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Abstract: To overcome the sensitivity of voltage source inverters (VSIs) to parameter perturbations
and their susceptibility to load variations, a fast terminal sliding mode control (FTSMC) method is
proposed as the core and combined with an improved nonlinear extended state observer (NLESO)
to resist aggregate system perturbations. Firstly, a mathematical model of the dynamics of a single-
phase voltage type inverter is constructed using a state-space averaging approach. Secondly, an
NLESO is designed to estimate the lumped uncertainty using the saturation properties of hyperbolic
tangent functions. Finally, a sliding mode control method with a fast terminal attractor is proposed to
improve the dynamic tracking of the system. It is shown that the NLESO guarantees convergence
of the estimation error and effectively preserves the initial derivative peak. The FTSMC enables
the output voltage with high tracking accuracy and low total harmonic distortion and enhances the
anti-disturbance ability.

Keywords: voltage source inverter; uncertainty; extended state observer; fast terminal sliding
mode control

1. Introduction

In recent years, with the development and utilization of smart grid and new energy, the
key technology of modern inverter technology has been paid more and more attention [1].
However, due to the influence of various time-varying perturbations such as DC bias, load
change, and filter parameter perturbation, the inverter output voltage has different degrees
of distortion [2–5]. Therefore, it is of great theoretical significance and engineering value
to design a reasonable robust control strategy for the inverter system to make its output
voltage have better steady-state and dynamic performance [6–12].

At present, there are four methods to study the anti-interference performance of
inverter systems. The first is using an artificial intelligence control algorithm [13–17]. In [13],
a radial basis function neural-network-based approach is proposed to extract harmonics
and solve the power quality problem for multilevel inverters. In [14], a robust iterative
learning control technique is proposed, which can effectively suppress the influence of
periodic and aperiodic disturbances of voltage source inverters. In [15], the fuzzy neural
network method is used to realize on-line compensation, but the rate of convergence is slow.
In [16], the neural network method is used to eliminate the voltage deviation disturbance
caused by primary control, so as to recover its voltage reference value, but it requires many
parameters and takes too long to train. In [17], the nonconvex condition is transformed
into a convex linear matrix inequality to regulate the power share among distributed
power sources and the system load voltage, so as to achieve good control performance;
the disadvantage is that it is difficult to carry out system stability analysis. The second
method is robust control [18,19]. In [18], the H2/H∞ hybrid optimal control method is
proposed to resist the internal parameter change and external load disturbance of the
inverter system. To solve the stability of voltage source inverters with LC filters, an H∞

Sensors 2023, 23, 3951. https://doi.org/10.3390/s23083951 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083951
https://doi.org/10.3390/s23083951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23083951
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083951?type=check_update&version=1


Sensors 2023, 23, 3951 2 of 16

controller with explicit robustness to grid impedance variations is proposed [19]. The third
method is nonlinear control [20–22]. In [20], a novel continuous control set model predictive
control for an LC-filter, three-phase, three-wire voltage source inverter is proposed. Model
predictive control can effectively improve the control delay and reduce the output current
distortion, but it requires accurate computation of the mathematical model of the controlled
system, which reduces the robustness of the system. In [21], the calculations required for
model prediction are reduced, and the optimal voltage vector can be found by calculating
only four voltage vectors in each cycle. In [22], a novel MPC method using joint voltage
vectors is proposed. The proposed scheme reduces the inductance current ripple and
output current error of the inverter and simplifies the weight coefficient design in model
predictive control. In [23], a backstepping sliding mode control (SMC) strategy is proposed
for single-phase voltage source inverters, but in the design of backstepping controllers for
higher-order systems, the need to derive the intermediate virtual control quantities one
at a time leads to a “computational explosion” problem. In [24], an output-impedance-
shaping method based on adaptive sliding mode control is proposed for voltage regulation,
load proportional sharing, and ripple optimization of a DC microgrid. The fourth is a
control method based on a disturbance observer. In [25], a disturbance observer is used to
estimate the load disturbance and combined with SMC to further enhance the robustness
and tracking accuracy of the system. An extended state observer (ESO) can estimate the
variables and disturbances of state in real time, and because of their excellent disturbance
observation capability, grid-connected inverter systems are widely used to suppress filter
parameter variations and grid disturbances in [26]. Traditional sliding mode control
suffers from the inability to stop tracking errors; although this can be solved by using
terminal sliding modes, there are singularity problems. In addition, there are inherent jitter
problems with sliding mode control that must be suppressed. A combination of disturbance
estimation can generally be used. It can be seen from the above analysis that although the
main control methods proposed so far have their own advantages in the application of
inverter systems, they still suffer from different degrees of imperfections, and there are still
numerous problems to be solved [27–32]. For example, problems include the chattering
and convergence problems of SMC as well as the ESO initial peak problem. Fast terminal
sliding mode control ensures that the state of the system converges to the equilibrium point
within a finite time during the sliding phase by constructing a nonlinear sliding mode
surface [33–39]. The chattering problem can be reduced by combining the sliding mode
control with the observer. At the same time, consider that the initial peak suppression and
fast-tracking capabilities of the nonlinear ESO are stronger than those of the linear ESO. In
addition, some new methods have also been proposed in recent years [40–48].

