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Abstract: Possible drug–food constituent interactions (DFIs) could change the intended efficiency of
particular therapeutics in medical practice. The increasing number of multiple-drug prescriptions
leads to the rise of drug–drug interactions (DDIs) and DFIs. These adverse interactions lead to other
implications, e.g., the decline in medicament’s effect, the withdrawals of various medications, and
harmful impacts on the patients’ health. However, the importance of DFIs remains underestimated,
as the number of studies on these topics is constrained. Recently, scientists have applied artificial
intelligence-based models to study DFIs. However, there were still some limitations in data mining,
input, and detailed annotations. This study proposed a novel prediction model to address the
limitations of previous studies. In detail, we extracted 70,477 food compounds from the FooDB
database and 13,580 drugs from the DrugBank database. We extracted 3780 features from each
drug–food compound pair. The optimal model was eXtreme Gradient Boosting (XGBoost). We
also validated the performance of our model on one external test set from a previous study which
contained 1922 DFIs. Finally, we applied our model to recommend whether a drug should or should
not be taken with some food compounds based on their interactions. The model can provide highly
accurate and clinically relevant recommendations, especially for DFIs that may cause severe adverse
events and even death. Our proposed model can contribute to developing more robust predictive
models to help patients, under the supervision and consultants of physicians, avoid DFI adverse
effects in combining drugs and foods for therapy.

Keywords: adverse food reaction; chemical informatics; drug–food interactions; drug–nutrient
interactions; DrugBank; explainable artificial intelligence; FooDB; machine learning; precision
medicine; simplified molecular-input line-entry system

1. Introduction

The intended efficiency of medications or therapies can be altered due to drug–food
constituent interactions (DFIs) [1]. While most DFIs cause no harm or mild effects, some
may lead to adverse drug events (ADEs) [2] or severe consequences. Therefore, the aware-
ness of DFIs is pivotal for the safe usage of oral drugs, food types, and food-originated
supplements to ensure the efficacy of therapies. As the number of prescriptions containing
drug–drug combinations rockets [3,4], the adverse DFIs experience a corresponding rise. The
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bioavailability and other parameters of medications could be reduced or increased due to the
interactions with different food types or even with the physiological secretion of the body
itself, e.g., the secretion of gastric acid, pancreatic digestive chemicals, and more [1]. More
than 30 percent of the reported adverse drug events are related to DFIs [5]. Moreover, one
of the most common causes of drug or medicament withdrawals from the market is owing
to DFIs [6–8]. In contrast, the figure for the usage of any prescriptions rose by nearly five
percent to reach 85% in 2012 [3]. This can exacerbate the probability of DFI since clinicians or
patients can ensure no interactions between oral drugs and food intake.

Verapamil, terfenadine, nifedipine, cyclosporine, and more drugs were also reported
with adverse events when taken with grapefruit juice [9]. It is due to the inhibiting effects
of grapefruit juice on intestinal CYP3A4, a crucial isoenzyme of cytochrome P450 helping
eliminate drugs [10]. Warfarin was reported to interact with various food types, in which
altering the anti-coagulant effect is the most critical consideration [11–13]. Alcohol could
cause severe adverse events, and even death, when combined with diazepam, lorazepam,
acetaminophen, or methotrexate [14–19]. Foods rich in [K+], such as oranges and bananas,
may cause hyperkalemia, resulting in cardiac arrest and death due to myocardial arrhyth-
mia. Therefore, they must not be taken with renin-angiotensin system inhibitors since they
elevate the blood potassium concentration by reducing aldosterone activity. In addition,
tyramine-rich foods (e.g., wine, cheese, etc.) must not be combined with monoamine
oxidase inhibitors (MAOIs), which are used for patients with depression. The consequence
is the onset of a hypertensive crisis resulting from the growth of catecholamine biosynthesis
caused by the breakdown reduction of tyramine [20].

There is a dire need to stratify which drug–food compound pairs can be taken together
for the safety of patients during therapy [21]. A study in 2004 indicated that DFIs, not only
among foods but also in dietary supplements, were responsible for mitigating medications’
efficacy or lasting pharmacological effects, negatively affecting patients’ health and drug
labeling [6]. Four hundred sixty-two medicinal products were withdrawn from the market
due to adverse drug reactions in DFIs and drug-drug interactions (DDIs) [7]. It is also
evident that the elderly suffered the most from harmful DFIs [22]. Aging patients, associated
with chronic comorbidities, hygiene, and changes in physiological processes, require
multiple-drug therapy. One study on the senior Brazilian population [23] has depicted the
correlation between disease conditions, metabolism status among aged people, and risks
of adverse events resulting from DFIs. Furthermore, Mason [24] revealed that the risks
of DFIs increased among infants, children, and patients who have undergone long-term
therapy or those in need of particular nutritional demand (cancer, burns, diarrhea, etc.).

