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Abstract: The optimization objective function of sensor management for target identification is com-
monly established based on information theory indicators such as information gain, discrimination,
discrimination gain, and quadratic entropy, which can control the sensors to reduce the overall
uncertainty of all targets to be identified but ignores the speed of target being confirmed as identified.
Therefore, inspired by the maximum posterior criterion of target identification and the target identifi-
cation confirmation mechanism, we study a sensor management method that preferentially allocates
resources to identifiable targets. Firstly, in the distributed target identification framework based on
Bayesian theory, an improved identification probability prediction method that provides feedback
on the global identification results to local classifiers is proposed, which can improve the accuracy
of identification probability prediction. Secondly, an effective sensor management function based
on information entropy and expected confidence level is proposed to optimize the identification
uncertainty itself rather than its variation, which can improve the priority of the target and achieve
the desired confidence level. In the end, the sensor management for target identification is modeled
as a sensor allocation problem, and the optimization objective function based on the effective function
is constructed, which can improve the target identification speed. The experimental results show
that the correct identification rate of the proposed method is comparable to the methods based on
information gain, discrimination, discrimination gain, and quadratic entropy in different scenarios,
but the average time to confirm the identification is the shortest.

Keywords: sensor management; desired confidence level; target identification; information theory; entropy

1. Introduction

According to the information fusion process functional model of the joint board
of the laboratory of the United States Department of Defense, target identification in
layer 1 fusion object estimation extracts abstract target features and attributes from direct
sensor measurement data and provides the basis for its estimated target classification.
Target recognition is a very important, but difficult to achieve, function in information
fusion. In order to make up for the deficiency of information fusion open-loop processing,
sensor management function is introduced in the fourth layer of fusion process refining.
Specifically, according to the processing results from level 0 to level 3, the future sensor
usage scheme is used to achieve application goals such as early target detection, improved
track quality, accurate target identification, and evidence collection for tactical decision
making; therefore, allowing for information fusion with a feedback loop as shown in
Figure 1 [1]. The purpose of sensor management is to utilize limited sensor resources in
such a way that they detect and acquire the input data required for back-end information
processing to meet the information requirements of applications such as weapon strikes
and command and control. Sensor management is achieved by determining the parameters
of the sensor’s degrees of freedom through optimal criteria while also satisfying practical
operational constraints [1].
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Figure 1. Sensor management constitutes information fusion feedback control. 
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Figure 1. Sensor management constitutes information fusion feedback control.

The problem of sensor management in target recognition has been extensively studied
by scholars. Yang et al. summarized sensor management methods in target recognition [2].
Similar to the general sensor management problem, the sensor management oriented to
target recognition is mainly solved based on optimization technology. The research contents
mainly include problem modeling and optimization objective design. In terms of problem
modeling, sensor management is usually modeled as linear programming, or as sequen-
tial decision problem, such as Markov decision process (MDP), or partially observable
Markov decision process (POMDP). The research is focused on how to solve the POMDP
problem [3–10]. In the aspect of optimization objective design, the information theory
method is widely used in sensor management because it can describe the uncertainty of
target motion state estimation and target identification. For example, Rényi entropy and
Cauchy–Schwartz (CS) divergence are used in sensor management of target tracking [11–13].
In sensor management for target recognition, information theory is also widely used to
construct the optimal criterion of sensor management, and a series of achievements have
been achieved. In terms of discriminative gain, Kastella proposed the method of selecting
sensors with the discriminative gain expectation of the target recognition probability as
the optimization objective for target detection and recognition problem [14]. Jenkins also
proposed a method to establish an optimal target for sensor management based on the
discriminative gain expectation, which is used to solve the adaptive management problem
of image sensors for target classification, proposing the use of Bhattacharyya coefficients and
Chernoff coefficients for offline estimation of the quantitative likelihood function between
different hypotheses [15,16]. Kolba applied the sensor management approach from the liter-
ature [14] to detect and identify mines and extended the algorithm to different application
scenarios such as multi-target, multi-sensor platforms, and multi-mode sensors [17]. The
literature [18] proposes a predictive discriminative gain calculation method using the sensor
confusion matrix. In terms of discriminative power, the literature [19] uses D-S evidence
theory for target identification inference, which is based on the principle of making the
system predictive identification discriminative power maximum for sensor optimization
management. In terms of information gain, [20] proposes a search strategy for sensors
based on maximum information gain for discrete detection units, which implements a
sensor management algorithm for detection and classification. The authors of [21] used
Bayesian networks to obtain multi-sensor feature-level cooperative sensing probabilities.
The method establishes a closed-loop control from cooperative target identification to dy-
namic management of sensors based on the entropy gain of joint sensing information and
uses an intelligent optimization algorithm to improve the efficiency of the “multi-sensor
and multi-target” assignment. In a fused target recognition system based on D-S evidence
theory, Ref. [22] proposed two methods of sensor–target assignment with the predicted
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information gain, and the predicted cumulative uncertainty assigned to the recognition
frame as the optimization objectives, respectively. The authors of [23] compared the per-
formance of several information-theoretic-based search strategies and decision rules for a
typical goal classification problem. Numerous numerical simulations have shown that the
standard quadratic entropy as the correct classification rate is usually the most effective
search strategy. Some scholars have studied the sensor management method of integrated
target tracking and recognition [24–27] and proposed the optimization objective function
based on the threat or risk [24,25].

In the actual target recognition application, the identification–confirmation mecha-
nism is generally adopted, that is, when the probability of the target belonging to a certain
category is greater than the identification–confirmation threshold, the identification of the
target is considered to have been completed, and the subsequent identification and judg-
ment can be terminated [2,23]. Only the result of confirmation–identification is considered
credible, and response measures can be taken against the target according to the identifica-
tion result. Therefore, for users of identification results, it is very important to confirm the
identification of targets as soon as possible. We study the sensor management method to
improve the speed of target recognition–confirmation, which is a novel method based on
task-driven, and there is no relevant research in the current literature. Information theory
is the theoretical basis of uncertainty, which has been widely used in the research of sensor
management for target recognition, so this paper is also based on information theory.