Based on the characteristics of the third and fourth methods mentioned above, a
nonlinear ESO-based FTSMC strategy is presented in this paper. The effects of load
variations and filter parameter perturbations on the system are synthesized into a lumped
uncertainty, which is estimated by a nonlinear ESO based on hyperbolic tangent functions.
In order to improve the response speed and robustness of the inverter system, the lumped
uncertainty of the nonlinear ESO reconstruction is considered, and an SMC law with
terminal attractors is designed. The designed nonlinear ESO-based FTSMC strategy enables
stable and reliable operation of the inverter system. Its output voltage tracking accuracy
is high, and the total harmonic distortion (THD) is small. Moreover, the combination of
nonlinear ESO and FTSMC can enhance the system’s ability to restrain perturbations.

The contributions of this paper are summarized below.
(1) A novel nonlinear ESO-based fast terminal sliding mode control (FTSMC) strategy

is presented as the core.
(2) The state space averaging method is used to establish the dynamic mathematical

model of a single-phase voltage type inverter.
(3) The saturation property of the hyperbolic tangent function is employed to design

the NLESO to estimate the lumped uncertainty.
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(4) A new sliding mode control method with a fast terminal attractor is proposed to
improve the dynamic tracking of the system.

2. Problem Formulation

In this paper, the single-phase inverter system consists of a DC power supply, inverter,
LC filter, and load, as shown in Figure 1.
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Figure 1. Block diagram of inverter system.

In this figure, the power switch tube T1–T4 are IGBTs. The IGBTs are controlled by
PWM, which converts DC power into AC power with adjustable fundamental frequency
and amplitude. This is then transmitted to the load through a filter. Udc is the DC voltage
input to the inverter voltage. iinv is the inductor current on the inverter side. uinv and uo
are the inverter output voltage and the filter output voltage, respectively. Lf, Cf, and Rf are
the filter inductors, capacitors, and resistors of the inverter, respectively. ZL/ZNL is the
load disturbance, including linear and nonlinear loads.

The inverter system dynamic model is as follows:{
Lf

.
iinv = uinv − uo − Rfiinv

Cf
.
uo = iinv − io

(1)

Rewrite Equation (1) as follows:

..
uo = −

Rf
Lf

.
uo −

1
LfCf

uo +
uUdc
LfCf

− 1
Cf

.
io −

Rf
LfCf

io (2)

Let us define the state variable as follows:{
x1 = uo
x2 =

.
x1 =

.
uo

(3)

Considering the system internal parameter changes and external load disturbances,
the system state equation is sorted as follows:

.
x1 = x2
.
x2 = ( f (x1, x2) + ∆ f (x)) + (b + ∆b)u + D

= f (x1, x2) + bu + d
y = x1

(4)

where f (x1, x2) = − 1
LfCf

x1 − Rf
Lf

x2; b = Udc
LfCf

; D = − 1
Cf

.
io − Rf

LfCf
io; d = D + ∆ f (x) + ∆bu;

D is external disturbance; and d is considered as complex time-varying disturbance. From
the formula of d, the rth-order derivative of d is available.

In the physical world, the change rate of perturbation is always finite, which is the
general case of perturbation estimation. That is to say, the rth-order derivative of d is
bounded, satisfying M = sup

t∈(0,∞)

∣∣∣d(r)∣∣∣ < ∞.
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Thus, any unknown disturbance d can be represented by the Taylor expansion
as follows:

d =
r−1

∑
i=0

aiti + ξ(t) (5)

where ai(i = 0, 1, . . . , r− 1) are unknown constants, and ξ(t) is the residual term.