Various strategies have been proposed to study the adverse interactions between
drugs and food constituents. Mallet et al. [25], and Chan [26] provided some measures
to treat unexpected DFIs. However, the first-step clinical approach to avoiding DFIs is
carefully investigating which ingesting food can cause interactions with administering
oral medications and planning an appropriate combination of drugs and dietary sup-
plements or food intake. Jensen et al. [27] proposed a MEDLINE database to explore
DFIs to improve therapeutic intervention strategies. Their findings concentrated on the
interactions between plant-based food constituents and drug targets. Another approach
introduced by Riedmaier et al. [28] integrated with in vitro data with the knowledge
of human physiology to predict food effects on drug compounds. This framework has
curbed the drawbacks of other previous methods using only in vitro samples [29–31], or
animal experiments [31–33]. Qin et al. deployed spectroscopy and molecular interaction
to discover the inhibitory effects of apigenin and luteolin on advanced glycation end
products in bovine serum albumin (BSA)-glucose and BSA-fructose models [34], in
which Auto dock software (version 4.0, Scripps Institute, USA) was used to compute
the minimum binding energy of the investigated proteins. However, the methods above
required much information on drug targets, interacting foods, and particular effects,
which usually miss input data to classify the DFIs.
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The recent development of machine learning (ML) in drug discovery [35] has facilitated
DDI classification tasks [5,22,36,37]. No DFI study applied advanced ML techniques to differ-
entiate between the interaction effects of drug and food compounds, except Ryu et al. [5] and
Rahman et al. [38]. In Ryu et al. [5], albeit indirectly, they employed their deep learning
network trained on DDI data to discriminate the DFIs. With the presence of simplified
molecular-input line-entry system (SMILES) formulas represented for constituents and public
databases (e.g., DrugBank [39] and FooDB (https://foodb.ca/, accessed on 29 August 2022 ),
Ryu et al. showed the potential of ML implementation in identifying DFIs. However, there
was a need to assemble a model that could detect various DFIs straightforwardly without
relying on this. Rahman et al. [38] applied a graph mining approach to forecasting DFIs.
Despite the novelty, the experiment was complex to reproduce under many conditions, and
the final results were unsatisfactory. Moreover, the method did not cover all drug–food
constituents.

Herein, we introduced a predictive model, which utilized simple ML algorithms to
classify the DFIs more conveniently, accurately, and efficiently based on their SMILES.
Input data are the SMILES of drug and food compounds, which express their codified
chemical structures [40]. Our model was built on an eXtreme Gradient Boosting (XGBoost)
classification algorithm, with the eighteen most essential features refined through a tight,
four-step feature selection method. We evaluated the robustness of our model’s prediction
on one external test set. Furthermore, we used our predictor to recommend the combination
of some drugs and foods in clinical practice. Clinical physicians could use the results
interpreted from the model since the interactions written in readable sentences could
contribute to drug prescriptions and dietary decisions.

2. Materials and Methods

The workflow of our study, which is exhibited in Figure 1, comprised three key
steps: (i) Data gathering and pre-processing, (ii) Model building and optimization, and
(iii) Validations and recommendations. In the first step, we extracted the data from
DrugBank [39] (version 5.1.7) and FooDB (https://foodb.ca/, accessed on 29 August
2022) (version 1.0) databases. During this step, we processed the data to reduce the
number of drug and food constituents examined to 1133 and 4341, respectively. In the
second step, we applied four feature selection methods to pick up eighteen optimal
features among 3780. We applied five algorithms to the training set with eighteen
features and then fine-tuned the parameters to find the best model. The last step
evaluated the performance of our model on one external test set from the previous
study [5]. Finally, we extended our study to predict some adverse DFIs of various drugs
encountered in clinical practice.

https://foodb.ca/
https://foodb.ca/
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Figure 1. The workflow of our study. First, we obtained the SMILES notations of drug and food
constituents from DrugBank and FooDB databases. After pre-processing, we filtered out 1133 drugs and
4341 food compounds, making 2,382,903 drug–food pairs in the benchmark dataset. We subsequently
used PyBioMed and RDKit packages in Python to extract 3780 features of each interacting drug–food
pair. We applied a four-step feature selection process to the training set to find the 18 most important
features. Five classification algorithms were applied to the training data via five-fold cross-validation. As
XGBoost gave the best prediction outcome, we fine-tuned it using the validation set. Finally, we tested
our optimum XGBoost model on the internal test set and one external test set containing 1922 drug-food
pairs. Finally, we used the model to recommend some common drug–food compound combinations.