Using the information theory method to manage sensors can improve the correct target
identification rate, but it does not focus on the problem of target identification confirmation
speed. The aim of sensor management for target identification based on an information
theory-based approach is to reduce the overall uncertainty of all targets to be identified.
However, the above methods are not considered to match the identification confirmation
mechanism. Information entropy is a quantitative description of uncertainty. Information
entropy does not directly reflect information size. It is the change of information entropy
that generates information. Information gain and discriminative power are both informa-
tion measures reflecting the change of information entropy, while discriminative power
gain is a measure to obtain the change of information quantity. Therefore, the aim of the
information gain and resolution-based approach to sensor management is to maximize
the amount of information acquired by detection, i.e., the sum of all target information
entropy reduction values. The objective of the discriminative gain-based approach to
sensor management is to maximize the increase in the amount of detected information.
However, since the amount of information acquired by further detection of targets with
high recognition probability is relatively small, the above methods are not conducive to
prioritizing such targets to meet the recognition confirmation threshold, resulting in a lack
of recognition confirmation speed. Take the example of a sensor detecting two targets. The
target categories are two categories. At the same time, one sensor can only observe one
target. The current recognition state probability distributions of target 1 and target 2 are
π1(t) = (0.87, 0.13), π2(t) = (0.5, 0.5), the recognition confirmation threshold is set to 0.9.
From the perspective of fast confirmation of target identification, target 1 is further detected
by using the sensor to increase the recognition probability to the recognition confirmation
threshold, thus confirming that target 1 has been identified. The reason for using the sensor
for target 2 detection based on information gain, resolution, etc., is that the information
obtained for target 2 detection is greater than that for target 1. However, in this case, neither
target can be confirmed for identification. Clearly, identification of target 1 is the more
reasonable sensor use decision. Aiming at the shortcomings of existing sensor management
methods based on information theory in terms of target recognition confirmation speed,
this paper proposes a new method. The newly proposed method combines the great poste-
rior criterion of sensor management with the target recognition–confirmation mechanism
of target recognition.

The method improves the target recognition probability prediction by feeding the
global recognition results back to the local classifier to provide a more accurate recognition
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effectiveness estimation for sensor management. Additionally, a segmented target recog-
nition effectiveness function based on information entropy and recognition confirmation
threshold is constructed to optimize the uncertainty of the target recognition rather than
the amount of variation, to increase the priority of targets that satisfy the recognition
confirmation threshold, thus ensuring the correct recognition of targets while reducing the
confirmation recognition time.

This paper is organized as follows: Section 2 introduces the sensor management
problem in distributed target identification. Section 3 describes the proposed sensor man-
agement method for confirming the priority of identified targets. Section 4 illustrates the
simulation experiment process and results, and Section 5 is the conclusion.

2. Sensor Management Issues in Distributed Target Recognition

To ensure the accuracy and reliability of target identification, it is often necessary
to collect multi-dimensional feature information from multiple platforms and sensors,
and then identify the target by fusing multiple information sources. In multi-platform
distributed target recognition, a hierarchical decision-level target recognition structure is
usually used, i.e., a local classifier first estimates the unknown target class based on the
observations of the sensors and then aggregates this local recognition result to the fusion
center, which makes a global recognition estimate based on the received multiple local
recognition results.

The above target identification process is open-loop, and after the introduction of
sensor management, a closed-loop target identification process with feedback is formed,
as shown in Figure 2. After the sensor observes the target, the target recognition result is
obtained through the distributed target recognition estimation, the sensor management
module makes the next sensor make a decision based on the target recognition result and
the recognition demand, and the feedback control sensor obtains the observation that
better allows the recognition result to meet the recognition demand in order to improve the
overall effectiveness of the target recognition.
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2.1. Hierarchical Decision-Level Goal Identification

Consider a scenario where the sensor network consisting of R sensors identifies N
targets. The category of targets belongs to a known target identification domain Ψ with
complete and mutually exclusive M elements, Ψ , (ω1, ω2, · · · , ωM). Let ci denote the true
category of target i, and ci is a fixed value that does not change with time but is unknown
and needs to be estimated by sensor observations. Assume the category of target i is a
random variable xi, whose prior probability is known. The process of target identification
at the hierarchical decision level is as follows.

(a) Sensor-level target identification
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For the target i, the measurement of sensor j at the moment t is zij(t), and all mea-
surements obtained at time t for target i are Zij(t), where Zij(t) =

(
zij(0), · · · , zij(t)

)
. The

target classification result of the local classifier is P(xi
∣∣Zij(t)) , j = 1, 2, · · · , R, then, the

local identification results are reported to the fusion center. If sensor j cannot detect target
i, the corresponding measurement is empty, and no classification result is reported to the
fusion center.

(b) Decision-level fusion for target identification
The optimal identification estimation of the target by the fusion center should be

based on all sensor measurements Zi(t) = (Zi1(t), · · · , ZiR(t)). It is necessary to know
the correlation between the measurements of the information sources in the observa-
tion set Zi(t), that is, the conditional probability knowledge of each sensor measurement
P(Zi1(t), · · · , ZiR(t)|xi = ωk ). If the target category is assumed to be ωk, and sensor mea-
surements are conditionally independent, i.e.,

P(Zi1(t), · · · , ZiR(t)|xi = ωk ) = ∏R
j=1P(Zij(t)|xi = ωk ) (1)

Then, according to the Bayesian theory,

P(xi|Zi1(t), · · · , ZiR(t)) =
P(Zi1(t),··· ,ZiR(t)|xi)P(xi)

P(Zi1(t),··· ,ZiR(t))

=
P(xi)∏R

j=1 P(Zij(t)|xi)
P(Zi1(t),··· ,ZiR(t))

(2)

Since P
(
Zij(t)

∣∣xi
)
=

P(xi|Zij(t))P(Zij(t))
P(xi)

, P(Zi1(t), · · · , ZiR(t)) = ∑ωM
v=ω1 P(Zi1(t), · · · , ZiR(t)|v)P(v),

then

P(xi|Zi1(t), · · · , ZiR(t)) =
P(xi)∏R

j=1

[
P(xi|Zij(t))P(Zij(t))

P(xi)

]
∑

ωM
v=ω1 P(Zi1(t),··· ,ZiR(t)|v)P(v)

=
P(xi)

−(R−1) ∏R
j=1[P(xi|Zij(t))P(Zij(t))]

∑
ωM
v=ω1 P(v)−(R−1) ∏R

j=1[P(v|Zij(t))P(Zij(t))]

=
P(xi)

−(R−1) ∏R
j=1 P(xi

∣∣∣Zij(t))

∑
ωM
v=ω1 P(v)−(R−1) ∏R

j=1 P(v
∣∣∣Zij(t))

(3)

where P(xi
∣∣Zij(t)) is the probability of the target i belonging to category xi according to

the measured Zij(t) generated by the local classifier j and reported to the fusion center.
This indicates that the fusion center can make target identification estimates based on local
recognition results rather than raw sensor measurements, which is intended to reduce the
amount of data reported by sensors to the fusion center.

