 September 2012. [Google Scholar]

	

Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 23–24 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]

	

Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed]

	

Gao, X.; Lu, W.; Tao, D.; Li, X. Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 2009, 18, 1409–1423. [Google Scholar] [PubMed]

	

Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]

	

Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]

	

Chu, X.; Zhang, B.; Ma, H.; Xu, R.; Li, Q. Fast, accurate and lightweight super-resolution with neural architecture search. In Proceedings of the 2020 25th International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021; pp. 59–64. [Google Scholar]

	

Liu, B.; Zhao, L.; Li, J.; Zhao, H.; Liu, W.; Li, Y.; Wang, Y.; Chen, H.; Cao, W. Saliency-Guided Remote Sensing Image Super-Resolution. Remote Sens. 2021, 13, 5144. [Google Scholar] [CrossRef]

	

Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]

	

Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]

	

Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]

[image: Sensors 23 03963 g001 550]

Figure 1. The training structure of the reparameterizable multibranch bottleneck network (t-RMBN).

Figure 1. The training structure of the reparameterizable multibranch bottleneck network (t-RMBN).

[image: Sensors 23 03963 g001]

[image: Sensors 23 03963 g002 550]

Figure 2. The deployment structure of the reparameterizable multibranch bottleneck network (d-RMBN).

Figure 2. The deployment structure of the reparameterizable multibranch bottleneck network (d-RMBN).

[image: Sensors 23 03963 g002]

[image: Sensors 23 03963 g003 550]

Figure 3. The structure of the reparameterizable multibranch bottleneck module (RMBM).

Figure 3. The structure of the reparameterizable multibranch bottleneck module (RMBM).

[image: Sensors 23 03963 g003]

[image: Sensors 23 03963 g004 550]

Figure 4. The process of reparameterization. The subfigures (a–e) describe how to reparameterize the BRB into a single 3 × 3 convolution.

Figure 4. The process of reparameterization. The subfigures (a–e) describe how to reparameterize the BRB into a single 3 × 3 convolution.

[image: Sensors 23 03963 g004]

[image: Sensors 23 03963 g005 550]

Figure 5. PSNR vs. the number of parameters. The comparison is conducted on the BSD100 dataset with the ×4 scale factor.

Figure 5. PSNR vs. the number of parameters. The comparison is conducted on the BSD100 dataset with the ×4 scale factor.

[image: Sensors 23 03963 g005]

[image: Sensors 23 03963 g006 550]

Figure 6. Visual qualitative comparisons of the lightweight methods on the Set14 dataset (×4 SR).

Figure 6. Visual qualitative comparisons of the lightweight methods on the Set14 dataset (×4 SR).

[image: Sensors 23 03963 g006]

[image: Sensors 23 03963 g007 550]

Figure 7. Visual qualitative comparisons of the lightweight methods on the BSD100 dataset (×4 SR).

Figure 7. Visual qualitative comparisons of the lightweight methods on the BSD100 dataset (×4 SR).

[image: Sensors 23 03963 g007]

[image: Sensors 23 03963 g008 550]

Figure 8. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×2 SR).

Figure 8. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×2 SR).

[image: Sensors 23 03963 g008]

[image: Sensors 23 03963 g009 550]

Figure 9. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×4 SR).

Figure 9. Visual qualitative comparisons of the lightweight methods on the Urban100 dataset (×4 SR).

[image: Sensors 23 03963 g009]

[image: Sensors 23 03963 g010 550]

Figure 10. Visual qualitative comparisons of the lightweight methods on the NWPU45 dataset (×4 SR).

Figure 10. Visual qualitative comparisons of the lightweight methods on the NWPU45 dataset (×4 SR).

[image: Sensors 23 03963 g010]

[image: Sensors 23 03963 g011 550]

Figure 11. Visual qualitative comparisons of the lightweight methods on the AID dataset (×4 SR).

Figure 11. Visual qualitative comparisons of the lightweight methods on the AID dataset (×4 SR).