2.1. Data Gathering and Pre-Processing
2.1.1. Data Gathering

We primarily collected data from the DrugBank (version 5.1.7, 2020) [39] and FooDB
(version 1.0, 2020) databases, which contained 13,580 drugs and 70,477 food constituents,
respectively. We focused on DFI annotations in DrugBank and consistently selected only
canonical SMILES for food and drug compounds [40].

2.1.2. Data Pre-Processing

In the FooDB database, we eliminated food compounds without SMILES (N = 70) or
duplicates (N = 809). We then excluded similar foods using Tanimoto’s coefficient, which cal-
culates the structural similarity between two constituents [5,41]. First, we used one compound
as a “target” and then matched that compound to the other “query” molecules in the dataset
to calculate the coefficients. This step was repeated until the last pair of compounds in the
dataset. Second, we rejected which food compounds were similar in structure, meaning they
had a structural similarity coefficient greater or equal to 0.75 [5,41,42]. This process resulted in
the removal of 65,257 food compounds. Finally, the number of food compounds for further
analysis was 4341.

For the drug database (N = 13,580), we removed compounds that do not have infor-
mation on the SMILES (N = 2889) and/or do not have annotations on interactions for food
compounds (N = 12,395). The final drug data set contained 1133 drug compounds with
SMILES formulas and annotations of DFIs.

2.1.3. Labeling of DFIs Ground Truth

Based on annotations from DrugBank, we categorized the DFIs into three groups:

• Positive interactions (Class 1): (1) if two of the following conditions are met simultane-
ously. (a) If a drug compound in combination with a food compound, and the food
compound increases the extent of absorption, increases bioavailability, increases peak
concentrations, and decreases time to peak concentrations of the drug; (b) no adverse
effect or toxicity for human health has been observed from DrugBank annotations.
(2) If the DrugBank annotations indicate that when the drug compound is taken with
the food compound, the food compound will benefit the patient (e.g., food reduces
irritation, take with food to reduce nausea, food decreases the risk of gastrointesti-
nal side effects, etc.) despite not specifying the interaction information in terms of
pharmacokinetics, the pharmacodynamics of the drug. (3) If DrugBank annotations
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indicate “take after meals”, “take after a meal”, or “take with food” although they
do not specify the information on pharmacokinetics, pharmacodynamics, or patient
benefits when taking that drug with food compounds.

• Negative interactions (Class 0): (1) if two of the following conditions are met simulta-
neously. (a) If the drug is taken with food, but food reduces the extent of absorption,
reduces bioavailability, decreases peak concentrations, and increases time to peak
concentrations of the drug; (b) at least one adverse effect or toxicity for human health
has been described from DrugBank annotations. (2) If the DrugBank annotations
indicate that when the drug compound is taken with the food compound, the food
compound will cause harm to the patient regardless of the interaction information in
terms of pharmacokinetics and the pharmacodynamics of the drug. If DrugBank anno-
tations contain the words “avoid”, “Take separately from meals”, “take on an empty
stomach” or “take before a meal” regardless of the information on pharmacokinetics,
pharmacodynamics, or benefits when taking that drug with food compounds.

• Non-significant interactions (Class 2): (1) if DrugBank annotations do not fall into the
above two categories. (2) If DrugBank annotations state “take with or without food”,
“take consistently with regard to food” regardless of pharmacokinetic or pharmacody-
namic interaction information.

Drug compounds with the annotation “take at the same time every day” were not
considered; however, if there were other annotations for the same drug that satisfied the
conditions of the three groups mentioned above, the drug–food interactions were classified
into the corresponding category. In detail, from 4341 food and 1133 drug compounds,
there were 2,382,871 DFIs, including 476,642 negative DFIs, 776,146 positive DFIs, and
1,130,083 non-significant DFIs.

2.2. Model Building and Optimization
2.2.1. Feature Extraction

We ran our experiments on Windows 10 (version 20H2) (4.60 GHz Intel i7-11800H
CPU and 64 GB RAM). We used PyBioMed package [43] (PyInteraction module) and RDKit
(version 1.0.3) [44] for input representation preparation of the chemical compounds. All
calculations were implemented in Python 3.9.12. We extracted all drug–food pairs in
SMILES to 2,382,871 number arrays with 3780 molecular operating environment (MOE)
descriptors. MOE descriptors are features derived from each pair of DFIs, calculated from
the low energy conformations of the composite.

slogP is the logarithm of octanol:water regional coefficient; this was calculated by
Wildman and Crippen in 1999. MTPSA or “Molecule polar surface area” was calculated by
estimating the polar surface area from the connection plane’s information, which was first
introduced by Ertl et al. [45]. VSA was defined as the van der Waals surface area, which the
polyhedral depiction of individual atoms could quantify. PEOE is the abbreviation of Partial
Equalization of Orbital Electronegativities, which was introduced by Gasteiger et al. [46],
and is a method used to calculate the atomic partial charges [46]. The Lorentz–Lorentz
equation defines the molecular refractivity (MR) parameter or molecular refractivity:

MR = (
n2 − 1)
n2 + 2

)(
MW

d
) (1)

where n is the index of refraction, MW is the molecular weight, and d is the density. MR
is strongly correlated with the polarization of the respective molecule. MR can also be
estimated from group-relative constants when exploratory values are absent. In total, there
were seven families of descriptors.