After obtaining P(xi|Zi1(t), · · · , ZiR(t)), the large posterior criterion is used to deter-
mine. Let the target i recognition result be ω f , then

ω f = argmax(P(xi|Zi1(t), · · · , ZiR(t))) (4)

If P
(

xi = ω f

∣∣∣Zi1(t), · · · , ZiR(t)
)
> ε, ε is the recognition confirmation threshold, then

the recognition result of target i is considered to reach a confidence level without further ob-
servation and recognition [2,23], and the user can trust the recognition result. Additionally,
if P
(

xi = ω f

∣∣∣Zi1(t), · · · , ZiR(t)
)
< ε, then the recognition result is fuzzy, which therefore

cannot determine the target category and needs to continue the recognition process.

2.2. Sensor Management for Object Recognition

The sensor management of discrete-time target recognition is the decision-making
about the next moment of sensor action, where the sensor action is simplified to whether
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or not to detect a certain target. It is decided at time t which targets are detected by the
sensors, and the sensor detect action uij(t) is defined as:

uij(t) =
{

1 Sensor j detects target i at time t
0 Others

(5)

Then, the sensor network detection action at time t for target i is ui(t) = (ui1(t), · · · , uiR(t)).
The j-th sensor sj in sensor set S detects target i and obtains an observation zij(t), whose
probability p(zij(t)

∣∣sj, ci) is known and independent of the sampling instants.
The conditional probability distribution of the state xi of target i is πi(t) = P[xi|I(t)] .

Since the targets are independent of each other, let πik(t) denotes the probability of xi = ωk
under the conditions of information I(t) has been obtained, then

πi(t) = (πi1(t), πi2(t), · · · , πiM(t)) (6)

Since the initial probability of the target category is known, I(0) = {πi(0), i = 1, . . . , N},
the information at time t is

I(t) = I(t− 1) ∪ {ui(t), zi(t), i = 1, . . . , N} (7)

Thus, the state probability distributions, measurements, and sensor detection actions
of all targets can be obtained as follows:

⇀
π(t) = (π1(t), · · · , πN(t))
⇀
z (t) = (z1(t), · · · , zN(t))
⇀
u (t) = (u1(t), · · · , uN(t))

(8)

The problem that sensor management needs to solve is to determine sensor actions
at the next moment

⇀
u (t + 1) based on I(t) and

⇀
π(t), It can be modeled as a problem of

assigning sensors to targets to be identified.
Since a sensor can observe multiple targets at the same moment, it is also possible to

assign multiple sensors to observe the same target, and the sensors in the sensor set S are
called basic sensors. The pseudo-sensor is a synthetic sensor composed of a set of basic
sensors, such that at most one sensor (basic sensor or pseudo-sensor) is assigned to a target
at the same moment.

The sensor k
(
k = 1, 2, · · · , 2R − 1

)
assigned to the target i(i = 1, 2, · · · , N) is denoted

as eij = 1, otherwise eij = 0, then all eij formed assignment matrix E of the N × (2R − 1)
order. Let the maximum number of simultaneous measurement targets of basic sensor j be
lj(j = 1, 2, · · · , R), and S(j) be an integer set composed of the serial numbers of all sensor
combinations (basic sensors and pseudo-sensors) including basic sensor j. Then, the sensor
management for target identification can be defined as the following allocation problem in
the sense of expecting the sum of detection effectiveness of each sensor for the target under
the sensor usage decision to be maximum.

P
(
xi | Zij(t)

)
=

P
(
zij(t) | xi

)
P
(
xi | Zij(t− 1)

)
∑wM

v=w1 P
(
zij(t) | v

)
P
(
v | Zij(t− 1)

) (9)

where the qik is the sensor effectiveness function for target detection, which directly affects
subsequent sensor usage decisions and is the key to modeling the sensor management
problem. Information gain, discriminative power, discriminative power gain, and quadratic
entropy are all methods commonly used to construct the effectiveness function based on
information theory, as described in Appendix A.
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Additionally, we satisfy the following constraints:{
∑2R−1

k=1 eik ≤ 1, i = 1, 2, · · · , N
∑k∈S(j) eik ≤ lj, j = 1, 2 · · · , R

(10)

The purpose of the first constraint is to limit the recognition of the same target by
no more than one sensor (combination), and the purpose of the second constraint is to
limit the number of targets assigned to a sensor to no more than the maximum number of
detected targets.

3. Sensor Management Method of Giving Priority to the Confirmable Identify Targets

To improve the speed of target recognition, this paper proposes a sensor management
method that confirms the priority of recognized targets. The proposed method makes
improvements in both recognition result prediction and effectiveness function construction.
First of all, sensor management is the sensor assignment in the next moment. The prediction
accuracy of the target recognition result by the sensors in the next moment directly affects
the effectiveness of the sensor management decision, which is the basis for improving the
speed of target recognition, for which the global recognition result is fed back to the local
classifier to improve the target recognition probability prediction. Secondly, in order to fit
with the great posterior criterion and the target recognition confirmation mechanism, the
information entropy, which is more conducive to optimizing the probability distribution of
the target category, is selected to construct the target recognition effectiveness function and
to increase the priority of confirmable recognition targets. Finally, based on the allocation
constraint function and objective function of the sensor, the 0–1 integer programming is
used to solve the sensor action and realize the sensor management method of allocating
resources to the confirmable recognition target with priority.