[image: Sensors 23 03963 g011]

[image: Table]

Table 1. Ablation experiment results of different blocks based on RMBN-M4C16 (×4 SR). Bold indicates the best performance.

Table 1. Ablation experiment results of different blocks based on RMBN-M4C16 (×4 SR). Bold indicates the best performance.

	
Module

	
Set5

PSNR/SSIM

	
Set14

PSNR/SSIM

	
BSD100

PSNR/SSIM

	
Urban100

PSNR/SSIM

	
DIV2K

PSNR/SSIM

	
BRB

	
IBRB

	
ESB

	
×

	
×

	
×

	
30.82/0.8769

	
27.58/0.7680

	
27.00/0.7272

	
24.42/0.7435

	
29.38/0.8188

	
√

	
×

	
×

	
30.89/0.8781

	
27.62/0.7683

	
27.04/0.7279

	
24.47/0.7440

	
29.41/0.8195

	
×

	
√

	
×

	
31.08/0.8795

	
27.71/0.7690

	
27.09/0.7286

	
24.62/0.7451

	
29.55/0.8212

	
×

	
×

	
√

	
31.01/0.8790

	
27.66/0.7687

	
27.08/0.7282

	
24.53/0.7443

	
29.48/0.8201

	
√

	
×

	
√

	
31.10/0.8799

	
27.74/0.7694

	
27.10/0.7289

	
24.66/0.7458

	
29.60/0.8214

	
√

	
√

	
×

	
31.12/0.8804

	
27.77/0.7708

	
27.11/0.7291

	
24.72/0.7462

	
29.63/0.8218

	
×

	
√

	
√

	
31.13/0.8806

	
27.80/0.7714

	
27.12/0.7292

	
24.77/0.7464

	
29.65/0.8220

	
√

	
√

	
√

	
31.14/0.8810

	
27.82/0.7721

	
27.14/0.7295

	
24.83/0.7469

	
29.69/0.8222

[image: Table]

Table 2. Ablation experiment results of constraint activation based on RMBN-M4C16 (×4 SR).

Table 2. Ablation experiment results of constraint activation based on RMBN-M4C16 (×4 SR).

	
Clipped ReLU

	
Model-Type

	
Set5

PSNR/SSIM

	
Set14

PSNR/SSIM

	
Running Time (s)

	
×

	
fp32

	
31.14/0.8810

	
27.82/0.7721

	
0.018

	
uint8

	
29.96/0.8801

	
26.23/0.7710

	
√

	
fp32

	
31.14/0.8810

	
27.82/0.7721

	
0.020

	
uint8

	
30.87/0.8808

	
27.55/0.7717

[image: Table]

Table 3. Ablation experiment results of FDRL based on RMBN-M4C16 (×4 SR).

Table 3. Ablation experiment results of FDRL based on RMBN-M4C16 (×4 SR).

	
FDRL

	
Model-Type

	
Set5

PSNR/SSIM

	
Set14

PSNR/SSIM

	
Running Time (s)

	
×

	
fp32

	
31.06/0.8808

	
27.80/0.7716

	
0.019

	
uint8

	
30.22/0.8802

	
26.98/0.7709

	
√

	
fp32

	
31.14/0.8810

	
27.82/0.7721

	
0.020

	
uint8

	
30.87/0.8808

	
27.55/0.7717

[image: Table]

Table 4. Ablation experiment results of loss based on RMBN-M4C16 (×4 SR). Bold indicates the best performance.

Table 4. Ablation experiment results of loss based on RMBN-M4C16 (×4 SR). Bold indicates the best performance.