2.2.2. Feature Selection

We performed feature selection using variance threshold (VT), which removes the
features with variance lower than a threshold value of 0.8. The remained features would
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next undergo Pearson’s correlation coefficient feature selection. If two features correlate
more than 75%, we will reject one that contributes less to the outcome. All features obtained
from the previous step would then be passed to the least absolute shrinkage and selection
operator (LASSO) [47], with alpha set to 0.001. Afterward, we performed the RidgeCV-
based recursive feature elimination with the cross-validation (RFECV) technique (five
iterations of cross-validation) to filter out the best features. There were 18 optimal features;
the detailed names of all features can be found in the Results section.

2.3. Model Training

Random forest (RF), extreme gradient boosting (XGBoost), extra trees (ET), light
gradient boosting machine (LGBM), and one neural-network-based classifier multilayer
perceptron (MLP) were five-time cross-validated on the training set to measure the baseline
performance [48]. Next, all baseline models were fine-tuned using Randomized Search
Cross-Validation (CV) (five iterations) on the validation set. The best classification model
was chosen based on the performance of all models on the testing set. The CV and fine-
tuning results can be found in the Results section (Tables 1–3).

Table 1. Performance results among different algorithms on training data (Five-fold cross-validation).

Classifier Accuracy STD

XGBoost 0.9675 0.0005
LGBM 0.9671 0.0004

RF 0.9651 0.0002
ET 0.9589 0.0004

MLP 0.9561 0.0050
STD: standard deviation; XGBoost: eXtreme Gradient Boosting; LGBM: Light Gradient Boosting Machine; ET:
Extra Trees; MLP: Multi-Layer Perceptron.

Table 2. Default and tuned values of parameters used in our study.

Parameter Default Setting Hyper-Tuned Values Optimal Value

n_estimators 100 [50, 100, 150, 200] 150
max_depth 6 [3, 4, 5, 6, 8, 10, 12, 15] 6

gamma 0 [0.0, 0.1, 0.2, 0.3, 0.4] 0.4
colsample_bytree 1 [0.3, 0.4, 0.5, 0.7] 0.3
min_child_weight 1 [1, 3, 5, 7] 5

learning_rate 0.1 [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] 0.2

Table 3. Performance of classification algorithms before and after hyper-parameters tuning.

Algorithms Before Tuning After Tuning

XGBoost 0.9673 0.9677
MLP 0.9589 0.9623

LGBM 0.9671 0.9673
ET 0.9586 0.9611
RF 0.9651 0.9662

2.4. Validation and Recommendations

For the final stage, we aimed to create a model capable of yielding recommendations
or warnings to assist patients and physicians in using drugs in combination with food to
avoid adverse effects. The user(s) input the names of the drug and food compound into the
model. Then, the model will predict whether they can be used together or not. Based on
that output, the user(s) will consult a physician for the best advice. If the DFI were positive,
the predicted result would be “A could be taken with food containing B”. If the DFI were
non-significant, the output would be “A may be taken with food containing B”. Otherwise,
the recommendation would be “A should not be taken with food containing B”.
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2.5. Evaluation Metrics

Four measurement metrics [49] were taken into account to assess the performance of
each algorithm in classifying the interactions:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1 − score =
2 × Precision × Recall

Precision + Recall
(5)

TP, TN, FP, and FN represent True positive, True negative, False positive, and False negative,
respectively. For each class in the multi-classification task, the Accuracy of each class is
the ratio of correctly predicted instances of that class and the total number of instances.
Recall is the fraction between the number of accurately predicted DFIs and all positive
DFIs. Precision is calculated by the division of accurately classified DFIs and total DFIs.
Recall and Precision are related; increasing the former may decline the latter, and vice
versa. Therefore, the F1-score, the geometric mean of Recall and Precision, makes the result
interpretations more plausible.

3. Results
3.1. 4341 Food Compounds and 1133 Drug Compounds from DrugBank and FooDB

Of the 4341 food compounds, 20 were inorganic, 1095 were organic, and the remaining
3226 were missing information. Among 1133 drug compounds, 22 were inorganic, 1063 were
organic, and 48 were unknown. We excluded the drug–food pairs having the same mean value
of 3780 features. This helps us to avoid training the models repetitively with similar interacting
pairs and to increase the generalizability. This process reduced the number of samples from
2,382,903 in the benchmark dataset to 2,263,474. We then randomly split 1,133,652 (50.08%) for
training, 848,803 (37.50%) for hyperparameter tuning (the validation set) and 281,019 (12.42%)
for testing (the internal test set).