3. Controller Design and Stability Analysis

The control block diagram proposed is shown in Figure 2. Its core design includes
nonlinear ESO and FTSMC. NLESO allows for better estimation of system disturbances
and feedback compensation. In addition, the time-varying disturbance is considered; the
FTSMC strategy with terminal attractor is used in here.
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3.1. Nonlinear ESO Design Based on Hyperbolic Tangent Function
3.1.1. Nonlinear ESO Design

Before the nonlinear ESO is designed, the unknown lumped uncertainty d is extended:
x3 = d. Then we set q(t) =

.
x3, and M = sup

t∈(0,∞)

|q(t)| < ∞ [49]. Therefore, Equation (4) is

rewritten as follows: 
.
x1 = x2.
x2 = f (x1, x2) + bu + x3.
x3 = q(t)
y = x1

(6)

The known information is utilized as much as possible; the nonlinear ESO design
based on hyperbolic tangent function can be modified [50,51].

.
x̂1 = x̂2 + β1(y− x̂1).
x̂2 = f (x̂1, x̂2) + bu + x̂3 + β2(y− x̂1).
x̂3 = β3 · tanh(b(y− x̂1))

(7)

where x̂i is the estimate value of xi, βi > 0 (i = 1, 2, 3) is observer gain, and tanh(.) is a
hyperbolic tangent function, which is defined as

tanh(b · x) = ebx − e−bx

ebx + e−bx , b > 0 (8)

where b is used to regulate the rate of change of the tanh(.).

Remark 1. The sign function sign(.) is used in a conventional ESO, and the switch characteristic
of sign(.) can easily cause high-frequency fluttering of the system and initial differential peak
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phenomenon. To solve this problem, the hyperbolic tangent function tanh(.) is used to replace sign(.).
Figure 3 is a comparison of the tanh (.) and sign (.) functions.
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Figure 3. Effect comparison of ESO with different nonlinear functions: (a) comparison between
hyperbolic tangent function and sign function; (b) the estimated error value on system state x1 of
ESO with different nonlinear functions; and (c) the estimated value of extended state x3.

It can be seen that an ESO based on tanh(.) can effectively suppress the estimation
peak value of a system state in the initial stage and obtain high estimation accuracy in
other stages.

3.1.2. Nonlinear ESO Convergence Analysis

Assumption 1. f (.) is Lipschitz continuous. There exists a Lipschitz positive constant L,
such that

| f (x)− f (x̂)| ≤ L‖x− x̂‖, ∀ x, x̂ ∈ R3. (9)

Let x̃i = xi − x̂i (i = 1, 2, 3) be the estimation error of ESO. In view of (6) and (7), it
can obtained that 

.
x̃1 = x̃2 − β1 x̃1.
x̃2 = x̃3 − β2 x̃1 + δ(t)
.
x̃3 = q(t)− β3 · tanh(bx̃1)

(10)

where δ(t) = f (x1, x2)− f (x̂1, x̂2).
For the hyperbolic tangent function, tanh(b · x̃1) ≈ b · x̃1 in the neighborhood of x̃1 = 0,

so Equation (10) can be rewritten as
.
x̃1 = x̃2 − β1 x̃1.
x̃2 = x̃3 − β2 x̃1 + δ(t)
.
x̃3 = q(t)− bβ3 x̃1

(11)
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Thus .
x̃ = Ax̃ + Bδ(t) + Cq(t) (12)

where

x̃ =

 x̃1
x̃2
x̃3

, A =

 −β1 1 0
−β2 0 1
−bβ3 0 0

, B =

 0
1
0

, C =

 0
0
1

.

Since A is a Hurwitz matrix, it satisfies the following conditions:

ATP + PA = −I. (13)

Define the Lyapunov function as follows:

V1(x̃) = x̃TPx̃. (14)

It satisfies the following conditions:

λmin(P)‖x̃‖2 ≤ V1(x̃) ≤ λmax(P)‖x̃‖2, (15)

where λmin(P), λmax(P) are the maximum eigenvalue and the minimum eigenvalue of the
matrix P, respectively. ‖ · ‖ refers to the Euclid norm of R3.