	Loss
	Set5

PSNR/SSIM
	Set14

PSNR/SSIM
	BSD100

PSNR/SSIM
	Urban100

PSNR/SSIM
	DIV2K

PSNR/SSIM

	L1
	31.08/0.8807
	27.80/0.7704
	27.10/0.7286
	24.82/0.7431
	29.66/0.8200

	L2
	31.02/0.8801
	27.74/0.7698
	27.03/0.7277
	24.71/0.7428
	29.60/0.8196

	L1 + LPSE
	31.14/0.8810
	27.82/0.7721
	27.14/0.7295
	24.83/0.7469
	29.69/0.8222

[image: Table]

Table 5. Average performance of the lightweight methods (×2 SR). Best and second-best results are bolded and underlined.

Table 5. Average performance of the lightweight methods (×2 SR). Best and second-best results are bolded and underlined.

	
Method

	
Scale

	
Params

(K)

	
FLOPs

(G)

	
Set5

PSNR/SSIM

	
Set14

PSNR/SSIM

	
BSD100

PSNR/SSIM

	
Urban100

PSNR/SSIM

	
DIV2K

PSNR/SSIM

	
bicubic

	
×2

	
-

	
-

	
33.68/0.9307

	
30.24/0.8693

	
29.56/0.8439

	
26.88/0.8408

	
32.45/0.9043

	
SRCNN [17]

	
24.00

	
52.70

	
36.66/0.9542

	
32.42/0.9063

	
31.36/0.8879

	
29.50/0.8946

	
34.61/0.9334

	
ESPCN [19]

	
21.18

	
4.55

	
36.83/0.9564

	
32.40/0.9096

	
31.29/0.8917

	
29.48/0.8975

	
34.63/0.9342

	
ECBSR-M4C8 [12]

	
2.80

	
0.64

	
36.93/0.9577

	
32.51/0.9107

	
31.44/0.8932

	
29.68/0.9014

	
34.80/0.9356

	
RMBN-M4C8 (Ours)

	
2.80

	
0.64

	
37.01/0.9580

	
32.62/0.9114

	
31.48/0.8936

	
29.72/0.9022

	
34.88/0.9366

	
FSRCNN [46]

	
×2

	
12.46

	
6.00

	
36.98/0.9556

	
32.62/0.9087

	
31.50/0.8904

	
29.85/0.9009

	
34.74/0.9340

	
SESR-M5 [13]

	
13.52

	
3.11

	
37.39/0.9585

	
32.84/0.9115

	
31.70/0.8938

	
30.33/0.9087

	
35.24/0.9389

	
ECBSR-M4C16 [12]

	
10.20

	
2.34

	
37.33/0.9593

	
32.81/0.9129

	
31.66/0.8961

	
30.31/0.9091

	
35.15/0.9382

	
RMBN-M4C16 (Ours)

	
10.20

	
2.34

	
37.40/0.9588

	
32.88/0.9136

	
31.77/0.8969

	
30.44/0.9106

	
35.26/0.9391

	
IMDN-RTC [7]

	
×2

	
19.70

	
4.57

	
37.51/0.9600

	
32.93/0.9144

	
31.79/0.8980

	
30.67/0.9140

	
35.34/0.9398

	
SESR-M11 [13]

	
27.34

	
6.30

	
37.58/0.9593

	
33.03/0.9128

	
31.85/0.8956

	
30.72/0.9136

	
35.45/0.9404

	
ECBSR-M10C16 [12]

	
24.30

	
5.60

	
37.55/0.9602

	
32.98/0.9144

	
31.85/0.8985

	
30.78/0.9149

	
35.38/0.9402

	
RMBN-M10C16 (Ours)

	
24.30

	
5.60

	
37.61/0.9609

	
33.03/0.9146

	
31.88/0.8989

	
31.02/0.9156

	
35.51/0.9406

	
LapSRN [14]

	
×2

	
813.00

	
29.90

	
37.52/0.9590

	
33.08/0.9130

	
31.80/0.8950

	
30.41/0.9100

	
35.31/0.9400

	
FLASR-C [47]

	
408.00

	
93.70

	
37.66/0.9586

	
33.26/0.9140

	
31.96/0.8965

	
31.24/0.9187

	
35.57/0.9407

	
SESR-XL [13]