For the external test set, we extracted DFIs from a previous study by Ryu et al. [5]. They
applied a predictive model to a validation set of 4567 DFIs. We removed 2319 duplicates of
drug–food pairs, 66 drugs and 260 foods with no SMILES data in DrugBank and FooDB,
respectively. Finally, the external test set consisted of 1922 instances, with 751, 378, and
793 pairs of negative, positive, and non-significant DFIs, respectively. More importantly, it
contained 232 drugs not included in the training data.

3.2. 18 Selected Features Can Improve the Prediction

With the threshold set to 0.8, VT eliminated 935 features from 3780 original features.
For the remaining 2845 features, we normalized all training data using the standardization
method from scikit-learn and performed Pearson’s correlation coefficient feature selection
process. After the experiment, we picked up 1568 features correlating more to the clas-
sification outcome. Next, we fed 1568 features to LASSO with an alpha of 0.01 and fil-
tered out 52. Finally, we performed the RidgeClassifierCV-based RFECV (cross-validation
set to 5, performed on five iterations) to obtain 18 features, including MTPSA+MTPSA,
MRVSA9, MRVSA8, MRVSA0, MRVSA2, VSAEstate10+VSAEstate10, EstateVSA0*LabuteASA,
PEOEVSA12, PEOEVSA10, PEOEVSA5, PEOEVSA9, slogPVSA2, slogPVSA0, slogPVSA9,
VSAEstate7+VSAEstate7, EstateVSA7, EstateVSA2, EstateVSA1*VSAEstate8.

We applied four ML algorithms and one neural network architecture to our training
set: RF, XGBoost, ET, LGBM, and MLP. For each classifier, we implemented a five-fold
CV to evaluate their performances. In Table 1, XGBoost reported the highest performance,
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achieving a mean accuracy of 96.75% (±0.05%). The lowest accuracy was seen on MLP
(95.89% ± 0.02%), whereas LGBM, RF, and ET gave a score ranging from 95.89% to 96.71%.

3.3. Performance Improvement via Hyper-Parameter Tuning

We applied randomized search cross-validation to tune the optimal parameters for all
five algorithms. Six parameters were adjusted (Table 2). Hyper-tuned parameters improved
the performance of the baseline XGBoost model by 0.0004 (Table 3), gaining the highest
accuracy of 96.77%. The tuned XGBoost model was afterward used to predict DFIs in the
external test set (Table 4 and Figure 2).

Table 4. The performance (recall, precision, and F1-score) of our optimal XGBoost model on the
internal and external test sets.

Types of DFIs Internal Test External Test
Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Negative DFIs 0.9714 0.8707 0.9822 0.9231 0.9781 0.9441 1.0 0.9712
Positive DFIs 0.9874 0.9902 0.9723 0.9811 0.9844 1.0 0.9265 0.9618

Non-significant DFIs 0.9759 0.9918 0.9586 0.9749 0.9886 0.9937 0.9789 0.9862

Figure 2. Confusion matrix of our optimal XGBoost model on the testing and the external test sets.
On the testing set (left plot): The model most accurately detected positive and non-significant DFIs
(recall 0.99 in both classes) while only recognizing 87% of negative DFIs. Likewise, on the external
test set (right plot), the model recognized all positive DFIs and 99% of non-significant DFIs. Negative
DFIs were recognized as acceptable, with 94% of those discriminated against.

3.4. Evaluating the Performance Results of the Final Models on External Test Set

We evaluated the model’s classification performance on the internal validation set and the
external test set (which was based on drugs and foods used in the study of Ryu et al. [5]). The
external test set consisted of 377 drugs and 59 food compounds that comprised 1922 drug–food
pairs, with 751, 378, and 793 pairs of negative, positive, and non-significant DFIs, respectively.
The external test set contained 232 drugs without the annotations of interactions from our
database. Our model correctly predicted 97.56% of drug–food pairs (Table 4 and Figure 2),
showing the model’s predictive capacity on unseen data.

3.5. Interpretation of Eighteen Optimal Features

MRVSA0 is calculated using MR and surface area contributions. MRVSA0 ranked first
in the feature importance list. PEOEVSA5 and PEOEVSA9 compute the sum of one atom’s
van der Waals surface areas where its partial charge is between 0.25 and 0.30. EstateVSA7
and EstateVSA2 [43] are computed using Estate indices and surface area contributions.
slogPVSA2 denotes the relative approachable van der Waal’s surface area, computed for
each atom with a contribution to the partition coefficient log (octanol/water) in the range
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of (−0.2,0) [50]. Its negative coefficient value indicated that high hydrophobicity decreased
the agonist activity.