3.1. Global Fusion Recognition Results Feed Local Classifier for Target Recognition Prediction

For the target i, if the sensor j can predict the identification result xi(t|t− 1) by using
the measurement set Zij(t− 1) obtained until the time t − 1 before the measurement zij(t)
is obtained by the sensor j at the time t, according to [14]

P
(

xi
∣∣Zij(t)

)
=

P
(
zij(t)

∣∣xi
)

P
(
xi
∣∣Zij(t− 1)

)
∑wM

v=w1 P
(
zij(t)

∣∣v)P(v∣∣Zij(t− 1)
) (11)

Since zij(t) is not actually obtained at time t − 1 and is unknown, if the measurement
is discrete-valued, then the probability distribution of zij(t) is as follows:

P
(
zij(t)

∣∣Zij(t− 1)
)
= ∑wM

v=w1 P
(
zij(t)

∣∣v)P(v|Zij(t− 1)) (12)

The expected value of the probability distribution of the predicted recognition result
at moment t is E

(
P
(

xi
∣∣Zij(t|t− 1)

))
.

E
(

P
(

xi
∣∣Zij(t|t− 1)

))
= ∑zij(t) P

(
xi
∣∣Zij(t)

)
P
(
zij(t)

∣∣Zij(t− 1)
)

= ∑
zij(t)

P(zij(t)|xi)P(xi|Zij(t−1))
∑

wM
v=w1 P(zij(t)|v)P(v|Zij(t−1))

wM
∑

v=w1

P
(
zij(t)

∣∣v)P(v∣∣Zij(t− 1)
)

= ∑
zij(t)

P
(
zij(t)

∣∣xi
)

P
(
xi
∣∣Zij(t− 1)

)
= P

(
xi
∣∣Zij(t− 1)

) (13)

It can be seen from Equation (13) that the expected value of the probability distribution
of the predicted recognition result of a single sensor is the estimated value at the previous
moment, and only its detection information is used in the prediction. Recognition result
prediction is the basis for sensor assignment decisions, and more accurate prediction is
conducive to more reasonable sensor assignment, which in turn improves recognition
speed. Therefore, we propose to use the detection information of other sensors to improve



Sensors 2023, 23, 3959 8 of 24

the recognition result prediction of a single sensor, i.e., the global fusion recognition result
is fed back to the local classifier, and the local classifier uses the fusion center recognition
result to predict the recognition probability distribution of the sensor. Let the fusion center
identification result be ω f , then the predicted observation value P(zij(t)) = P

(
zij(t)

∣∣∣ω f

)
of

sensor j at time t is the possible detection result when the target category is ω f .

É
(

P
(

xi
∣∣Zij(t|t− 1)

))
= ∑zij(t)P

(
xi
∣∣Zij(t)

)
P
(

zij(t)
∣∣∣ω f

)
(14)

In (14), P
(

xi
∣∣Zij(t)

)
can be calculated recursively according to (11), and P

(
zij(t)

∣∣∣ω f

)
is a known item, that is p(zij(t)

∣∣sj, ci) , where ci = ω f . Denote the predicted value of the

recognition probability distribution of the basic sensor j as
→
P
(
xi
∣∣Zij(t|t− 1)

)
,

→
P
(

xi
∣∣Zij(t|t− 1)

)
= É

(
P
(
xi
∣∣Zij(t|t− 1)

))
.

Taking É
(

P
(

xi|Z ij(t|t− 1)
))

as P(xi
∣∣Zij(t)) , then the predicted target recognition

probability distribution
→
P
(

xi
∣∣Zij(t|t− 1)

)
of the pseudo-sensor (sensor combination) can

be calculated based on the Bayesian combination classification method; k is the number of
the pseudo-sensor.

3.2. Efficacy Function Based on Information Entropy and Identification of Determination Thresholds

The identification result
→
P
(
xi
∣∣Zij(t|t− 1)

)
of the target i by the k-th sensor (basic

sensor or pseudo-sensor) at time t can be predicted. Let the maximum probability in the

identification result be
→
Pmax(xi).

→
Pmax(xi) = max

xi
[
→
P(xi|Zik(t|t− 1))] k = 1, 2, · · · , 2R − 1 (15)

Define the effectiveness function of sensor k on target i as qij, and the classification
confirmation degree threshold is ε. The effectiveness function based on information entropy
and recognition confirmation threshold is constructed as Equation (16).

qij =


1

→
Pmax(xi) ≥ ε

1−
H
(→

P(xi |Zik(t|t−1))
)

Hmax

→
Pmax(xi) < ε

(16)

where H
(→

P
(

xi
∣∣Zij(t|t− 1)

))
is the entropy of

→
P
(
xi
∣∣Zij(t|t− 1)

)
, and Hmax is the entropy

when the probability of each category is equal. Information entropy is used here because
its quantitative representation of uncertainty in target identification is directly related
to the prediction of maxima probability in identification results. Lower entropy means
less uncertainty and a higher probability maximum in the prediction recognition result.
When the probability distribution of the target belonging to each category is uniform, the
information entropy is the largest, the maximum probability in the prediction recognition
result is the smallest, and the uncertainty is also the largest.

The information gain, discriminative power, and discriminative power gain reflect
the relative change amount, which is not directly related to the probability maximum in
the prediction recognition result, and therefore the optimization ability of the probability
maximum in the prediction recognition result is not as good as the information entropy.
→
Pmax(xi) ≥ ε, cij is directly assigned to be 1 in order to improve the priority of meeting the
classification confirm threshold.
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3.3. Target Identification Process Integrated into Sensor Management

In summary, the sensor management link is introduced to construct a distributed
target recognition process with feedback, the flow chart of the proposed method is shown
in Figure 3 and the specific processing steps are as follows.
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Step 1. Initialize the recognition results of each basic sensor for the target and the
recognition results of the fusion center.

Let t = 0, and the target recognition result of the initialized basic sensor j is
⇀
π

j
(0) =(

π
j
1(0), · · · , π

j
N(0)

)
, j = 1, 2, · · · , R, where π

j
1(0) =

(
π

j
i1(0), π

j
i2(0), · · · , π

j
iM(0)

)
,

i = 1, 2, · · · , N is the known prior probability of the target category.
Step 2. Identification confirmation. For target i, the maximum probability that

the target belongs to a certain category in the recognition result f rom Pmax(πi(t)) =
max(πi1(t), πi2(t), · · · , πiM(t)), if Pmax(πi(t)) ≥ ε, then the identification of this target
is terminated. ε is the recognition confirmation threshold.