	
105.37

	
24.27

	
37.77/0.9601

	
33.24/0.9145

	
31.99/0.8976

	
31.16/0.9184

	
35.67/0.9420

	
ECBSR-M10C32 [12]

	
94.70

	
21.81

	
37.76/0.9609

	
33.26/0.9146

	
32.04/0.8986

	
31.25/0.9190

	
35.68/0.9421

	
LAPAR-C [24]

	
87.00

	
35.00

	
37.65/0.9593

	
33.20/0.9141

	
31.95/0.8969

	
31.10/0.9178

	
35.54/0.9411

	
RMBN-M10C32 (Ours)

	
94.70

	
21.81

	
37.80/0.9611

	
33.31/0.9152

	
32.10/0.9006

	
31.34/0.9201

	
35.73/0.9427

	
VDSR [18]

	
×2

	
665.00

	
612.60

	
37.53/0.9587

	
33.05/0.9127

	
31.90/0.8960

	
30.77/0.9141

	
35.43/0.9410

	
CARN-M [5]

	
412.00

	
91.20

	
37.53/0.9583

	
33.26/0.9141

	
31.92/0.8960

	
31.23/0.9193

	
35.62/0.9420

	
ECBSR-M16C64 [12]

	
596.00

	
137.31

	
37.90/0.9615

	
33.34/0.9178

	
32.10/0.9018

	
31.71/0.9250

	
35.79/0.9430

	
IMDN [7]

	
694.00

	
158.80

	
38.00/0.9605

	
33.63/0.9177

	
32.19/0.8996

	
32.17/0.9283

	
35.87/0.9436

	
LAPAR-A [24]

	
548.00

	
171.00

	
38.01/0.9605

	
33.62/0.9183

	
32.19/0.8999

	
32.10/0.9283

	
35.89/0.9438

	
RFDN [8]

	
534.00

	
95.00

	
38.05/0.9606

	
33.68/0.9184

	
32.16/0.8994

	
32.12/0.9278

	
35.80/0.9433

	
LatticeNet [25]

	
756.00

	
169.50

	
38.06/0.9607

	
33.70/0.9187

	
32.20/0.8999

	
32.25/0.9288

	
35.88/0.9436

	
RMBN-M16C64 (Ours)

	
596.00

	
137.31

	
38.16/0.9621

	
33.74/0.9192

	
32.27/0.9034

	
32.29/0.9296

	
35.94/0.9444

[image: Table]

Table 6. Average performance of the lightweight methods (×4 SR). Best and second-best results are bolded and underlined.

Table 6. Average performance of the lightweight methods (×4 SR). Best and second-best results are bolded and underlined.

	
Method

	
Scale

	
Params

(K)

	
FLOPs

(G)

	
Set5

PSNR/SSIM

	
Set14

PSNR/SSIM

	
BSD100

PSNR/SSIM

	
Urban100

PSNR/SSIM

	
DIV2K

PSNR/SSIM

	
bicubic

	
×4

	
-

	
-

	
28.43/0.8113

	
26.00/0.7025

	
25.96/0.6682

	
23.14/0.6577

	
28.10/0.7745

	
SRCNN [17]

	
57.00

	
52.70

	
30.48/0.8628

	
27.49/0.7503

	
26.90/0.7101

	
24.52/0.7221

	
29.25/0.8090

	
ESPCN [19]

	
24.90

	
1.44

	
30.52/0.8697

	
27.42/0.7606

	
26.87/0.7216

	
24.39/0.7241

	
29.32/0.8120

	
ECBSR-M4C8 [12]

	
3.70

	
0.21

	
30.52/0.8698

	
27.43/0.7608

	
26.89/0.7220

	
24.41/0.7263

	
29.35/0.8133

	
RMBN-M4C8 (Ours)