According to the SHAP (SHapley Additive exPlanations) [51] analysis in Figure 3, the
x-axis portrays the SHAP value calculated for each feature based on their contribution to the
final output, while the y-axis depicts the feature names. In this study, SHAP values greater
than zero (i.e., the right side of the x-axis) indicate that the model predicts non-significant
DFIs, while SHAP values less than zero (i.e., the left side of the x-axis) indicate negative DFI
predictions. SHAP values close to zero indicate positive DFI outputs. We can observe that
the over-zero side of the x-axis is longer than the opposite one because of the larger number
of non-significant DFIs compared to other groups. Each point on the chart represents one
SHAP value for a prediction and feature. The red color indicates a higher value of a feature,
while blue indicates a lower value of a feature.

Accordingly, the red dots of MRVSA0, EstateVSA2, MRVSA9, MRVSA8 and blue dots
of PEOEVSA5, MTPSA+MTPSA, VSAEstate10+VSAEstate10 gather on the right side of the x-
axis, indicating that the high values and low values of these features, respectively, direct the
model in recognizing the non-significant DFIs. High PEOEVSA5, EstateVSA7, slogPVSA9,
MTPSA+MTPSA, and low values of MRVSA0, MRVSA9 help detect the negative DFIs. The
positive DFIs are identified by the increasing values of PEOEVSA5, EstateVSA0*LabuteASA,
EstateVSA1*VSAEstate8 and the decline of PEOEVSA9, EstateVSA7, EstateVSA2, slogPVSA9,
MRVSA2, VSAEstate7+VSAEstate7, slogPVSA0, PEOEVSA12.

The polarization and van der Waals surface area of the interacting molecules seem to
have a critical role in determining whether a drug–food constituent combination is negative
or non-significant. At the same time, they cannot assist in distinguishing a positive one. This
can be observed in the rise or fall of MRVSA0 and MRVSA9. Furthermore, interacting atoms
with higher “octanol:water” regional coefficient, polar surface area, and van der Waals
forces tend to generate negative drug–food constituent pairs. On the other hand, molecules
with high electrotopological state indices combined with increasing van der Waals surface
area and orbital electronegativities may indicate a positive interaction between respective
drugs and foods. These observations are drawn from the model output and, thus, are
needed to be confirmed by biological experiments.

3.6. The Interpretation of our Model to Clinical Physicians, Pharmacists, and Patients

We input nine commonly used drugs and seven food compounds known to cause
adverse reactions to test the model’s predictive power in clinical practice. We focus on
negative interactions because we believe they are more clinically significant than posi-
tive and non-significant interactions. Additionally, we have attached scientific evidence
about adverse interactions explaining why the listed pairs should not be used together for
reference (see Table 5).
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Figure 3. The SHAP (SHapley Additive exPlanations) plot of eighteen optimal features. The red
dots of MRVSA0, EstateVSA2, MRVSA9, MRVSA8 and blue dots of PEOEVSA5, MTPSA+MTPSA,
VSAEstate10+VSAEstate10 gather on the right side of the x-axis, indicating that the high values and
low values of these features, respectively, direct the model in recognizing the non-significant DFIs.
High PEOEVSA5, EstateVSA7, slogPVSA9, MTPSA+MTPSA, and low values of MRVSA0, MRVSA9
help detect the negative DFIs. The positive DFIs are identified by the increasing values of PEO-
EVSA5, EstateVSA0*LabuteASA, EstateVSA1*VSAEstate8 and the decline of PEOEVSA9, EstateVSA7,
EstateVSA2, slogPVSA9, MRVSA2, VSAEstate7+VSAEstate7, slogPVSA0, PEOEVSA12.
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Table 5. Interpretation of our XGBoost-based model to clinical practice.

Drug–Food Compound Adverse Effect(s) Model’s Recommendation References

Tetracycline + Calcium
Calcium reduces the

absorption rate of
Tetracycline.

Tetracycline should not be
taken with food containing

Calcium.

Neuvonen et al. [52],
Kuang et al. [53]

Methotrexate + Ethanol
Ethanol increases the risk for

liver damage while taking
Methotrexate.

Methotrexate should not be
taken with food

containing Ethanol.

Whiting-O’Keefe et al. [54],
Price et al. [16],

Malatjalian et al. [55],
Humphreys et al. [14]

Diazepam + Ethanol

Ethanol may increase the
central nervous depressant

effect of diazepam, leading to
dizziness, nausea, lost of

consciousness, even coma,
or death.