The derivative of V1(x̃) is given by

dV1(x̃)
dt =

.
x̃

T
Px̃ + x̃TP

.
x̃

=
[

x̃TAT + BTδ(t) + CTq(t)
]
Px̃

+x̃TP[Ax̃ + Bδ(t) + Cq(t)]
= −‖x̃‖2 + 2x̃TPBδ(t) + 2x̃TPCq(t)
≤ −‖x̃‖2 + 2x̃TPB|δ(t)|+ 2x̃TPCq(t)

(16)

According to Cauchy–Schwarz inequality [52],

2x̃TPB ≤ 2
∥∥x̃T

∥∥‖P‖‖B‖ = 2
∥∥x̃T

∥∥‖P‖ ≤ 2λmax(P)‖x̃‖
2x̃TPC ≤ 2

∥∥x̃T
∥∥‖P‖‖C‖ = 2

∥∥x̃T
∥∥‖P‖ ≤ 2λmax(P)‖x̃‖

(17)

In view of (9), (15) and (17), the (14) yields.

dV1(x̃)
dt ≤ −‖x̃‖2 + 2λmax(P)L‖x̃‖2 + 2λmax(P)‖x̃‖M

≤ − V1(x̃)
λmax(P)

+ 2λmax(P)L
λmin(P)

V1(x̃)

+ 2λmax(P)M√
λmin(P)

√
V1(x̃)

(18)

It follows that

d
√

V1(x̃)
dt = 1

2
√

V1(x̃)
dV1(x̃)

dt

≤ 1
2
√

V1(x̃)
[− V1(x̃)

λmax(P)
+ 2λmax(P)L

λmin(P)
V1(x̃)

+ 2λmax(P)M√
λmin(P)

√
V1(x̃)]

= (− 1
2λmax(P)

+ λmax(P)L
λmin(P)

)
√

V1(x̃) + λmax(P)M√
λmin(P)

(19)

We can obtain that√
V1(x̃) ≤ exp((− λmin(P)−2λ2

max(P)L
2λmax(P)λmin(P)

)(t− t0))
√

V1(x̃(t0))

+ λmax(P)M√
λmin(P)

∫ t
t0

exp((− λmin(P)−2λ2
max(P)L

2λmax(P)λmin(P)
)(t− τ))dτ

(20)
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Combining (15) and (20) yields the following:

‖x̃‖ ≤
√

V1(x̃)√
λmin(P)

≤ exp((− λmin(P)−2λ2
max(P)L

2λmax(P)λmin(P)
)(t− t0))

√
V1(x̃(t0))
λmin(P)

+ λmax(P)M
λmin(P)

∫ t
t0

exp((− λmin(P)−2λ2
max(P)L

2λmax(P)λmin(P)
)(t− τ))dτ

≤ exp((− λmin(P)−2λ2
max(P)L

2λmax(P)λmin(P)
)(t− t0))

√
λmax(P)
λmin(P)

‖x̃(t0)‖

+ 2λmax(P)λmin(P)M
2λ2max(P)L−λmin(P)

[1− exp((− λmin(P)−2λ2
max(P)L

2λmax(P)λmin(P)
)(t− t0))]

(21)

Finally, according to [21],

‖x̃i‖ ≤ max{

√
λmax(P)
λmin(P)

‖x̃(t0)‖,
2λmax(P)λmin(P)M

2λ2max(P)L− λmin(P)
} (22)

Thus, by choosing the observer gain properly, the estimation error of tanh(.)-based
nonlinear ESO can converge to a small region.

3.2. Nonlinear ESO-Based FTSMC Design
3.2.1. Nonlinear ESO-Based FTSMC Strategy

For uncertain systems (4), define the voltage output tracking error

e = ur − uo. (23)

In order to avoid the singularity of conventional terminal sliding mode, the non-
singular fast terminal sliding mode surface is constructed [53–55].

s = e +
1
η

e(g/h) +
1
µ

.
e(p/q) (24)

where η > 0, µ > 0,g , h , p , q are positive constants, and 1 < p/q < g/h < 2.
Take the derivative of Equation (24):

.
s =

.
e + g

ηh e(g/h)−1 .
e + p

µq
.
e(p/q)−1..