	
3.70

	
0.21

	
30.61/0.8706

	
27.50/0.7614

	
27.02/0.7223

	
24.55/0.7289

	
29.40/0.8141

	
FSRCNN [46]

	
×4

	
12.00

	
5.00

	
30.70/0.8657

	
27.59/0.7535

	
26.96/0.7128

	
24.60/0.7258

	
29.36/0.8110

	
SESR-M5 [13]

	
18.32

	
1.05

	
30.99/0.8764

	
27.81/0.7624

	
27.11/0.7199

	
24.80/0.7389

	
29.65/0.8189

	
ECBSR-M4C16 [12]

	
11.90

	
0.69

	
31.04/0.8805

	
27.78/0.7693

	
27.09/0.7283

	
24.79/0.7422

	
29.62/0.8197

	
RMBN-M4C16 (Ours)

	
11.90

	
0.69

	
31.14/0.8810

	
27.82/0.7721

	
27.14/0.7295

	
24.83/0.7469

	
29.69/0.8222

	
IMDN-RTC [7]

	
×4

	
21.00

	
1.22

	
31.22/0.8844

	
27.92/0.7730

	
27.18/0.7314

	
24.98/0.7504

	
29.76/0.8230

	
SESR-M11 [13]

	
32.14

	
1.85

	
31.27/0.8810

	
27.94/0.7660

	
27.20/0.7225

	
25.00/0.7466

	
29.81/0.8221

	
ECBSR-M10C16 [12]

	
26.00

	
1.50

	
31.37/0.8866

	
27.99/0.7740

	
27.22/0.7329

	
25.08/0.7540

	
29.80/0.8241

	
RMBN-M10C16 (Ours)

	
26.00

	
1.50

	
31.41/0.8876

	
28.10/0.7753

	
27.29/0.7338

	
25.09/0.7549

	
29.92/0.8252

	
LapSRN [14]

	
×4

	
813.00

	
149.40

	
31.54/0.8850

	
28.19/0.7720

	
27.32/0.7280

	
25.21/0.7560

	
29.88/0.8250

	
SESR-XL [13]

	
114.97

	
6.62

	
31.54/0.8866

	
28.12/0.7712

	
27.31/0.7277

	
25.31/0.7604

	
29.94/0.8266

	
ECBSR-M10C32 [12]

	
98.10

	
5.65

	
31.66/0.8911

	
28.15/0.7776

	
27.34/0.7363

	
25.41/0.7653

	
29.98/0.8281

	
LAPAR-C [24]

	
115.00

	
25.00

	
31.72/0.8884

	
28.31/0.7718

	
27.40/0.7292

	
25.49/0.7651

	
30.01/0.8284

	
RMBN-M10C32 (Ours)

	
98.10

	
5.65

	
31.79/0.8912

	
28.37/0.7780

	
27.48/0.7372

	
25.54/0.7665

	
30.04/0.8289

	
VDSR [18]

	
×4

	
665.00

	
612.60

	
31.35/0.8838

	
28.02/0.7678

	
27.29/0.7252

	
25.18/0.7525

	
29.82/0.8240

	
CARN-M [5]

	
412.00

	
46.10

	
31.92/0.8903

	
28.42/0.7762

	
27.44/0.7304

	
25.62/0.7694

	
30.10/0.8311

	
ECBSR-M16C64 [12]

	
602.90

	
34.73

	
31.92/0.8946

	
28.34/0.7817

	
27.48/0.7393

	
25.81/0.7773

	
30.15/0.8315

	
IMDN [7]

	
715.00

	
40.90

	
32.21/0.8948

	
28.58/0.7811

	
27.56/0.7353

	
26.04/0.7838

	
30.22/0.8336

	
LAPAR-A [24]

	
659.00

	
94.00

	
32.15/0.8944

	
28.61/0.7818

	
27.61/0.7366

	
26.14/0.7871

	
30.24/0.8346

	
RFDN [8]