Diazepam should not be taken
with food containing Ethanol. Koski et al. [17,18]

Nitroglycerin + Ethanol

Drinking alcohol while taking
this medication increases the

risk for dangerously low
blood pressure and

Disulfiram-Like Reactions.

Nitroglycerin should not be
taken with food

containing Ethanol.
Weathermon et al. [56]

Digoxin + Hyperforin

St. John’s wort may decrease
levels of the medication and

reduce its effectiveness.
Hyperforin is a natural

compound extracted from the
St. John’s wort (Hypericum

perforatum) plant.

Digoxin should not be taken
with food containing

Hyperforin.
Johne et al. [57]

Nisoldipine + Bergamottin

Grapefruit juice can increase
the serum concentrations and

oral bioavailability of
Nisoldipine due to the

inhibitant effect to CYP3A4.
Bergamottin is the most

abundant of furanocoumarins
present in grapefruit juice.

Nisoldipin should not be
taken with food containing

Bergamottin.

Paine et al. [58],
Takanaga et al. [59]

Midazolam +
Licofuranocoumarin

Grapefruit juice is
contraindicated when taking

Midazolam orally since it
contains Furanocoumarin

compounds that can inhibit
CYP3A4. This will increase

bioavailability and change the
pharmacodynamics of
Midazolam, leading to

excessive levels of sedation for
the patients.

Midazolam should not be
taken with food containing

Licofuranocoumarin.

Kupferschmidt et al. [60],
Goho et al. [61]

Warfarin + Vitamin K1
2,3-epoxide

Vitamin K can make Warfarin
less effective, which means

that Warfarin could not
prevent a dangerous

blood clot.

Warfarin should not be taken
with food containing Vitamin

K1 2,3-epoxide.

Pedersen et al. [13],
Johnson et al. [62]

Warfarin + Dimethyl disulfide

Herbs can increase the risk of
bleeding if one is taking

Warfarin as an anticoagulant.
Dimethyl disulfide is one of

the components found
in herbs.

Warfarin should not be taken
with food containing
Dimethyl disulfide

Milić et al. [63], Hu et al. [64]
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4. Discussions

The acknowledgment of DFIs is currently underestimated compared to the concerns for
DDIs. The lack of methods to classify DFIs, drug–nutrient interactions (DNIs), and further
predict novel interactions contributes to the massive manufacturing of drugs regardless
of underlying harmful inter-activities towards food and dietary plans. Thus, we propose
an ML model capable of predicting the directions of compound-level interactions using
SMILES structures.

After applying Tanimoto’s coefficient, the number of food compounds could raise
concerns about insufficient food compounds, potentially reducing the model’s predictive
power for unseen patterns. However, we believe that applying the Tanimoto coefficient
helps to increase generalizability, meaning that 4,341 food constituents can represent others.
To test our model’s ability to predict negative DFIs, we looked at Geranyl rhamnosyl-
glucoside (not included in the final food dataset) to assess whether our model could predict
a negative interaction (“Avoid alcohol”) with Nitroglycerin. The model predicted that
“Nitroglycerin should not be taken with Geranyl rhamnosyl-glucoside”, which was true. In
the second example, the model correctly predicted that Warfarin and Dicoumarol should
not be taken together, even though Dicoumarol was not included in the 4341 foods.

In this study, we used DrugBank annotations to label drug–food interactions as “positive”,
“negative”, and “non-significant”. In the literature, most studies classify drug–food interactions
based on pharmaceuticals–pharmacokinetics–pharmacodynamics [1,23,65]. However, no
study has provided a straightforward and convenient way to apply ML. Therefore, our
classification model can pave the way for further studies on the same topic.

Our proposed framework, with four stages of refinement, removes similar features
and reduces collinearity to improve the model’s performance. From 3780 features, we used
various feature selection methods to sort out the most significant ones for the outcome.
Eventually, we selected only the five most important features, each representing different
aspects of drug or food constituents (see Figure 3). XGBoost has long been used as an
efficient algorithm for classification problems. Its simplicity, high stability, scalability,
and ability to prevent overfitting [66] make XGBoost a robust classifier, particularly in
high-dimensional datasets. Hypertuning further boosted the performance of XGBoost,
demonstrating the potential of this classifier algorithm to correctly detect different types of
DFIs. The experimental results also revealed that XGBoost outperformed MLP, a neural
network-based model, showing that XGBoost can perform better on this type of data.

As previously mentioned, we computed interactions between drugs and food con-
stituents from SMILES. This is similar to previous research conducted by Ryu et al. [5] and
Rahman et al. [38]. However, our study differed from Ryu et al. [5] in terms of labeling the
data and using a predictive model. In our study, we directly predicted drug–food interactions
from the SMILES formula of drug–food constituents. In contrast, Ryu and colleagues predicted
drug–food interactions based on similarity with drug–drug interactions using a Tanimoto coef-
ficient of more than 0.75 (Table 6). However, this approach may not cover all food molecules,
as not all foods are structurally similar to available drugs. Additionally, their performance on
drug-food data was not mentioned, making a complete comparison impossible.