e

=
.
e(1 + g

ηh e(g/h)−1) + p
µq

.
e(p/q)−1

(
..
ur −

.
x2)

=
.
e(1 + g

ηh e(g/h)−1)+
p

µq
.
e(p/q)−1

(
..
ur − f (x1, x2)− bu− d)

(25)

The sliding mode control input is designed as follows

u =
1
b
(u1 + u2), (26)

where 
u1 = (k1s + k2|s|αsign(s))

+ µq
p

.
e2−(p/q)

(1 + g
ηh e(g/h)−1) +

..
ur

− f (x1, x2)− x̂3

u2 = ϕsign(s)

(27)

where u2 is a robust control term to compensate the observation error of the ESO, and the
ϕ value should meet the ϕ > |x̂3 − d|. k1 > 0, k2 > 0, 0 < α < 1, and x̂3 is the estimated
value of lumped uncertainty d of ESO of Equation (7).
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3.2.2. Stability Analysis of FTSMC

Lemma 1. Assume a continuous functionv(t)satisfies the following differential inequality:

.
v(t) ≤ −a1v(t)− b1v(t)q1/p1 , ∀t ≥ t0. (28)

In addition, assume that

tr = t0 +
p1

a1(p1 − q1)
ln(

a1v(t0)
(p1−q1)/p1 + b1

b1
), (29)

where a1 and b1 are positive, q1 and p1 are positive odd constants, 0 < q1/p1 < 1, and t0 is
initial time. In that case, v(t) will converge to zero in finite time tr.

Lyapunov function is chosen as V2 = (1/2)s2, and the derivative of V2 is

.
V2 = s p

µq
.
e(p/q)−1[

(x̂3 − d)− k1s− k2|s|αsign(s)− ϕsign(s)
]

= p
µq

.
e(p/q)−1

[(x̂3 − d)s− k1s2 − k2|s|α+1 − ϕ|s|]
≤ p

µq
.
e(p/q)−1

(−k1s2 − k2|s|α+1)

(30)

Therefore,
.

V2 ≤ 0, so according to Lyapunov stability theory, the control system
is stable.

Then, Equation (29) can be further written as

.
V2 ≤ −χ1V2 − χ2V2

(α+1)/2, (31)

where χ1 = 2k1 p
µq

.
e(p/q)−1, χ2 = 2(α+1)/2k2 p

µq
.
e(p/q)−1.

According to Lemma 1, the time for the sliding mode motion from s(t0) 6= 0 to
converge to s(T1) = 0 is

T1 = t0 +
1

χ1(1− (α + 1)/2)
ln

χ1V2(t0)
(1−(α+1)/2) + χ2

χ2
(32)

When the system enters the sliding surface s(T1) = 0, according to Equation (24), the
time can be obtained as follows:

e +
1
η

e(g/h) +
1
µ

.
e(p/q)

= 0 (33)

Solving the error Equation (33), it can be obtained that the time after the system moves
along the sliding mode surface to reach the zero-equilibrium state is set as follows:

T2 =
µηqhT1 + ηhp

.
e(T1)

p
q−1

+ µqge(t0)
g
h−1T1

µηqh + µqge(t0)
g
h−1

(34)

Therefore, the motion state of the system will, from the initial state, converge to the
zero equilibrium state in finite time t f = T1 + T2.

Remark 2. When the system state enters the sliding mode, Equation (33) has nothing to do with the
lumped uncertainty d of the system. Therefore, the FTSMC strategy can guarantee the robustness of
the system.

Remark 3. When the system enters the sliding mode stage, that is s = 0, it can be obtained from
Equation (33) that 1

µ

.
e(p/q)dominates when the sliding mode is far from the equilibrium, which

guarantees a high convergence rate. In contrast, terminal attractor 1
η e(g/h)dominates when the
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sliding mode is near the equilibrium, which guarantees a finite time convergence. The time of
convergence can be obtained by solving the differential Equation (33). However, conventional sliding
mode methods are not available. In addition, since1 < p/q < g/h < 2, the fast terminal sliding
mode differential terms in Equation (25) avoid singularity.

4. Simulation Analysis

To verify the performance of the FTSMC + NESO controller, the algorithm was modelled
on the MATLAB/SIMULINK platform, and two more systems were built for comparison.