	
550.00

	
23.90

	
32.24/0.8952

	
28.61/0.7819

	
27.57/0.7360

	
26.11/0.7858

	
30.26/0.8344

	
LatticeNet [25]

	
777.00

	
43.60

	
32.21/0.8943

	
28.61/0.7812

	
27.57/0.7355

	
26.14/0.7844

	
30.26/0.8348

	
RMBN-M16C64 (Ours)

	
602.90

	
34.73

	
32.28/0.8957

	
28.66/0.7829

	
27.75/0.7408

	
26.24/0.7886

	
30.28/0.8350

[image: Table]

Table 7. Performance comparisons of the lightweight methods on RKNPU. Bold indicates the best performance.

Table 7. Performance comparisons of the lightweight methods on RKNPU. Bold indicates the best performance.

	
Scale

	
Method

	
Set5

PSNR-uint8

	
Set14

PSNR-uint8

	
Running Time (s)

	
×2

	
bicubic

	
33.68

	
30.24

	
0.025

	
FSRCNN [46]

	
34.66

	
30.17

	
0.074

	
IMDN-RTC [7]

	
36.03

	
30.89

	
0.172

	
SESR-XL [13]

	
36.14

	
31.45

	
0.057

	
ECBSR-M10C32 [12]

	
36.22

	
31.91

	
0.045

	
RFDN [8]

	
37.48

	
32.56

	
0.211

	
RMBN-M10C32 (Ours)

	
37.56

	
33.17

	
0.049

	
×4

	
bicubic

	
28.43

	
26.00

	
0.020

	
FSRCNN [46]

	
29.01

	
26.47

	
0.042

	
IMDN-RTC [7]

	
30.04

	
26.88

	
0.120

	
SESR-XL [13]

	
30.66

	
27.01

	
0.038

	
ECBSR-M10C32 [12]

	
30.98

	
27.04

	
0.027

	
RFDN [8]

	
31.12

	
27.49

	
0.178

	
RMBN-M10C32 (Ours)

	
31.42

	
28.01

	
0.032

[image: Table]

Table 8. Average performance of lightweight methods on the NWPU45 and AID datasets (×4 SR). Best and second-best results are bolded and underlined.

Table 8. Average performance of lightweight methods on the NWPU45 and AID datasets (×4 SR). Best and second-best results are bolded and underlined.

	
Scale

	
Method

	
NWPU45

PSNR/SSIM

	
AID

PSNR/SSIM

	
×4

	
Bicubic

	
29.12/0.7494

	
26.09/0.7154

	
CARN-M [5]

	
30.25/0.7845

	
27.32/0.7678

	
ECBSR-M16C64 [12]

	
30.20/0.7828

	
27.31/0.7660

	
IMDN [7]

	
30.37/0.7861

	
27.41/0.7704

	
LAPAR-A [24]

	
30.42/0.7877

	
27.47/0.7726

	
RFDN [8]

	
30.46/0.7889

	
27.51/0.7736

	
RMBN-M16C64 (Ours)

	
30.61/0.7900

	
27.67/0.7754

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg

media/file4.png
‘ Conv-3x3 ' Sub-pixel 'PReLU

@ Elementwise ’ Clipped ReLU
sum

Shallow Feature Extraction Deep Feature Extraction Image Reconstruction
Module Module Module

media/file18.png
= \

ﬁ’;//ié
/‘;/‘) ’

HR \
Bicubic
13C ARN-M
3.88/0.3
. 965

NS o

—

=
\\\4\\\\\ \\\\4@
- 4%

—

\

R =5 TZ NE
i I;FDN/S Eché_ﬁ'ﬁ ;é\\\\x

15.34/0
5851
1
\> . 1
3.38/0.3
' 3001
16.55/0
g \\\ \\ .7617
Y N
§‘ : § :) \\‘. NN\ N
- TS, \
SN - L NN N
‘ \\\ \\\ 5 i N \\“x‘ //- / > g \‘..
‘ : 24 oy 3 8
N O\ 43/0.3933 CARN-M _ J S}y %{
\\‘\i B \‘\‘ NN “) 25,32/0.4982 il\‘/l[;tj’\\}
\}\\") \‘\i \\\< "‘ ‘ \ AR) ‘ 23.50/0.3849
§“\~‘:‘ ! B N | B N |
\: : \\\.\‘ N N > N
- SN ‘\ :‘ N . ' \\,
N A o N\ 5 \ \\\ Ny RN
' N N N
N \
NN
NN