If all targets to be identified have been confirmed for identification, the target identifi-
cation process is terminated.

Step 3. Sensor management.
(1) Predict the recognition results of the basic sensors according to Equation (14).
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(2) Calculate the predicted identification results of the pseudo-sensor according to
Equation (3).

(3) Calculate the effectiveness of the basic sensor and pseudo-sensor according to
Equation (16).

(4) The effectiveness function is substituted into the distribution problem defined by
Equations (9) and (10), and the sensor action

⇀
u (t) is determined using the 0–1 integer

programming solution method.
Step 4. After sensor detection of the target, t = t + 1, measurements zij(t), i =

1, 2, · · · , N, j = 1, 2, · · · , R can be obtained.
Step 5. Each sensor updates the recognition result according to Equation (11) and

reports it to the fusion center.
Step 6. The fusion center updates the global identification results according to Equation (3).
Then, return to step 2.

4. Simulation Results
4.1. Design of the Verification Method for the Proposed Algorithm

The operation processes of the methods based on information gain, discriminative
power, discriminative power gain, and quadratic entropy are basically the same as the
method in this paper, the difference is that the effectiveness function in sensor management
as qij is solved according to the definitions of information gain, discriminative power,
discriminative power gain, and quadratic entropy in the appendix, and the recognition
results of the basic sensor are predicted according to Equation (13).

The proposed method is compared with the methods based on information gain, dis-
criminative power, discriminative gain, and quadratic entropy. In step 2 of the identification
confirmation process in section C, if the probability that target i belongs to a class is greater
than or equal to the recognition confirmation threshold, then the recognition process for
that target is ended. The recognition confirmation time of target i is ti. If the final identified
target category of target i is the same as the true category ci, it is judged to be correctly
identified and the number of correctly identified targets Nc is added to 1. When all targets
have been confirmed for identification, statistics of the correct recognition rate Pc of this
simulation and the total number of correctly identified targets is Nc.

Ta =
1
N ∑N

i=1ti (17)

Pc =
Nc

N
∗ 100% (18)

where N is the total number of simulated targets, and Nc is the total number of correctly
identified targets.

In the simulation validation, step 4 in section C of the previous section is based on
the detection performance of the sensor, i.e., according to the distribution probability
p
(
zij(t)

∣∣sj, ci
)

of the observation information zij(t) of the object i based on sensor j, the
simulated data are obtained. zij(t) is defined as the recognition result of the sensor on
the target category instead of the original measurement. p

(
zij(t)

∣∣sj, ci
)

indicates the
probability that the sensor j recognizes the target of real class ci as class ωk, which is
called the confusion probability and can be obtained based on the statistical analysis of
the sensor’s historical detection data. Therefore, the confusion matrix is constructed to
characterize the characteristics of the sensor. The confusion matrix of sensor j is expressed
as Pj =

(
pj

kl

)
M×M

, element pj
kl is the probability that sensor j identifies the target of class

k as the target of class l [18]. In practical applications, the measurement probability of
a sensor may not only be related to the real category of target, but also to the specific
situation and environment. It is necessary to model the detection performance according
to the specific sensor model, so that the measurement probability varies with changes in
situational and environmental information.
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4.2. Design of the Scene

In many target recognition problems in military applications, the number of target
types is less than five. For example, when it is necessary to judge the authenticity of the
target, whether there is a target, and whether the target is a surface target or an air target,
the number of target types can be considered to be two. When it is necessary to determine
whether the surface target is a large ship, medium ship, or small ship, or whether the
underwater target is a submarine, torpedo, or mine, the number of target types can be
considered to be three. When it is necessary to determine whether the target attribute
is enemy, our side, friend side, neutral, or unknown, the number of target types can be
considered to be five. There are not many sensors to perform above identification tasks on
platforms such as ships, aircraft, unmanned boats, and other unmanned platforms.

Considering the above application requirements, and to verify the sensor management
efficiency of the proposed method in various situations of single sensor identification and
multi-sensor cooperative identification, the following five scenarios are designed according
to the number of target categories and applicable sensors. It is assumed that the surveillance
areas in all scenarios consist of N = 10 discrete units and each unit has one target. Each
sensor can only detect one target at a time.

The setting of scenario 1 focuses on clearly demonstrating the processing process of
sensor management but does not involve multi-sensor cooperative identification. Scenarios
2–5 involve the collaborative recognition of multiple types of targets by multiple sensors,
which can verify the decision-making level fusion by fusion center using multi-sensor
identification information under hierarchical distribution, as well as the prediction process
of multi-sensor recognition result of the same target in sensor management. The simulation
results of five scenarios and five parameter configurations demonstrate that the proposed
method can be applied to the recognition of multi class targets by multiple sensors. When
there are more types and numbers of targets, the efficiency of sensor management depends
on the efficient solution of the efficiency function constructed in this article, which is not
the problem solved in this paper.

Scenario 1: Since it is detecting whether there is a target in each unit, then the number
M of target types is 2, and only one sensor is used for target detection. When the confusion
matrix is set to a fixed value, the confusion matrix is set according to the detection rate and
false alarm rate of the sensor as follows:

P1 =

[
0.87 0.13
0.13 0.87

]
Scenario 2: Identify the class of targets within each unit with type number M of 3. Two

sensors are used to detect the targets. When the confusion matrix is set to a fixed value,
confusion matrices are as follows:

P2 =

0.98 0.1 0.1
0.01 0.8 0.1
0.01 0.1 0.8


P3 =

0.8 0.1 0.01
0.1 0.8 0.01
0.1 0.1 0.98


Scenario 3: Identify the class of the targets in each unit with type number M of 3.

Three sensors are used to detect the targets. In addition to using the sensor in scenario 2,
add another sensor with the following confusion matrix. When the confusion matrix is set
to a fixed value, the confusion matrix of the added sensor is as follows:

P4 =

0.8 0.01 0.1
0.1 0.97 0.1
0.1 0.02 0.8


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Scenario 4: Identify the class of targets within each unit with type number M of 5. Two
sensors are used to detect the targets. When the confusion matrix is set to a fixed value,
confusion matrices are as follows:

P5 =


0.96 0.05 0.02 0.04 0.05
0.01 0.80 0.02 0.04 0.05
0.01 0.05 0.92 0.04 0.05
0.01 0.05 0.02 0.84 0.05
0.01 0.05 0.02 0.04 0.80



P6 =


0.80 0.04 0.05 0.02 0.01
0.05 0.84 0.05 0.02 0.01
0.05 0.04 0.80 0.02 0.01
0.05 0.04 0.05 0.92 0.01
0.05 0.04 0.05 0.02 0.96


Scenario 5: Identify the class of targets within each unit with a type number M of 5.