System 1 is the control strategy proposed in this paper (ESO + FTSMC). System 2 is a
fast terminal sliding mode inverter control system without an ESO(FTSMC). System 3 is a
conventional sliding mode inverter control system based on a nonlinear ESO(ESO + SMC).

In the simulation, the rated capacity of the inverter was set to 2.2 kVA, the inverter
control system output reference voltage was ur = 220

√
2 sin 100πt, and the circuit and

control parameters were selected in the simulation as listed in Tables 1 and 2.

Table 1. System electrical parameters [56].

Description Parameters Nominal Values

DC link voltage Udc 400 V

Inverter switching f 10 kHz

Parasitic resistance Rf 0.2 Ω

Filter inductor Lf 5 mH

Filter capacitor Cf 10 µF

Linear load RL 38 Ω

Nonlinear load RNL (38 Ω + 5 mH) ‖ 2.5 mF

Table 2. System control parameters.

Parameters Nominal Values

β1, β2, β3 0.001, 0.04, 12

b 0.3

g, h, p, q 5, 3, 9, 7

η, µ 0.05, 0.02

k1, k2, ϕ 5, 1, 60

α 0.82

4.1. Performance of System 1

The inverter output voltage and load current response for System 1 under two different
load types are shown Figure 4.
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It can be seen that the inverter output voltage can quickly track the reference input
voltage under different loads. Figure 4a,b show that the inverter output voltage varies
exactly in phase with the load current, but from Figure 4b, it can be seen that the inverter
system output current is non-sinusoidal under nonlinear loads.

4.2. Comparative Study of System 1 and System 2

There is no nonlinear ESO in System 2. The design process of FTSMC and the control
block diagram of the inverter system are shown in Appendix A. For the sake of the fairness
and validity of the comparison, the corresponding FTSMC parameters and filter parameters
were identical in System 1 and System 2.

4.2.1. Comparison of System 1 and System 2 under Varying Linear Loads

The load values of System 1 and System 2 decreased from 38 Ω to 19 Ω at 0.2 s.
Figure 5a,b are the output voltage and current output response of System 1 and System
2, respectively. Figure 5c is the voltage error between the output voltage of System 1 and
System 2 and the reference voltage, respectively.
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Figure 5. Inverter system output response under linear load saltation: (a) output response of System
1, (b) output response of System 2, and (c) voltage error.

As can be seen from Figure 5a, when the load suddenly changes, the output voltage of
System 1 deviates from the reference voltage, but after about two multi periods, it can track
the reference voltage well. As shown in Figure 5b, when the load is suddenly changed, the
output voltage of System 2 always deviates from its reference voltage. Figure 5c further
shows that the output voltage of System 1 deviates from the reference voltage to a smaller
degree than that of System 2.

4.2.2. Comparison of System 1 and System 2 under Varying Nonlinear Loads

In this part, System 1 and System 2 parallel a set of the same nonlinear load at 0.2 s.
Figure 6a,b are the output voltage and current output response of System 1 and System 2,
respectively. Figure 6c shows the voltage error between the output voltage of System 1 and
System 2 and the reference voltage, respectively. Figure 6d,e are the output voltage THD of
System 1 and System 2.
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Figure 6. Inverter system output response under nonlinear load saltation: (a) output response of
System 1, (b) output response of System 2, (c) voltage error, (d) output voltage THD of System 1, and
(e) output voltage THD of System 2.

It can be seen from Figure 6a, Figure 6b that when the nonlinear load suddenly changes,
the output voltage of System 1 deviates from the reference voltage, but it tracks the reference
voltage well after about two multi periods, while the output voltage of System 2 always
deviates from its reference voltage. Figure 6c shows that the output voltage of System 2
deviates from its reference voltage to a greater extent than that of System 1. Figure 6d,
Figure 6e further show that when the system suffers from nonlinear load saltation, the
output voltage THD of System 1 and System 2 meet IEEE standard 519-2014 (THD < 5%),
while System 1 has a smaller THD value. Therefore, System 1 with nonlinear ESO has a
better ability to deal with nonlinear load disturbance than System 2.

4.2.3. Comparison of System 1 and System 2 under Perturbation of Filter Parameters

In this part, simulations are carried out for the case where the filter inductance value
is 40% of the nominal parameter. Figure 7a,b show the output voltages of System 1 and
System 2 for the three inductor parameter values, respectively.