img099 fro
m Urbran
100(x4) \)
-A
25
.35/0.5108 25 RFDN
.54/0.5289 ECBSR-M16C64
24.96/0
urs
26.34/0

media/file21.jpg
R
PeRSIM

LAPARA

Biubic
21401

[
Pt

AR
1306461

ECBSRMI6Co
r

YA

noN
2006052

25807085

Ours
302003935

media/file3.jpg

media/file22.png
Bicubic CARN-M IMDN
23.46/0.5712 23.54/0.6464 25.26/0.6932

RFDN ECBSR-M16C64 Ours
24.29/0.6664 23.50/0.6394 25.81/0.7045

HR Bicubic CARN-M IMDN
PSNR/SSIM 28.32/0.6085 29.50/0.7300 30.17/0.7558

LAPAR-A RFDN ECBSR-M16C64 Ours
industrial_95 from AID(x4) 30.59/0.7727 30.62/0.7762 29.44/0.7274 30.20/0.7935

media/file19.jpg
00,131 from NWPUAS(x4)

bicbic

RFD

HR Biubic
PRSIV 217406260

LAPAR

CARNA

DN

Ours
30940599

media/file7.jpg
@

®

©

m

©

media/file10.png
PSNR (dB)

27.8

27.6

N
~
N

27.2

27.0

26.8

*RMBN-M16C64 (Ours)

LAPAR-A

REDN LatticeNet
IMDN

% RMBN-M10C32 (Ours) ECBSR-M16Cp4
LAPAR-C CARN-

ECBSR-M10C32

* SESR-XL
RMBN-M10C16 (Ours) VDSR
ECBSR-M10C16

IMDN-RTC
*RMBN-M4C16 (Ours)

ECBSR-M4Cl16
*RMBN-M4C8 (Ours)

SRCNN
ECBSR-M4C8

1 | 1 1
0 200 400 600 800

Number of parameters (K)

1000

media/file14.png
rF & 4 r o -

WA Ny

>
Ve

148,026 from BSD100(x4)

ANAN AN

Bicubic CARN-M IMDN
19.12/0.4446 20.48/0.5963 20.98/0.6412

o

PSNR/SSIM

Y

LAPAR-A
21.39/0.6655 21.67/0.6753

N

RFDN ECBSR-M16C64 Ours
20.31/0.5793 22.68/0.7494

Bicubic

PSNR/SSIM 20.18/0.4469 22.12/0.6425 21.70/0.6017

ECBSR-M16C64

LAPAR-A RFDN
22.14/0.6361 23.85/0.8087

22.62/0.6708 22.73/0.6704

media/file11.jpg
barbar fom Setd(xd)

Power
2002

o~

PPU3 from Set1é(xd)

LAPARA
212307096

HR
PoNRISSIM

—
LAPARA
2937109268

Bicbic
1991104618

RFON
6006144

Bicbic
23007254

RADN
205409291

CARNM
1270502

ECBSR-M16Cot
186504351

CARNA
Bovooms

—
ECBSRM16Co
281709004

IMDN

Ours
BT

IMDN
00409065

—
Ours
3219009654

media/file6.png
C

4

e PP e o Y
I Conv-1x1 | | Conv-1x1 ||: | Conv-1x1 | III ' ' :
:I :Il Conv-1x1 | | Conv-1x1 |I
2C 3C |: (o/)) |: I c
| Conv-3x3 | | Conv-3x3 ||| I Conv-3x3 | I 2C 3C : |
! ' Y ! "l Conv-3x%3 | | Conv-3x3 || - | Conv-3x3 |
L~][w :: [W 1 1] !
o 3C :: hon :: N | N C
Y v % | '
I Conv-1x1 | | Conv-1x1 ||| I Conv-1x1 | :: C C :
C C | C I\ / - — -
\‘--"_-__-__'J_,/__-"__',_'v' _______ -=7 'l JIIBRB[_JBRB'L_JESB
3
C