Three sensors are used to detect the targets. Add a sensor in addition to the one used in
scenario 4. When the confusion matrix is set to a fixed value, the confusion matrix of the
added sensor is as follows:

P7 =


0.80 0.04 0.01 0.025 0.05
0.05 0.84 0.01 0.025 0.05
0.05 0.04 0.96 0.025 0.05
0.05 0.04 0.01 0.900 0.05
0.05 0.04 0.01 0.025 0.80


The detection period of sensors in all scenarios is set to 1 s. Based on the above scenario

information, analyze the sensor management efficiency for target recognition in different
scenarios.

4.3. Simulation Results of the Proposed Algorithm
4.3.1. The Process of Managing Individual Sensors

Take the sensor recognition of two targets in scenario 1 as an example to illustrate
the target recognition process after incorporating sensor management. To compare the
proposed method with the methods based on information gain, resolution, resolution gain,
and quadratic entropy under the same conditions, the true categories of targets 1 and 2 are
fixed to 2 and 1, respectively. The initial recognition probability distribution of the fusion
center for targets 1 and 2 is [0.5, 0.5]. The corresponding observations are generated in
the simulation according to the true class of the target, rather than randomly based on the
probability of occurrence of the measurement.

The specific processing process of the five methods is shown in Table 1, and the sensor
assignment results are shown in Figure 4. Figure 4a shows the sensor assignment results of
the methods in this paper, and Figure 4b shows the sensor assignment results based on the
information gain, resolution, resolution gain, and quadratic entropy. It can be seen that after
the sensor detects the target in the first second, the sensor assignment and identification
results are the same for the five methods. However, in the second, since the information
obtained by the detection of target 1 is smaller than that of target 2, the method based on
information theory is chosen to detect target 2, while the proposed method continues to
detect target 1. Thus, after two seconds, the proposed method makes target 1 confirmed
recognition, while the other four methods cannot confirm the recognition of any target.
Finally, all five methods can complete the recognition confirmation of two targets after
four seconds, and the correct recognition rates are 100%, but the average recognition
confirmation time of this method is 3 s, while the other methods are 3.5 s.
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Table 1. Processing of sensor recognition of 2 targets in scenario 1.

The Proposed
Method Information Gain Discrimination Discrimination Gain Quadratic Entropy

Initial
Status

Sensors
π1

1(0) = [0.5, 0.5]
π1

2(0) = [0.5, 0.5]
π1

1(0) = [0.5, 0.5]
π1

2(0) = [0.5, 0.5]
π1

1(0) = [0.5, 0.5]
π1

2(0) = [0.5, 0.5]
π1

1(0) = [0.5, 0.5]
π1

2(0) = [0.5, 0.5]
π1

1(0) = [0.5, 0.5]
π1

2(0) = [0.5, 0.5]

Fusion Center π1(0) = [0.5, 0.5]
π2(0) = [0.5, 0.5]

π1(0) = [0.5, 0.5]
π2(0) = [0.5, 0.5]

π1(0) = [0.5, 0.5]
π2(0) = [0.5, 0.5]

π1(0) = [0.5, 0.5]
π2(0) = [0.5, 0.5]

π1(0) = [0.5, 0.5]
π2(0) = [0.5, 0.5]

Second 1

Effectiveness Matrix q
[

0.2287
0.2287

] [
0.4426
0.4426

] [
0.4426
0.4426

] [
0.4426
0.4426

] [
0.6300
0.6300

]
Allocation results Identify the target 1 Identify the target 1 Identify the target 1 Identify the target 1 Identify the target 1

Sensor recognition
results

[
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

]
Fusion recognition

results

[
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

] [
0.13 0.87
0.50 0.50

]

Second 2

Effectiveness Matrix q
[

1.0000
0.2287

] [
−0.0184
0.4426

] [
0.3407
0.4426

] [
−0.1019
0.4426

] [
−0.1615
0.6300

]
Allocation results Identify the target 1 Identify the target 2 Identify the target 2 Identify the target 2 Identify the target 2

Sensor recognition
results

[
0.0218 0.9782
0.5000 0.5000

] [
0.13 0.87
0.87 0.13

] [
0.13 0.87
0.87 0.13

] [
0.13 0.87
0.87 0.13

] [
0.13 0.87
0.87 0.13

]
Fusion recognition

results

[
0.0218 0.9782
0.5000 0.5000

] [
0.13 0.87
0.87 0.13

] [
0.13 0.87
0.87 0.13

] [
0.13 0.87
0.87 0.13

] [
0.13 0.87
0.87 0.13

]

Second 3

Effectiveness Matrix q [0.2287]
[
−0.0184
−0.0184

] [
0.3407
0.3407

] [
−0.1019
−0.1019

] [
−0.1615
−0.1615

]
Allocation results Identify the target 2 Identify the target 1 Identify the target 1 Identify the target 1 Identify the target 1

Sensor recognition
results

[
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

]
Fusion recognition

results

[
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

] [
0.0218 0.9782
0.8700 0.1300

]

Second 4

Effectiveness Matrix q [1] [−0.0184] [0.3407] [−0.1019] [−0.1615]

Distribution results Identify the target 2 Identify the target 2 Identify the target 2 Identify the target 2 Identify the target 2

Sensor recognition
results

[
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

]
Fusion recognition

results

[
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

] [
0.0218 0.9782
0.9782 0.0218

]

results

Target identification
results

target 1: Identified
correctly, Confirm

recognition time: 2 s;
target 2: Identified
correctly, Confirm

recognition time: 4 s

target 1: Identified
correctly, Confirm

recognition time: 3 s;
target 2: Identified
correctly, Confirm

recognition time: 4 s

target 1: Identified
correctly, Confirm

recognition time: 3 s;
target 2: Identified
correctly, Confirm

recognition time: 4 s

target 1: Identified
correctly, Confirm

recognition time: 3 s;
target 2: Identified
correctly, Confirm

recognition time: 4 s

target 1: Identified
correctly, Confirm

recognition time: 3 s;
target 2: Identified
correctly, Confirm

recognition time: 4 s

Correct recognition rate 100% 100% 100% 100% 100%

Average identification
confirmation(s) time 3 3.5 3.5 3.5 3.5
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4.3.2. The Process of Allocating Multiple Sensors