As seen in Figure 7a, b, when the inductance parameter is ingested, the output voltage
of System 1 is closer to that of System 2. System 1 with nonlinear ESO is therefore better
able to accommodate inductance parameter ingress than System 2.
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Figure 7. The output voltages of two voltage controllers: (a) output response of System 1 and
(b) output response of System 2.

4.3. Comparative Study of System 1 and System 3

Conventional SMC is used in System 3. See Appendix A for its design process and
inverter system control block diagram. System 1 and System 3 use the same nonlinear ESO,
and the corresponding parameters and filter parameters are completely consistent.

System 1 and System 3 parallel a set of the same nonlinear load at 0.2 s. Figure 8a,b
are the output voltage and current output response of System 1 and System 3, respectively.
Figure 8c is the voltage error between the output voltage of System 1 and System 3 and
the reference voltage, respectively. Figure 8d is the output voltage THD of System 1 and
System 2, respectively.
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Figure 8. Inverter system output response under nonlinear load saltation: (a) output response of
System 1, (b) output response of System 3, (c) voltage error, (d) output voltage THD of System 1.

As can be seen from Figure 8a,b, when the nonlinear load changes suddenly, the
output voltage of System 1 deviates from the reference voltage, but it can track the reference
voltage well after about two multi periods, while System 3 can only track the reference
voltage after about five multi periods. Figure 8c shows that, compared with that of System
1, the output voltage of System 3 fluctuates greatly from its reference voltage. Figure 8d
shows that when the system suffers from nonlinear load mutation, the output voltage THD
of both System 1 and System 3 meets IEEE Standard 519-2014(THD < 5%), and System 1 has
a smaller THD value. Since the terminal attractor introduced in the FTSMC strategy can
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promote the system, FTSMC-based System 1 has a faster response time than SMC-based
System 3.

The simulated state trajectories in the phase plane for the conventional SMC method
and FTSMC method are shown in Figure 9a. Figure 9b shows the simulated responses of
the rate of change of the output voltage error under the conventional SMC method and
FTSMC method during the step change in the load current.
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It can be seen from Figure 9a that the SMC method takes much more time to travel
from the initial state to the equilibrium points than the FTSMC method. In addition, the
responses obtained by the FTSMC method are much faster than those obtained by the SMC
method, as shown in Figure 9b.

5. Conclusions

In this study, a nonlinear ESO-based FTSMC scheme for a VSI system is proposed.
The proposed NESO-based FTSMC strategy can enable the inverter system to stably and
reliably operate against disturbances such as load and filter parameter variations, providing
satisfactory dynamic regulation and steady-state tracking of its output voltage to meet
power quality requirements. The algorithm in this paper uses only voltage sensors and
does not require current sensors, saving hardware costs. This paper provides a novel
high-precision robust control method for distributed power-generation systems such as
inverter-based systems.

Due to the limitations of the conditions, only theoretical and simulation studies have been
performed on the designed control strategy, and the next step will be experimental validation.
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Appendix A

Appendix A.1. The Design of System 2

Regarding Formula (24) of Section 3.2, as a sliding surface selection, in view of an
inverter nominal system, the derivation of (24) is

.
s =

.
e(1 + g

ηh e(g/h)−1) + p
µq

.
e(p/q)−1

[
..
ur − f (x1, x1)

−bu + 1
Cf

.
io +

Rf
LfCf

io]
(A1)

The input of sliding mode control is designed as

u = 1
b [k1s + k2|s|αsign(s) + µq

p
.
e2−(p/q)

(1 + g
ηh e(g/h)−1)

+
..
ur − f (x1, x2) +

1
Cf

.
io +

Rf
LfCf

io]
(A2)

Appendix A.2. The Design of System 3

The sliding surface of conventional sliding mode control is selected as

s =
.
e + ce. (A3)

The reaching law is designed as

.
s = −k1sign(s). (A4)

For the uncertain inverter system (4), the derivation of (36) is

.
s =

..
ur − f (x1, x2)− bu− d + c(

.
ur − x2). (A5)

The input of sliding mode control is designed as

u =
1
b
[

..
ur − f (x1, x2)− x̂3 + c(

.
ur − x2) + k1sign(s)], (A6)

where c = 20.
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