media/file15.jpg
il

\ m.\? mﬂ%

21| g

nav.xhtml

 sensors-23-03963

 		
 sensors-23-03963

media/file16.png
N ER NN \
| T T T

| Bicubic CARN-M IMDN
17.54/0.2389 18.17/0.4024 18.88/0.5253
| o~ \‘\\ A\ N\ \ \\
‘\\ \ . \\ \)
L \ ‘ 1 |“
LAPAR-A RFDN ECBSR M16C64 Ours
19.51/0.5636 20.72/0.6929 18.00/0.3848 20.49/0.7487
| - 3 ! - : - '
ld rl-ﬂm .16%\\“
Bicubic CARN-M IMDN
PSNR/SSIM 19.43/0.4383 18.57/0.4275 21.19/0.6563

W“ i N : "” n 1
=R T T

img085 from Urbran100(x2) 21.71/0.6955 22.82/0.7619 19.09/0.4541 22.87/0.7694

media/file2.png
‘ Conv-3x3 ' Sub-pixel 'PRELU

@ Elementwise ’ Clipped ReLU
sum

5_" ’_» 7

Shallow Feature Extraction Deep Feature Extraction Image Reconstruction
Module Module Module

media/file20.png
PSNR/SSIM 26.14/0.7353

/

LAPAR-A RFDN
30.21/0.8893 28.63/0.8620

Bicubic
21.74/0.6260

LAPAR-A RFDN
00,131 from NWPU45(x4) 24.23/0.7892 24.03/0.7496

28.85/0.8731

ECBSR-M16C64
30.26/0.8836

CARN-M
23.51/0.7659

ECBSR-M16C64
23.86/0.7657

29.28/0.8782

Ours
30.96/0.8919

23.82/0.7752

Ours
24.32/0.7913

media/file5.jpg

media/file1.jpg

media/file12.png
\\\\\\\ §

barbara from Set14(x4)

N,

2002

N, ...

ppt3 from Set14(x4)

CARN-M
19.27/0.5022

ECBSR-M16C64
18.65/0.4354

R
CARN-M
29.01/0.9218

T TR o
ECBSR-M16C64
28.17/0.9004

P

P e

media/file9.jpg
278

276

PSNR (dB)
3
N

2

27.0

268

HRMBN-MI6C4 (Ours)

aLaPARA
O atteNet
RN o, OL:
HRMBN-M10C32 (Ours) ECBSRM16C6H
GLAPARC O CARN-M
CBSR-M10C32
"9 SESRXL
FRMBN-MI0C16 (Ours) @VDsR
@ ECBSRM10C16
® IVDN-RTC

HRMBN-M4C16 (Ours)
@ ECBSR-MACT6

K RMBN-MACS (Ours}

o 8SRCNN
'ECBSR-MACS

0 200 400 600 800

Number of parameters (K)

1000

media/file0.png

media/file8.png
| Conv-1x1 | l
| Conv-1x1 | | Conv-1x1 |
| Conv-3x3 |
! —— || Conv3x3 | —— | conv3x3 | —
L N
U
. ' :
'\‘J | Conv-1x1 | | Conv-1x1 |
| Conv-1x1 |
(a) (b) (c)

|

| Conv-1x1 I

Y

| Conv-3x3 |

(d)

—_—

Conv-3x3

(e)

media/file17.jpg
s 12660155 133002574 s

3\\?{% e/

FeRSSIM 20430399