Assume that 10 targets are detected using three sensors in scenario 3. The proposed
method is compared with the methods based on information gain, discriminative power,
discriminative power gain, and quadratic entropy under the same conditions. The true
categories of each of the 10 targets are fixed as follows: 3, 2, 2, 1, 3, 2, 2, 2, 2, and 1. The
initial recognition probability distribution of the fusion center is the same for the 10 targets.
The corresponding observations are generated in the simulation according to the true
class of the targets, rather than randomly based on the probability of occurrence of the
measurement.

⇀
π(0) =



0.4197 0.1865 0.3938
0.3674 0.3998 0.2328
0.2637 0.7092 0.0271
0.3412 0.3520 0.3069
0.1418 0.3763 0.4819
0.4421 0.0888 0.4691
0.0851 0.5210 0.3939
0.3249 0.2982 0.3769
0.4631 0.1737 0.3632
0.2034 0.0314 0.7652


The results of the proposed method and the results based on information gain are

shown in Figures 5 and 6, respectively. The horizontal axis in the figure is time, the vertical
axis is the target number, and the three curves indicate the targets assigned to be detected
by the three sensors at each moment, taking Figure 5 as an example, the target numbers
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detected by sensor 1 in seven cycles are 1, 2, 4, 8, 9, 7, and 7. It can be seen from Figures 5
and 6 that the proposed method can continuously allocate two sensor resources to low
uncertainty targets at multiple moments, so that the targets can be quickly confirmed
and identified. Additionally, the proposed method does not allocate all three sensors to
the same target. However, other methods allocate sensor resources to multiple targets
evenly at the beginning, so as to maximize the total reduction in uncertainty for all targets
but give up the concentration of resources to make the low uncertainty target reach the
recognition degree as soon as possible, resulting in a long time to complete the identification
of all targets. The comparison results show that the proposed method can allocate sensor
resources appropriately and without waste. The performances of different algorithms are
shown in Table 2. The correct recognition rate of the proposed method is 100%, which is
better than or equivalent to other methods. The average recognition–confirmation time is
4.1 s, and the final target identification–confirmation time is 7 s, which are the shortest of
all methods.
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Table 2. Performance comparison of sensor management algorithms.

Indicators The Proposed
Method

Based on
Information Gain

Based on
Discrimination

Based on
Discrimination

Gain

Based on Quadratic
Entropy

Correct recognition
rate (%) 100.0 100.0 80.0 90.0 100.0

Average confirmation
recognition time (s) 4.1 6.9 11.6 12.6 7.6

Maximum number of
cycles for

identification
confirmation (s)

7 11 19 18 12

4.3.3. The Performance Comparison of Algorithms in 5 Scenarios

After visualizing the processing of the five algorithms in the above two experiments,
this experiment compares the performance of the algorithms under large batch random
simulation. In each simulation experiment, the real category of the target is set randomly.
In the simulation, the probability of the target belonging to each category is determined
according to the real category and confusion matrix of the target, and the observation value
is generated randomly according to this. The confusion matrix of the sensor, the initial prob-
ability of target recognition by the sensor, and the initial probability of target recognition
by the fusion center are three factors that have a great influence on the simulation results.

In this paper, there are three simulation methods for the sensor confusion matrix:
A1: Fixed values specified in Section 4.2;
A2: The confusion probabilities are all random values, and the probability of correct

recognition of the target category is guaranteed to be no less than 0.7;
A3: The recognition confusion probability of a certain type of target by the sen-

sor conforms to the binomial distribution B(n − 1, p), where n is the number of target
types, and the parameter p of class n targets is selected out from the fixed disordered set
[0.12, 0.91, 0.23, 0.7, 0.45].

There are three simulation methods for the initial probability of target recognition by
the sensor, which are as follows:

B1 follows uniform distribution;
B2 follows random distribution;
B3 represents the prior knowledge with noise, that is, the probability of correct recogni-

tion is equiprobability plus a random value of 0~0.2, and the probability of other recognition
confusion is equal.

There are two initial probabilities for the fusion center to recognize each target,
which are:

C1 follows the random distribution. That is, the initial recognition probability of each
object is a random value that does not exceed the recognition and confirmation threshold.

C2 represents the prior knowledge with noise, that is, the probability of correct recogni-
tion is equiprobability plus a random value of 0~0.2, and the probability of other recognition
confusion is equal.

Based on the simulation methods of the above three factors, this paper sets five
simulation parameter conditions, as shown in Table 3.
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Table 3. Simulation settings of parameters.

Condition Confusion Matrix of Sensors The Initial Probability of Target
Recognition by the Sensor

The Initial Probability of Target
Recognition by the Fusion Center

1 A1 B1 C1
2 A1 B2 C1
3 A1 B3 C2
4 A2 B1 C1
5 A3 B3 C2

Under the above five simulation parameter setting conditions, the five scenarios were
simulated 1000 times.

In scenario 5’s simulation of the first parameter setting, Figures 7–9 show the per-
formance changes of various algorithms with the advancement of simulation time. The
horizontal axis of all three figures is time, measured in seconds. The vertical axis of Figure 7
is the number of targets that have completed recognition–confirmation at each time; the
vertical axis of Figure 8 is the recognition accuracy rate of the identified targets at each time;
and the vertical axis of Figure 9 is the recognition accuracy rate of all targets at each time,
including the confirmed and unrecognized targets. It can be seen that in the early stage
of the simulation, the method proposed in this paper has a large number of confirmed
targets and a high correct recognition rate of identified targets, while the method based on
information theory has a higher correct recognition rate of all targets. This shows that the
method in this paper concentrates the sensor resources on the targets that can be identified,
while the method based on information theory distributes the sensor resources equally to
all targets. The correct recognition rate of different algorithms is shown in Figure 10. It can
be seen that the correct recognition rate of the proposed method in this paper is comparable
to or better than other methods.
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Figure 7. Sequence diagram of the number of confirmed targets in scenario 5 under condition 1.
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Figure 9. Sequence diagram of all target recognition accuracy rates in scenario 5 under condition 1.