Similar to our research, Rahman et al. [38] used the SMILES of food directly as input
data and based their study on the same databases. However, their training set contained only
788 drugs for analysis. Although they gathered more food constituents (16,230 foods), their
selected foods did not represent the whole FooDB database compared to our work, since we
used Tanimoto’s coefficient for structural similarity filtration. Moreover, our model can detect
drug–food interactions better than Rahman’s approach, with precision ranging from 0.9265 to
1.0 on the external test set compared to their model’s highest precision of 0.84 (Table 6). Our
model’s simplicity is also superior to their proposed method regarding reproducibility.
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Table 6. Comparison of previous methods and ours in terms of advantages, disadvantages, and
main results.

Methods-Architectures Advantages Disadvantages Performances

DeepDDI [5]
- Deep Neural Network.

Leveraging the structural
similarity of food constituents
to interacting drugs to predict
accurately DFIs.

Predicting DFIs indirectly and
may omit some food
constituents

Not clearly stated.

FDMine [38]
- Graph mining approach.

Harnessing the similarity data
from various subnetworks
and merging the information
on food items and their
compound compositions in a
homogeneous graph.

Investigating fewer drug
compounds.
Hard to reproduce.

Highest precision: 0.84

Ours
- Simple classification
algorithms.

Direct predictions from
SMILES descriptions of drugs
and food compounds.
High reproducibility.

Not built on state-of-the-art
architectures.

External test set
Precision: 0.9265 to 1.0.
Recall: 0.9441 to 1.0.
F1-score: 0.9618 to 0.9862.

Knowing which drugs to combine with which food compounds is essential for manag-
ing dietary intake plans and improving treatment outcomes. Based on the model results,
we aim to extend this study to provide drug–food combination recommendations. To
test this, we examined seven commonly used clinical drugs and eight foods that should
not be combined according to DrugBank annotations. For example, consuming alcohol
during treatment with Methotrexate may lead to hepatotoxicity [16,54,55], while the use of
grapefruit juice during treatment with nisoldipine may cause toxicity to patients [59]. Our
model successfully recommended that Methotrexate and nifedipine should not be taken
with these food compounds. However, it may take some time to improve this extension,
and we hope that it will become more helpful in the future.

Despite the promising results of our model, various limitations remained and needed
to be addressed. The first drawback to be considered is the shortage of databases due
to invalid information, such as origins, class, and interactions towards broader classes
of different compounds, of food, nutrients, and drug constituents. In the future, with
broader contributions to the public food database, we believe that ML models’ ability
to predict DFIs will be even more impressive. Second, since there was no standard to
determine in which situation a DFI would be positive or negative, the way we labeled
data in this study, based on DrugBank annotations, may be inappropriate. Third, the
outputs of our model were imperfect, as there were still many incorrect recommendations,
which can negatively affect clinical practice. Furthermore, we can only distinguish between
positive, negative, or non-significant results, but we cannot explain how negatively the
DFIs affect our health. Many aspects need to be improved before our model can become a
robust assistant for medical staff. Therefore, we emphasize that the recommendations of
physicians or pharmacists are of the highest importance, and the outcomes from our model
are only for further consideration. Fourth, although we proved that XGBoost was superior
to a neural network algorithm, we still need to consider other deep methods. In 2018, Ryu
et al. successfully proposed a cutting-edge deep neural network-based model to predict
DDIs [5]. Recently, Lin et al. [67,68] proposed two state-of-the-art deep neural networks
to discriminate DDIs. Motivated by this work, our future focus will be on recruiting deep
learning techniques [69] to classify DFIs more accurately. Finally, the efficacy and stability of
our model require further assessment of different databases, institutions, and contributions
from worldwide scientists to complete the prediction model in the future.

5. Conclusions

To reduce the number of ADEs due to DFIs and DNIs, we propose a new classification
model based on the XGBoost classifier and eighteen optimal features. The ability of our
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model to predict adverse interactions between drug-food compounds can contribute to
drug discoveries and the conformity between prescribed drugs and dietary plans in clinical
medicine. From a large number of drug and food constituents (13,580 and 70,477, respec-
tively), we reduced them to only 1133 drugs and 4341 food compounds. We also identified
the eighteen most important features that yielded the highest predictive performance on
DFIs. Each feature represents a chemical reaction between atoms. Thus, our findings could
contribute to understanding DFIs at the atomic level along with biological experiments. We
believe these findings will benefit the scientific community and patients by decreasing the
number of ADEs caused by DFIs and setting a new standard for DFI prediction models.
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