The comparisons of average confirmation recognition time based on various algo-
rithms under the five simulation conditions are shown in Figures 11–15. It can be seen that
the average confirmation–recognition time of the proposed method is shorter than other
methods in different scenarios, indicating that the proposed method achieves the purpose
of shortening the target recognition–recognition time.
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Figure 10. Comparison graph of correct recognition rate by various algorithms in scenario 5 under
condition 1.
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Figure 11. Comparison chart of average confirmation recognition time by various algorithms under
condition 1.
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Figure 12. Comparison chart of average confirmation recognition time based on various algorithms
under condition 2.
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Figure 13. Comparison chart of average confirmation recognition time based on various algorithms
under condition 3.
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Figure 14. Comparison chart of average confirmation recognition time based on various algorithms
under condition 4.
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under condition 5.

To verify the effectiveness of the proposed method that feedbacks the global identify
results to local classifiers, we change the method of predicting the recognition result of
basic sensors in step 3 of the target recognition process in section C from Equation (14) to
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Equation (13), called the feedback-free confirmation recognition target-first sensor man-
agement method. It can be seen from Figures 11–15 that the feedback-free confirmation
recognition target-first sensor management method has inferior performance than the
method in this paper, but it is better than the methods based on information gain, discrim-
inative power, discriminative power gain, and quadratic entropy gain, which indicates
that the effectiveness function based on information entropy recognition confirmation
threshold is better, and the global fusion recognition result feedback local classifier target
recognition prediction method can predict the recognition result more accurately, thus
further shortening the recognition confirmation time.

5. Conclusions

A novel sensor management approach aimed at prioritizing the allocation of resources
to identifiable targets is proposed in a hierarchical distributed target identification method.
On the one hand, the method proposes to use the global recognition result feedback local
classifier for the prediction of sensor recognition probability distribution in order to use
the detection information of other sensors to improve the prediction accuracy of single-
sensor recognition results and support a more reasonable allocation of sensors, which
in turn reduces the recognition time. On the other hand, considering that information
gain, discriminative power, discriminative power gain, and quadratic entropy gain are the
measures of the amount of uncertainty change, while information entropy is a measure of
recognition uncertainty that is directly related to the maximum probability in the predicted
recognition result, it is more likely to improve the recognition speed under the target recog-
nition with maximum a posteriori criterion and recognition confirmation mechanism. The
proposed method constructs a segmented effectiveness function based on the information
entropy and target identification confirmation threshold, which can give more weight
to targets meeting the identification confirmation threshold, thus facilitating the priority
allocation of resources to confirmable identification targets. Compared with the methods
based on information theory, the method proposed in this paper has a shorter average
recognition confirmation time on the premise of ensuring the accuracy of target recognition
and achieves the purpose of preferentially allocating resources to identifiable targets. At
present, the method in this paper decides the sensor action in the next moment. Future
work will determine how to extend this to the sensor management for a longer time.
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Appendix A

For a certain target, i, to be identified, let q(x) is the probability density distribution of
target state x before detection (prior distribution) and let p(x) be the estimated probability
density distribution of state x after detection (posterior distribution). Here, the subscript i
for distinguishing the target is omitted to simplify the description.

Information gain ∆I is defined as the prior entropy minus the posterior entropy, i.e.,

∆I(q(x); p(x)) = −∑ωM
x=ω1 q(x) log q(x) + ∑ωM

x=ω1 p(x) log p(x) (A1)
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If p(x) = q(x), then ∆I(q(x); p(x)) = 0, it means that this observation has not obtained
any innovation. If p(x) 6= q(x), then ∆I(q(x); p(x)) 6= 0, it means that this observation
has obtained innovation. In general, the posterior probability should not be less than the
prior probability, so ∆I(q(x); p(x)) ≥ 0. In the target identification sensor management
based on information gain, the entropy Ht of the target state at time t and the mathematical
expectation value E

[
Ht+1|t

]
of entropy before the measurement at time t + 1 are calculated

by a certain method first, and then the sensor resource allocation ∆It = Ht − E
[

Ht+1|t

]
is carried out according to the optimization principle of maximizing the sum ∆It of all
targets [20].

The discrimination between p(x) and q(x) is defined as

D(p(x); q(x)) =
ωM

∑
x=ω1

p(x) log(p(x)/q(x)) (A2)

Discrimination is a measure of information. If p(x) = q(x), then D(p(x); q(x)) = 0,
indicating that this observation did not provide any new information. if p(x) 6= q(x), then
if D(p(x); q(x)) 6= 0, it shows that new information has been obtained from the observation.
In general, the posterior probability should not be less than the prior probability, so
D(p(x); q(x)) ≥ 0. After the observation at time t, let the posterior probability of target i
be πi(t), and the posterior probability at time t + 1 is predicted to be πi(t + 1|t), then the
discrimination Dt+1|t of πi(t + 1|t) relative πi(t) can be calculated. The sensor management
based on discrimination takes the maximum sum of all targets Dt+1|t as the optimization
principle for the sensor-target assignment [19].

The discrimination gain ∆D is defined as the difference between discrimination before
and after observation.

∆D = E
(

Dt+1|t

)
− Dt|t−1 (A3)

where E
(

Dt+1|t

)
is the predicted expectation of the discrimination before observation at

the time t + 1, and Dt|t−1 is the discrimination after observation at time t. The sensor
management method based on discrimination gain takes maximization the discrimination
gain as the optimization principle to allocate sensor resources.

When parameter α is 2, the Rényi entropy is the quadratic entropy:

HRα(X) =
1

1− α
log2 ∑

x∈Ψ
pα(x) (A4)

The sensor management method based on quadratic entropy is based on the princi-
ple of maximizing the sum of expected information gain of all targets to allocate sensor
resources. Where the expected information gain is the difference between the quadratic
entropy Ht

R2
at time t and the mathematical expected value E

[
Ht+1|t

R2

]
of the quadratic

entropy before measurement at time t + 1:

∆It
R2

= Ht
R2
− E

[
Ht+1|t

R2

]
(A5)
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